Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция энергетические, факторы

    Обработка палыгорскита известью, произведенная по первому способу, приводит к уменьшению тепловых эффектов, выделяющихся при смачивании образцов водой. Все образцы откачивали равное время при одинаковых условиях (табл. 7). Уменьшение теплот смачивания палыгорскита, обработанного известью, происходит за счет действия двух факторов — уменьшения доступной для адсорбции поверхности минерала (агрегация в пачки, частичное смыкание цеолитных каналов) и изменения природы поверхности минерала в результате взаимодействия с известью. Известно, что поверхность палыгорскита характеризуется энергетической гетерогенностью [321, 353, 354]. Неоднородность поверхности связана с наличием активных центров различной природы — октаэдрические катионы на боковых стенках каналов, обменные катионы, атомы кислорода на внутренней поверхности каналов и на внешней поверхнос-сти игольчатых частичек минерала, гидроксильные группы, специфика геометрии самой поверхности палыгорскита. Наиболее вероятно, что многие из этих адсорбционных центров, особенно кислотного характера, вначале поверхностного взаимодействия с гидроокисью кальция блокируются. При этом новообразования обладают меньшей энергетической активностью. Такой вывод кажется вполне закономерным, если учесть падение интенсивности эндоэффектов на термограммах палыгорскита обработанного известью. Эндоэффекты 120, 150, 280° и широкий максимум 470—500° появляются на кривых ДТА палыгорскита за счет удаления, соответственно, молекул воды, свободно размещенных в цеолитных каналах молекул воды, адсорбированной на поверхности кристаллов по наружным разорванным связям связанных с октаэдрическими катионами на боковых стенках каналов и постепенного исчезновения структурных гидроксилов [359]. Таким образом, снижение интенсивности перечисленных эндоэффектов, наряду с уменьшением теплот смачивания, свидетельствует о преимущественном взаимодействии Са(0Н)2, прежде всего, по энергетически наиболее выгодным центрам внешней и внутренней поверхности минерала. Очень интересно, что, несмотря на снижение энергетической активности поверхности палыгорскита, в результате частичного блокирования первичных центров неоднородности поверхности, общее количество связанной воды не уменьшается и выделение ее идет за счет дегидратации гидратных новообразований. Этот вывод можно сделать на основании сравнения потерь при прокаливании обработанных и не обработанных известью образцов и сопоставления нх с характером кривых ДТА. Как видно из табл. 7, потери веса в интервале 80—400° С у обработанных известью образцов не уменьшаются, а интенсивность присущих палыгорскиту эндоэффектов понижается. Общая протяженность [c.134]


    В противовес прежним мнениям, объяснявшим окрашивающее действие бензидина его окислением на поверхности глины, Н. Е. Веденеева увидела в этом проявление дублетной связи обеих аминогрупп, сопровождающееся ориентировкой бензольных ядер и жестким закреплением их на общей оси С — С. Дублетная адсорбция обусловлена геометрическим фактором, требующим строго фиксированных расстояний между функциональными группами красителя и соответствия их межатомным расстояниям активных участков базальной поверхности, и энергетическим фактором — прочностью связей тиазинового азота на различных минералах в зависимости [c.68]

    Атомы ванадия в решетке окиси ванадия имеют валентность, равную пяти. Когда в качестве примеси в решетку вводится атом вольфрама, появляется один избыточный электрон, так как вольфрам имеет шесть валентных электронов (случай а, рис. 2). Однако при введении атома вольфрама в решетку окисла ванадия шестой валентный электрон вольфрама, связанный со своим атомом но очень сильно, может при термических колебаниях мигрировать сквозь решетку окиси ванадия как переносчик электрического тока или влиять на адсорбцию кислорода на поверхности. Электронейтральность кристалла сохраняется вследствие того, что избыток положительного заряда атома вольфрама нейтрализует избыток электронов, имеюш ихся в кристалле. Однако электрон может мигрировать сквозь решетку и проводить электрический ток, в то время как положительный заряд дол кен оставаться локализованным в том месте решетки, в котором находится атом вольфрама. В результате вольфрам способствует электронной проводимости в твердом веществе. В противоположность этому, когда в решетке окиси ванадия атом ванадия замещен на титан (случай б рис. 2), он отдает только четыре валентных электрона. Пятый электрон, необходимый для валентной структуры кристалла, отдается одним из атомов ванадия, входящих в решетку окисла, что приводит к образованию так называемых положительных дырок в твердом веществе. В этом случае перенос электрического тока и электрическая проводимость возникают при движении этих положительных дырок. В обзорной литературе, указанной во вступительной части этого раздела, довольно подробно излагаются количественные законы, управляющие скоростью движения потока электрических зарядов, и энергетические факторы, управляющие их движением от одного положения в решетке к другому. Дефекты решетки, вызванные либо нестехио-метричностью состава, либо включением инородных примесей, несут ответственность за перенос электронов от твердого вещества к адсорбированной молекуле или, наоборот, за переход электронов из адсорбированной молекулы в решетку. Подобным же образом движение электронов или положительных дырок в твердом веществе имеет большое значение для каталитического поведения полупроводника кроме того, этим можно объяснить быстрое образование дефектов решетки при соударении адсорбирующейся молекулы с поверхностью. Признано также, что дефекты не локализуются в определенном месте решетки (как показано на рис. 1 и 2), а распространяются на довольно большое число атомов. Представления, излагаемые в настоящем разделе, очень упрощены, но будут полезны читателю как предварительная, чисто качественная картина, прежде чем он сможет получить сведения из более авторитетных обзоров (ссылки [4, 6 и 12]). [c.367]


    Рассмотренные соображения, справедливые для гомогенных реакций, остаются в силе и для большинства гетерогенных реакций на каталитических поверхностях при адсорбции энергетические уровни понижаются, но большей частью соотношения между ними качественно остаются теми же. В действительности, как в гомогенных, так и в гетерогенных реакциях влияние изотопного замещения на скорость осложняется рядом дополнительных факторов, которые здесь не рассматривались и в общем виде не поддаются учету. [c.260]

    Часто вещества, повышающие поверхностное натяжение растворителя, сами в чистом виде обладают более высоким поверхностным натяжением, а понижающие — более низким по сравнению с растворителем. Большое поверхностное натяжение означает большую энергетическую ненасыщенность молекул на поверхности. Такие молекулы стремятся покинуть поверхность, так как для снижения свободной поверхностной энергии выгоднее иметь молекулы с малой энергетической ненасыщенностью. Естественно, полному разделению молекул препятствует потеря энтропии образования раствора. В результате действия этих двух факторов на поверхности раствора возникает изменение состава по сравнению с объемом, т. е. возникает адсорбция. Различают адсорбцию пол ож ительную, когда концентрация растворенного вещества в поверхностном слое выше, чем в объеме, и о т р и-ц а т е л ь н у ю — в обратных случаях. Вещества, вызывающие положительную адсорбцию, т. е. снижающие поверхностное натяжение растворителя, называются поверхностно-активными веществами (ПАВ). [c.27]

    Таким образом, процесс перехода молекул (ионов) ПАВ на поверхность раствора требует преодоления некоторого сложного по своей природе энергетического барьера, который является фактором, лимитирующим скорость адсорбции и приводящим к задержке установления равновесного значения а. [c.32]

    Часто вещества, увеличивающие поверхностное натяжение растворителя, сами в чистом виде обладают более высоким значением поверхностного натяжения, а уменьшающие— более низким по сравнению с растворителем. Большое поверхностное натяжение означает большую энергетическую насыщенность молекул, находящихся на поверхности. Такие молекулы будут удаляться с поверхности раствора, на которой для снижения свободной поверхностной энергии выгоднее иметь молекулы с малой энергетической насыщенностью. Конечно, полному разделению молекул будет препятствовать потеря энтропии образования раствора. В результате действия этих двух факторов на поверхности раствора возникает определенная адсорбция, т. е. изменение состава по сравнению с объемом. Стремление покинуть раствор и выйти на поверхность определяется условиями, которые создаются для молекул в объеме и на поверхности. [c.410]

    Причинам возникновения прочной связи между частицами при перемешивании или пересыпании порошка можно дать и несколько другое толкование. Для образования контакта и прочной связи частицам необходимо преодолеть некий энергетический барьер, например преодолеть силы адсорбции молекул газов частицами пыли. Очевидно, образование агрегатов в этом случае вызовут только. особо удачные столкновения частиц, обладающих кинетической энергией, достаточной для преодоления этого энергетического барьера. При такой точке зрения факторы, обуславливающие удаление адсорбированных молекул, должны способствовать образованию контактов и, следовательно, действию молекулярных сил. Это и наблюдается в действительности как показали опыты, при обкатывании под вакуумом и при повышенной температуре гранулирование улучшается. [c.355]

    Регулирование свойств дисперсных систем, играющих важную роль в производстве, строительстве, сельском хозяйстве — одна из основных задач современной коллоидной химии. Успешные результаты позволили наметить пути интенсификации коллоидных процессов, протекающих в водных дисперсиях, а также получить эффективные, прочные долговечные материалы, регулировать агрономические свойства почвы, структуру грунтов и др. Существенное значение имеет введение в систему различных добавок. Очевидно, одним из факторов, определяющих эффективность добавки, помимо ее состава, является природа поверхности дисперсной фазы, ее энергетическая неоднородноеть (макромозаичность). Наличие на поверхности гидрофильных и гидрофобных участков широко используется при интерпретации структурномеханических свойств дисперсных систем [1—5], при объяснении процесса смачивания водой [6], при выяснении роли гидрофобных взаимодействий в процессе адсорбции из растворов поверхностно-активных веществ (ПАВ) и их смесей твердыми адсорбентами [7]. [c.193]


    Соответствие адсорбции ингибиторов на твердых поликристаллических металлах изотерме Лэнгмюра казалось бы противоречит теоретическим представлениям (однородная в энергетическом отношении поверхность). В [40] адсорбция ингибиторов на неоднородной поверхности железа, подчиняющаяся изотерме Лэнгмюра, объясняется компенсирующим действием двух факторов снижением свободной энергии адсорбции при увеличении степени заполнения и увеличением Сил притяжения между адсорбированными молекулами. Лэнгмюровская адсорб-Дия имеет физический характер, обусловлена силами электростатического притя- Кения Ван-дер-Ваальса, молекулы ингибитора с повышением температуры могут Десорбироваться. Ингибиторы, физически адсорбированные, не обладают последействием. [c.25]

    Значение энергетических факторов в катализе особенно ярко выступило при гидрировании в растворах в присутствии иридиевой черни. Оказалось, что последняя при низких температурах является плохим катализатором гидрогенизациив ее присутствии реакции протекают очень медленно. Объяснение этого было найдено при измерении потенциала, когда мы обнаружили, что водород с поверхности иридия почти не вытесняется даже такими соединениями, как нитробензол. Падение потенциала при гидрировании нитросоединений на никеле составляет 350—400 мв, на платине около 150 мв, а на иридии только 20—40 мв. Подобное поведение иридия несомненно связано с тем, что на 5с -оболочке его находится только 7 электронов и адсорбция водорода на его поверхности происходит значительно прочнее, чем на платине. [c.185]

    Здесь необходимо учитывать также возможность взаимодействия адсорбируемых молекул с адсорбентом, которое осложняет диффузию молекул в полостях цеолитов. Так, например, известно, что при ионном обмене больших органических ионов на кинетику процесса большое влияние оказывают стерические факторы, приводящ ие к образованию непроницаемых корок и полному прекращению обмена. Такие процессы, как отмечается в [2], требуют специального анализа и дополнительного изучения распределения ионов (молекул) внутри ионита (адсорбента). Кроме того, необходимо учитывать, как нам кажется, и другую возможность. Величины адсорбции, наблюдаемые в опытах, могут быть равновесными, если принять во внимание возможную зависимость равновесной величины адсорбции от конфигурации адсорбируемых молекул в полости цеолита. С ростом температуры конфигурационное равновесие смеш,ается таким образом, что величина адсорбции растет вплоть до заполнения предельного объема адсорбционного пространства W - Для таких жестких молекул,, как 1,3,5-триэтилбензол или третичный бутилбензол конфигурационные преобразования могут быть затруднены большими энергетическими барьерами. Во всяком сл чае, вопрос заслуживает, по нашему мнению, детального рассмотрения с анализом механизма взаимодействия адсорбата и адсорбента и привлечением для этой цели спектральных методов, позволяющих судить о состоянии адсорбированных молекул, их подвижности и характере взаимодействия с адсорбентом. [c.273]

    При рассмотрении этих вопросов существенно, каков характер электронных переходов при химической адсорбции на металлах, от каких факторов он зависит и какова природа образующейся адсорбционной связи. Очевидно, что такими факторами являются электронная структура адсорбирующегося вещества, электронная структура металла и зависящие от нее специфические электронные свойства его поверхности. Последнее означает необходимость учета энергетических уровней поверхностного электронного газа металлов. Вопрос о возможности существования специфических локальных энергетических уровней у поверхности твердого тела был поставлен И. Е. Таммом [64]. Отмечается также возможность возникновения специфических поверхностных энергетических состояний металла в результате воздействия приближающегося [c.57]

    Дальнейшее развитие теории катализа тесно связано с исследованием состояния катализатора во время реакции. Принципы структурного и энергетического соответствия, оставаясь решающими, должны относиться к системе катализатор — реагирующее вещество, сложившейся ко времени достижения стационарного состояния катализатора. Степень окисления поверхностных атомов катализатора, природа лигандов и состав промежуточного координационного комплекса определяют направление реакции и лимитирующие стадии. Решающую роль играют методы определения состояния катализатора и всей системы во время реакции. Одним из таких методов является измерение потенциала (или электропроводности) катализатора во время реакции. Легче всего это сделать в проводящих средах как в жидкой, так и в газовой фазе для гетерогенных и гомогенных катализаторов. В окислительно-восстановительных процессах структурным фактором являются не только размеры кристаллов и параметры решеток, но и кислотно-основные характеристики процессов. Всякая поверхность или комплексное соединение представляют собой кислоту или основание по отношению к реагирующему веществу, а это определяет направленность (ориентацию) и энергию взаимодействия вещества с катализатором. Для реакции каталитической гидрогенизации предложена классификация основных механизмов, основанная на степени воздействия реагирующего вещества на поверхность катализатора, заполненную водородом. В зависимости от природы гидрируемого вещества в реакции участвуют различные формы водорода. При этом поверхность во время реакции псевдооднородна, а энергия активации— величина постоянная и зависящая от потенциала поверхности (или раствора). Несмотря на локальный характер взаимодействия, поверхность в реакционном отношении однородна и скорость реакции подчиняется уравнению Лэнгмюра — Хиншельвуда, причем возможно как взаимное вытеснение адсорбирующихся веществ, так и синергизм, т. е. увеличение адсорбции БОДОрОДЗ ПрИ адсорбции непредельного вещества. Таким образом, созданы основы теории каталитической гидрогенизации и возможность оптимизации катализаторов по объективным признакам. Эта теория является продолжением и развитием теории Баландина. [c.144]

    Молекулярная адсорбция и притяжение водородными связями заместителей при индексе — поверхностный изоморфизм — дает также объяснение особенно большой скорости ферментативных реакций. Молекула удерживается на поверхности фермента в требуемом для реакции положении (энтропийный фактор). Адсорбция внеиндексных заместителей уменьшает энергетический барьер реакции и величину теплоты адсорбции (энергетический фактор). Оценивая энергию Н-связи в 7 ккал (в среднем), находим, что при 30°С реакция ускоряется в 4600 раз. Молекулы, адсорбированные такими группами, оказываются сильнее прижатыми своими индексными атомами к активным центрам катаЛизатора-фермента, что подобно действию высокого давления  [c.88]

    Суммируя вышесказанное, можно сделать один вывод, что наиболее активные центры хемосорбцни связывают адсорбируемые фрагменты столь сильно, что они становятся неактивными для поверхностной реакции. Это особенно ясно видно из рассмотренных простых реакций водорода, например орто- ара-конверсии или дейтеро-водородного обмена (см. разд. 1 гл. VIII). В этих процессах реагирующими являются атомы в хвосте адсорбции и реакция протекает на небольшой доле центров, на которых произошла хемосорбция. Подобные же энергетические факторы, хотя и в менее явной степени, должны определять центры для других поверхностных реакций. Измерение этих факторов, например энергий активации поверхностных реакций и определение числа фактически активных центров, скорее остается целью, а не достижением любой из теорий катализа. [c.268]

    Хемосорбцию часто называют специфичной, ван-дер-ваальсову адсорбцию — неспецифичной. Термин специфичный в известной мере неясен, он никогда пе был точно определен. Может быть, мы сможем подойти ближе к истинному значению этого термина, если будем рассматривать адсорбцию в первом слое — хемосорбцию или физическую адсорбцию, — зависящей от двух факторов от величины поверхности и от энергии взаимодействия между поверхностью и газом. Первый является неспецифичным фактором, последний — специфичным фактором при адсорбции. В ван-дер-ваальсовой адсорбции энергии взаимодействия между данным газом и разными адсорбентами не очень различны таким образом, фактор поверхности более важен, чем энергетический фактор. В хемосорбции справедливо обратное, энергетический фактор более важен. Поэтому, строго говоря, не точно говорить, что в одном случае адсорбция неспецифична, в другом — специфична было бы правильнее предполагать, что ван-дер-ваальсова адсорбция лишь слегка специфична, в то время как хемосорбция в значительной степени специфична. [c.446]

    Как и всякая иная химическая реакция, адсорбция обусловливается геометрическими (стерическими) и элек-тронцыми (энергетическими) факторами. [c.95]

    При адсорбции пространственные и энергетические соотноше-1ИЯ между структурами адсорбента и адсорбата приобретают боль-иое значение. В этом отношении адсорбционные, процессы имеют юлную аналогию с геометрическим и энергетическим факторами, 1ассматриваемыми в мультиплетной теории катализа А. А. Ба- [c.170]

    Теоретически, адсорбция из разбавленных растворов может быть описана как фазовый переход [48, 47]. Силберберг [49] полагает, что адсорбция макромолекул является разновидностью фазового разделения и может служить средством фазового разделения (это обстоятельство особенно существенно в приложении к полимерным композитам, где данный фактор вызывает дополнительную микрогетерогенность поверхностного слоя (см. гл. 6). Часто растворы полимеров близки к расслоению и препятствуют ему только энтропийные эффекты, в то время как энергетические факторы благоприятствуют расслоению. [c.26]

    Поэтому большое значение для дальнейшего изучения механизма катализа имеют исследования промежуточных поверхностных форм и прежде всего структурных факторов (одноточечная, двухточечная и многоточечная адсорбция), энергетических (энергия хемосорбцион-ных связей) и электронных (характер участия электронов катализатора и молекул реагентов в связи). И именно эти исследования в последнее время развиваются особенно интенсивно. [c.103]

    Сходные идеи в теории катализа развивались Поляни, который в отличие от мультиплетной теории принимал положение о полном разрыве связи при адсорбции. Мультиплетная теория катализа сыграла в свое время прогрессивную роль в развитии катализа. Она обратила внимание на значение структурного соответствия, поставила вопросы о связи структурных факторов с энергетическими характеристиками катализаторов, их электронным строением. Большую положительную роль сыграла теория в решении практических проблем катализа, в поиске новых катализаторов. Однако в настоящее время мультиплетная теория в том виде, как она была предложена Баландиным, не может считаться совершенной. Для решения практических задач в соответствии с теорией необходимо знать энергии связей отдельных атомов с катализаторами разных составов, что требует больших затрат труда и времени. В теории не рассматривается молекулярный механизм взаимодействия субстрата с катализатором, не учитывается возможность протекания реакций при взаимодействии субстрата с единичным центром катализатора. [c.658]

    Рассматривать атомы как жесткие сферы целесообразно только при описании прочных связей, как З — О для более слабых связей типа Ка—О и К —О такое приближение явно непригодно. Оно также пе позволяет правильно описать взаимодействие молекул с атомами кислорода кольца во вpeilя адсорбции, так как при ЭТ01 не учитывается влияние других очень важных факторов. Например, проникновение молекулы в кристалл ч рез потенциальный энергетический барьер, создаваемый окном, в значительной степени зависит от кинетической энергии движения диффундирующей молекулы. При определении размеров ок ш большое значение имеет влияние температуры и тепловых колебаний атомов кислорода кольца, образующего окно. При комнатной температуре среднеквадратичное смещение атолюв может достигать 0,1—0,2 А с повышением температуры эффективный размер увеличивается, с понижением температуры — уменьшается. Это подтверждается при изучении адсорбции молекул с критическими размерами (гл. 8). Обычно наблюдается хорошая корреляция между размерами диффундирующих молекул и размерами окон, полученными на модели с жесткими сферами. [c.75]

    Еще одна особенность адсорбции полимеров — возможность ее увеличения с ростом температуры, как показано на рис. 1Х-5 (здесь, однако, имеются и исключения [44]). Это означает, что при адсорбции преобладают не энергетические, а энтропийные факторы. Поскольку энтропия полимера уменьшается, увеличение адсорбции с температурой должно быть связано с увеличением энтропии растворителя. Последнее трудно объяснить вытеснением адсорбированного растворителя в раствор, так как при этом нарушается уравнение (1Х-20). Скорее всего рассматриваемый эффект связан со своп-ствамн поверхностной фазы. Как показывает рис. 1Х-6, адсорбированные пленки могут быть довольно толстыми. Толщину пленки Аг на рис. 1Х-4 и 1Х-5) можно оценить гидродинамически по увеличению кажущегося радиуса частиц адсорбента при измерении зависимости вязкости раствора или по изменению эффективного диаметра пор [c.319]

    Борн и Франк [17] считали главным фактором в адсорбционном катализе продолжительность пребывания на поверхности реагирующих компонентов. В газообразном состоянии квантовомеханический эффект прохождения через энергетический порог не осуществляется, потому что время соударения газовых молекул слишком коротко (около 10- сек.) даже, если плотнссть газа была бы высокой (что приводило бы к многочисленным соударениям), мало или совсем нет шансов возникновения заметных превращений. После того, как произойдет адсорбция, оба участвующих в реакции компонента реакции образуют особого рода мономолекулярную пленку , специфически сформированную на активных центрах. Предполагают, что эта пленка сохраняется в течение времени, измеряемого секундами.  [c.119]

    ГИИ, определяемой электронными уровнями молекул, и все эти составляющие имеют различную величину, то теплоту адсорбции рассматривали как алгебра-ическую сумму различных изменений энергии, соответствующих отношениям, существующим между адсорбентом и молекулярными полями адсорбируемого вещества. Имеется один физический фактор — температура, который влияет на потенциальную энергию компонентов и теплоту адсорбции. ЭксперименталЬ но установлено, что если адсорбция идет при низких температурах, то изменяются ротационная энергия и энергия кинетического поступательного движения, потенциальная же энергия затрагивается меньше. Повышение температуры в адсорбционных процессах вводит новые компоненты в энергетический э(] ект, а именно, последовательные изменения, происходящие в вибрационной энергии я в энергии электронных уровней. Существование большого интервала, разделяющего ротационный, вибрационно-ротационный и электронно-вибрационноротационный уровни, как полагают, вводит периодические изменения в выделяющуюся теплоту и теплоту адсорбции. Из вышесказанного вытекает, что теплота адсорбции, вероятно, связана с потенциальной энергией, в то время как теплота активирования характерна для кинетической энергии. [c.145]


Смотреть страницы где упоминается термин Адсорбция энергетические, факторы: [c.138]    [c.317]    [c.67]    [c.111]    [c.317]    [c.305]    [c.24]    [c.519]    [c.149]    [c.32]    [c.189]    [c.24]    [c.60]    [c.216]    [c.60]    [c.305]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.49 , c.144 , c.172 ]




ПОИСК





Смотрите так же термины и статьи:

Энергетический фактор



© 2025 chem21.info Реклама на сайте