Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворимость и способность к сольватации

    С увеличением молекулярной массы и длины углеводородной части молекулы возрастает растворимость ПАВ в нефтепродуктах. Растворимость ПАВ в воде и в нефтепродуктах зависит от способности молекул к ионизации, их дипольного момента, донорно-акцепторных свойств атомов и групп, входящих в молекулы. Так, высокомолекулярные и<ирные кислоты, например пальмитиновая, нерастворимы в воде, а их натриевые соли растворимы благодаря сольватации карбоксильных групп молекулами воды [75, с. 224]. [c.62]


    Ясно, что один и тот же порядок проявляется в различных апротонных растворителях. Это естественно для разбавленных растворов, где различия в энергии сольватации для анионов Х и в органических растворителях и воде являются главными факторами, определяющими экстракционную способность. Однако для некоторых использованных солей (поскольку применялись различные катионы) границы растворимости в любой фазе, а также способность к гидратации, диссоциации и ассоциации могут изменить порядок экстракционной способности. Один из этих факторов, вероятно, обусловливает неожиданное положение бензоата в приведенной выше серии (ср. с табл. [c.30]

    Во второй и третьей частях, посвященных реакционной способности веществ, главное внимание уделено их химическому сродству. Разумеется, вопросы кинетики не менее (а зачастую даже более) важны, чем вопросы статики процессов. Однако, если принять во внимание специфичность и большое разнообразие скоростных факторов и также огромную сложность учета их влияния на реакционную способность веществ, изменение представлений о механизме протекания процессов по мере углубления знаний и, наконец, то обстоятельство, что большинство подлежащих рассмотрению вопросов связано со статикой различных процессов, то этот выбор вряд ли можно счесть спорным. Действительно, и закон действующих масс, и принцип Ле Шателье, и многие свойства растворов (в их числе растворимость, температуры отвердевания и кипения, давление пара), и процессы в них (диссоциация, нейтрализация, сольватация, комплексообразование, гидролиз и т.д.)—это прежде всего проблемы равновесия. Вместе с тем надо отчетливо показать, что вопросы статики и кинетики это проблемы возможности и действительности и что значение энергетического (термодинамического) и кинетического факторов неодинаково для различных типов процессов для реакций в растворах электролитов (например, при нейтрализации), для высокотемпературных реакций и других быстрых процессов кинетические соотношения не существенны наоборот, для медленных реакций и таких, продукты которых гораздо устойчивее исходных веществ (например, при горении), не играют ощутимой роли равновесные соотношения. [c.4]

    Понижение растворимости в присутствии солей называется высаливанием. Одной из ее причин может быть сольватация солей, ведущая к уменьшению числа свободных молекул растворителя, а с ним и к понижению растворяющей способности жидкости. [c.149]


    В этом случае фракция, растворимая в бензоле, повышает компланарность слоев мезофазы и увеличивает ее объемы. В [2-66] это объясняется способностью фракции, растворимой в бензоле, к сольватации промежуточных конденсированных молекул при пиролизе, что расширяет температурный интервал существования жидкой мезофазы. [c.93]

    Данные об энергии сольватации и об энергии гидратации ионов позволяют установить соотношение между растворимостью и способностью растворяемого вещества к гидратации или сольватации. [c.192]

    Растворимость многих жидкостей понижается в присутствии солей. Например, растворимость фенола в чистой воде больше, чем в солевом растворе. Эффект понижения растворимости в присутствии солей называется высаливанием. Одной из причин высаливания может быть сольватация солей, вызывающая уменьшение числа свободных молекул растворителя, а значит, и понижение растворяющей способности жидкости. [c.256]

    При анализе взаимосвязи структуры растворителя и растворимости в нем различных соединений, особенно со сложной молекулярной структурой, следует помнить, что большинство органических растворителей полуфункционально. Они содержат как полярные, так и неполярные группы. Например, одноатомные спирты имеют полярную функциональную гидроксильную группу и неполярную— алкильный радикал. Если первая из них склонна к структурированию и сильной специфической сольватации полярных молекул (или отдельных нх фрагментов), то вторая ве способна заметно структурироваться. Она сильно соль ватирует лишь неполярные молекулы или их фрагменты (универсальная сольватация). Не удивительно поэтому, что низшие спирты растворяют как полярные, так и неполярные молекулы. В связи с этим можно рассматривать полифункциональные растворители как смесь полярных и неполярных растворителей с чрезвычайно прочной связью двух компонентов. [c.246]

    Щелочные металлы растворимы в жидком аммиаке. Эти растворы, окрашенные в синий или голубой цвет, отличаются необычными свойствами. Они проявляют высокую электрическую проводимость, а при больших концентрациях металла приобретают медно-красный оттенок и металлический блеск. По-видимому, атомы металлов в таких растворах полностью диссоциированы, причем электроны сольватированы, т. е. связаны с молекулами аммиака. С увеличением концентрации металла уменьшается парамагнетизм раствора из этого делают вывод, что сольватированные электроны способны образовывать соединения с диамагнитными свойствами. Не исключено также и образование отрицательных ионов металла, которые получаются за счет присоединения двух электронов к катиону металла. Возможно, их устойчивость увеличивается в результате сольватации. [c.152]

    Растворы ВМС, образующиеся с понижением свободной энергии и находящиеся в равновесном состоянии, агрегативно устойчивы, как и истинные растворы. Их устойчивость главным образом определяется растворимостью данного ВМС в растворителе, а другие факторы, которые играют основную роль в устойчивости лиофобных коллоидов, например заряд частицы и сольватирующая способность, практически не влияют на устойчивость. Так, известно, что белки устойчивы в изоэлектрической точке, где дзета-потенциал равен нулю. Поэтому теории, которые объясняют агрегативную устойчивость растворов ВМС действием электрического заряда либо сольватацией, в настоящее время надо признать устаревшими. Заряд и сольватация, конечно, играют роль, но только в той степени, в которой они влияют на растворимость ВМС. Так, растворимость белков зависит от pH она минимальна в изоэлектрической точке. При смещении от изоэлектрической точки увеличение заряда и гидратация молекул белка повышают растворимость его в воде, и поэтому увеличивается устойчивость раствора ВМС. [c.368]

    Неводная среда способствует образованию комплексов в растворах и помогает изучить природу взаимодействия "хозяин-гость" для биологических реакций. В результате исследований взаимодействия краун-эфиров с аминокислотами было обнаружено [35], что добавление краун-эфира к насыщенным спиртовым растворам аминокислот способствует увеличению растворимости последних. Из данных по термодинамическим параметрам комплексообразования аминокислот с 18-краун-б в метаноле и этаноле показано [55, 56], что макроциклические лиганды не способны селективно связывать различные аминокислоты в спиртах. В то же время процесс их взаимодействия характеризуется различными энтальпийными и энтропийными вкладами. Таким образом, сольватация молекул "хозяина", "гостя" и комплекса играет значительную роль в процессе комплексообразования. [c.207]


    Прибавление к растворам высокомолекулярных соединений других ингредиентов, растворимых в том же растворителе, может приводить к десольватации растворенного высокомолекулярного вещества и вследствие этого к выделению его в осадок (высаливание). Иногда в роли высаливающего вещества оказываются не только соли, но и неионизированные вещества, например, спирт, ацетон и т. п. Высаливающее действие оса-дителей высокомолекулярных соединений обычно является следствием их собственной сольватации за счет макромолекул. Растворитель, затраченный на сольватацию осаждающего вещества, теряет способность участвовать в растворении первоначально растворенного вещества. [c.180]

    Как правило, соли щелочных и щелочноземельных металлов ограниченно растворимы в органических растворителях, это приводит к низкой концентрации соответствующего реагента или к гетерогенности реакционной смеси. Кроме того, часто затрудняет течение реакций различная способность ионов к сольватации. Использование краун-эфиров помогает во многих слу- [c.214]

    Расплавленные соли проявляют высокую способность к сольватации. Газы часто растворяются либо вступая в химическое взаимодействие, либо просто заполняя свободные пространства в расплаве (дырочная модель). Основная проблема при работе с расплавленными солями связана с их загрязнением многими растворимыми неорганическими солями, а также и огнеупорными материалами. В расплавах гидрооксида щелочного металла присутствие кислорода или воды приводит к образованию перекисей, которые растворяют как благородные металлы, так и керамику. Во многих случаях расплавленные соли растворяют также основной металл. Металл прекрасно диспергируется по всей среде и придает ей свойства, характерные для металла, например увеличивает электропроводность [71]. [c.126]

    Название книги Влияние растворителя на скорость и механизм химических реакций у представителей различных специальностей вызывает разные ассоциации. Физикохимик вспомнит о влиянии растворителя на характер зависимости скорости реакций от диэлектрической проницаемости, вязкости, внутреннего или внешнего давления. Специалист по физической органической химии задумается о таких свойствах растворителя, как кислотность, основность, способность к образованию водородных связей, электроотрицательность и способность к сольватации, а также о связи структурных эффектов со свойствами растворителя. Для химика-органика, в строгом смысле слова, растворитель — это просто среда, в которой образуются интересующие его продукты, а интересует его прежде всего растворимость реагентов и продуктов в этой среде. При выборе растворителя химик-органик может руководствоваться тем, насколько легко можно за разумное время получить относительно чистый продукт методом экстракции или иных процедур. [c.7]

    Было высказано предположение, то экстракционная способность экстрагента, вошедшего в матрицу полимера-носителя, будет пониженной за счет сольватации полимера экстрагентом [32]. Другими исследователями [33, 34] также отмечается, что в колонках, наполненных сополимерами стирола с ДВБ, обработанными экстрагентом, коэффициенты распределения элемента заметно ниже, чем для такого же экстрагента в статической экстракции. Это явление пытались объяснить, рассматривая матрицу полимера как инертный разбавитель для экстрагента [34]. Поэтому расчет условий хроматографического разделения из данных по статической экстракции затрудняется. Однако более прочная связь экстрагента с носителем приводит к меньшей растворимости экстрагента в элюентах, чем при хроматографии на колонках, заполненных другими носителями, или чем растворимость экстрагента в условиях статической экстракции. [c.201]

    Существует ряд химических задач, для которых важно подобрать высокоэффективные лиганды для сольватации таких ионов. К ним относятся изменение реакционной способности щелочных и щелочноземельных катионов, повышение растворимости, изменение реакционной способности анионов в результате взаимного влияния сольватации и ассоциации ионов. Рассмотрим циклические лиганды (т.е. такие, в которых донорные атомы входят в состав цикла или соединены с одной кольцевой структурой) и лиганды с открытой цепью. В области сольватации анионов полидентатными лигандами известно очень мало экспериментальных данных. [c.338]

    Характерным свойством растворов является взаимодействие частиц растворимого вещества с растворителем — сольватация или в случае водных растворов — гидратация. При этом большую роль играют полярность частиц и способность к образованию водородной связи. [c.519]

    Повышение индекса вязкости объясняют изменением растворимости присадки в масле с повышением температуры. Идеальная присадка при самой низкой избранной температуре близка к выпадению в осадок (крупные клубки, плохая сольватация и, следовательно, низкая загущающая способность). При высокой температуре молекула присадки находится в масле в вьггяну-том состоянии вследствие лучшей растворимости и сольватации и, следовательно, присадка обладает высокой загущающей способностью. [c.967]

    Растворители представляют собой однородные структурированные субстанции. При контакте между молекулами растворителя и растворенного вещества имеют место ион-дипольные взаимодействия. Степень сольватации указывает на количество таких взаимодействий. Взаимодействие тем больше, чем ближе контакт между растворимым веществом и растворителем. Дипольные, дисперсионные и индукционные взаимодействия, а также водородные связи действуют совместно с кулоновскими силами, и все вместе определяют стабильность и свойства ионных пар. Поэтому большое значение имеет природа" как растворенного вещества, так и растворителя. Сольватная оболочка уменьшает подвижность и коэффициенты диффузии как ионов, так и ионных пар. Способность апротонного растворителя к сольватированию не зависит от диэлектрической проницаемости, но в значительной степени определяется его элект-ронодонорными или электроноакцепторными свойствами. Рол  [c.17]

    Во второй и третьей частях главное внимание уделено химическому сродству. Разумеется, вопросы кинетики не менее (а зачастую даже более) важны, чем вопросы статики процессов. Однако если принять во внимание специфику и большое разнообразие кинетических факторов, а также огромную сложность учета их влияния на реакционную способность веществ, изменение представлений о механизме протекания процессов по мере углубления наших знаний и, наконец, то обстоятельство, что бол1 шинство подлежащих рассмотрению вопросов связано со статикой различных процессов, то этот выбор вряд ли можно счесть спорным. Действительно, и закон действующих масс, и принцип Ле Ша-телье, и многие свойства растворов (в их числе растворимость, температуры отвердевания и кипения, давление пара), и процессы в них (диссоциация, нейтрализация, сольватация, комплексообразование, гидролиз и т. д.) — это прежде всего проблемы равновесия. Вместе с тем надо отчетливо показать, что вопросы статики и кинетики — это проблемы возможности и действительности и что значение энергетиче- [c.4]

    Высаливающее действие электролита проявляется тем сильнее, чем больше степень сольватации его ионов, т. е. чем выше его способность десольватировать макромолекулы ВМС. Коагуляцию растворов ВМС вызывают оба иона прибавленного электролита. Высаливающим действием обладают не только соли, но также все вещества, способные взаимодействовать с растворителем и понижать растворимость ВМС. Например, хорошо высаливают желатину из водных растворов ацетон и спирт, так как они легко связываются с водой и тем самым дегидратируют частицы желатины. [c.388]

    Растворимость газов в жидкости уменьшается по мере повыщения температуры несомненно, каждому приходилось видеть, как на стенках стакана с холодной водой при его нагревании до комнатной температуры происходит выделение пузырьков воздуха. Растворимость газов в воде уменьшается также при растворении в ней каких-либо полярных или ионных веществ. Это явление объясняется сольватацией растворенных в воде веществ указанного типа. В результате сольватации часть молекул растворителя связывается, поэтому его способность к растворению молекул газа снижается. Растворитель гараздо прочнее связывается с ионными веществами, чем с молекулами газа, этим объясняется преобладание первого процесса над вторым. Частичное выделение из раствора одного растворенного в нем вещества при добавлении в раствор другого, сильно сольватируемого растворителем ве- [c.211]

    Натриевые, калиевые и литиевые производные фенил-метанов растворимы даже в таком неполярном растворителе, как бензол. Детальное исследование поведения металлических производных флуорена в различных растворителях было проведено Хоген-Эшем и Смидом [45, 46]. Они показали, что для этих производных существует подвижное равновесие двух спектроскопически различимых форм, которые они назвали контактными ионными парами и ионными парами, разделенными растворителем. Как видно из данных табл. 8.4, с понижением атомного номера щелочного металла и с увеличением способности растворителя сольватировать катионы равновесие сдвигается в сторону разделенных растворителем ионных пар. Аналогично действует и понижение температуры. В тетрагидрофуране константа равновесия для превращения контактных ионных пар в разделенные растворителем равна 0,06 при 24,2°С и 6,15 при —63°С, что соответствует АЯ° = = —7,6 ккал (31,82-10 Дж). Все сказанное согласуется с предположением, что контактная форма, как и следовало ожидать, сольватирована в меньшей степени, чем форма, разделенная растворителем, и что сольватация заключается во взаимодействии растворителя с ионом ще-дочнрго металлу или с неким объектом, не очень отлц- [c.303]

    Зададимся вопросом, а почему, собственно говоря, перманганат калия растворим в воде, но совершенно нерастворим, например, в бензоле Причины этого различия хорошо известны при растворении в воде энергетические затраты на разрушение кристаллической структуры КМПО4 с лихвой перекрываются благодаря энергии сольватации ионов и МпО полярными молекулами воды, но ничего подобного не может происходить в среде такого малополярного растворителя, как бензол, поскольку молекулы последнего неспособны эффективно сольватировать ионы. Это противоречие удалось преодолеть, используя третий компонент — вещество, растворимое в бензоле и в то же время способное эффективно выполнять роль сольватной шубы для ионов. [c.82]

    Исторический обзор возникновения интереса к неводным растворителям, а следовательно, и к выяснению роли растворителя в природе растворов, дан в известных монографиях Вальдена 121 иЮ. И. Соловьева [3]. Еще в середине XVI в. Бойль заинтересовался способностью спирта растворять хлориды железа и меди. Позднее ряд химиков отмечает и использует растворяющую способность спирта. В 1796 г. русский химик Ловиц использует спирт для отделения хлоридов кальция и стронция от нерастворимого хлорида бария, как будто положив начало применению неводных растворителей в аналитических целях. В первой половине XIX в. подобные наблюдения и их практическое применение встречаются чаще, причем химики устанавливают случаи химического взаимодействия растворителя с растворенным веществом, показывая, что и в органических жидкостях могут образовываться сольваты (Грэхем, Дюма, Либих, Кульман). Основным свойством, которое при этом изучалось, была растворимость. В 80-х годах XIX в. Рауль, исследуя в целях определения молекулярных весов понижение температур замерзания и повышение температур кипения нри растворении, отмечает принципиальное сходство между водой и неводными средами. Но систематическое физико-химическое изучение неводных растворов наряду с водными начинается только в самом конце столетия, когда Каррара осуществляет измерение электропроводности растворов триэтилсульфония в ацетоне, метиловом, этиловом и бензиловом спиртах, а также ионизации различных кислот, оснований и солей в метиловом спирте. В этот же период М. С. Вревский проводит измерения теплоемкостей растворов хлорида кобальта в смесях воды и этилового спирта [4], а также давлений и состава паров над растворами десяти электролитов в смесях воды и метилового спирта [5]. Им впервые четко установлено явление высаливания спирта и определено как .. . следствие неравномерного взаимодействия соли с частицами растворителя . Несколько раньше на самый факт повышения общего давления пара при растворении хлорида натрия в смесях этанола и воды, на первый взгляд противоречащий закону Рауля, обратил внимание И. А. Каблуков [6]. Пожалуй, эти работы можно считать первыми, в которых подход к смешанным растворителям, к избирательной сольватации и к специфике гидратационной способности воды близок современному пониманию этих вопросов. Мы возвратимся к этому сопоставлению в гл. X. [c.24]

    Возможность исследования поведения фактически изолированных друг от друга макромолекул в очень разбавленных растворах стимулировала в течение многих лет попытки изучения деталей их цепного строения путем определения радиуса инерции в различных растворителях и при различных температурах и сравнения поведения различных макромолекул в одном и том же растворителе. Статистическая термодинамика полимерных растворов в своей ранней форме выявила принципиальную зависимость некоторых определяемых величин от степени сольватации свернутой случайным образом полимерной молекулы, например величины второго вприального коэффициента в выражении для осмотического давления, константы седиментации, константы диффузии и удельной вязкости как функции концентрации [1]. Показано также, что экспонента а в известном соотношении между молекулярным весом и характеристической вязкостью и параметр Хаггинса к, по-видимому, каким-то образом зависят от деталей структуры цепи. Однако установленные зависимости носили полуэмпирический и качественный характер и их нельзя было оцепить однозначно. Точно так же более ранние попытки трактовать существующие противоречия в поведении полистирола в растворе не основывались на надежных методах, достаточных для убедительного доказательства наличия разветвлений или макромолекулярной изомерии другого типа [2]. Трудно было даже установить в растворах наличие цис-транс-изомерии молекул, которая, как известно, преобладает в случае натурального каучука и гуттаперчи. Исследование этих двух природных полимеров в твердом состоянии привело ранее к установлению того факта, что каучук представляет собой почти целиком г мс-1,4-полиизопрен, тогда как гуттаперча и другие смолообразные полимеры того же происхождения состоят все из трансЛ, 4-цепей. Это различие в молекулярной структуре вызывает разную способность молекул к упаковке в конденсированном состоянии и приводит к заметно различному характеру твердой фазы, в том числе к различиям в структуре решетки, плотности, температуре плавления, теплоте плавления и т. п. Вследствие этого, когда раствор полимера находится в контакте с твердой фазой, такие показатели, как степень и скорость растворимости, степень и скорость набухания, различны для цис- и транс-жзомеров. Однако при сравнении поведения изолированных макромолекул двух изомеров в очень разбавленных растворах не удается обнаружить каких-либо заметных различий в таких величинах, как значение второго вириальпого коэффициента для приведенного осмотического давления или для удельной вязкости как функции концентрации. [c.87]

    Альгипатные волокна способны растворяться в разбавленных растворах едкого натра, соды или мыла. В этом случае происходит замещение ионов кальция или магния, связанных внутри- и межмо-лекулярло с карбоксильными группами, на ионы натрия, что сопровождается разъединением полимерных молекул, повышением их гибкости и сольватации, и, как следствие этого, резким повышением растворимости. [c.46]

    В основе процессов фазового переноса лежит каталитический эффект четвертичных ониевых солей или соединений тида краун-эфиров, которые переводят в органические растворы анионные нуклеофилы и основания, иначе в них нерастворимые. Растворимость ионных пар зависит от липофильной сольватации аммониевого или фосфониевого катионов или комплексов с краун-эфирами и связанных с ними анионов, которые (не учитывая небольших количеств воды) сравнительно мало соль-ватированы. Поскольку анионы удалены от заряда катиона и относительно свободны от сольватации, они весьма реакцион- носпособны. Их повышенная реа-кционная способность и растворимость в неполярной среде позволяет проводить с ними многочисленные реакции в органических растворителях при температурах, близких к комнатной. Известны оба процесса межфазного переноса — в системах жидкость — жидкость и жидкость — твердая фаза в первых обычно используют в качестве катализаторов соли четвертичных ионов, а во вторых — краун-эфиры или криптаты. Последние можно использовать а в двухфазных жидких системах, однако гораздо меньше известно примеров успешного катализа солями четвертичных ионов в системах жидкость — твердое вещество. В большинстве случаев, где в качестве межфазных катализаторов использовались амины, доказано (или можно предположить) образование in situ четвертичных солей аммония. [c.31]

    Установлено также что уранилнитрат образует с метил-изобутилкетоном сольват и02(К0з)2 СвН 20. Глюкауф и Маккей считают, что в органических растворителях нитрат уранила находится в виде нейтральных молекул 1102(К0з)2(Н20)4 , к которым вторичной сольватацией присоединено до четырех молекул растворителя. Разумеется, что способность образовывать кри-сталлосольваты не может явиться достаточным объяснением происходящего распределения. Существуют и другие факторы, способствующие распределению, но образование нейтральных молекул и кристаллосольватов является существенным условием для перехода микроэлемента из водной фазы в органическую. Общие закономерности для растворимости пока не установлены, и в каждом отдельном случае лишь специальное экспериментальное исследо- [c.388]

    Установлено также [ °], что уранилнитрат образует с метил-изобутнлкетоном сольват 1102(1 0з)2-СбН120. Глюкауф и Маккей считают, что в органических растворителях нитрат уранила находится в виде нейтральных молекул U02(N0з)2(H20) , к которым вторичной сольватацией ирисоединено до четырех молекул растворителя. Разумеется, что способность образовывать кристаллосольваты не может явиться достаточным объяснением происходящего распределения. Существуют и другие факторы, способствующие распределению, но образование нейтральных молекул и кристаллосольватов является существенным условием для перехода микроэлемента из водной фазы в органическую. Общие закономерности для растворимости пока не установлены, и в каждом отдельном случае лишь специальное экспериментальное исследование может позволить сделать некоторые выводы. Следует, однако, отметить, что на растворимость могут оказывать существенное влияние обычно присутствующие органические загрязнения в самом растворителе. [c.278]


Смотреть страницы где упоминается термин Растворимость и способность к сольватации: [c.93]    [c.20]    [c.82]    [c.389]    [c.56]    [c.129]    [c.598]    [c.194]    [c.656]    [c.257]    [c.125]    [c.257]    [c.20]   
Электрохимия растворов издание второе (1966) -- [ c.220 ]




ПОИСК





Смотрите так же термины и статьи:

Растворимость и сольватация

Сольватация



© 2024 chem21.info Реклама на сайте