Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры размеры

    Домен - элемент структуры полимера размером в несколько нанометров, в пределах которого прослеживается ближний порядок во взаимном расположении цепей или их элементов. [c.399]

    Невозмущенные размеры и оценка гибкости цепи полимера. Размеры полимерных клубков обычно характеризуют среднеквадратичным расстоянием между концами цепи (А )или среднеквадратичным радиусом инерции т. е. средним расстоянием от центра массы макромолекулы до любого из ее звеньев. [c.90]


    Влияние на адсорбцию полимеров химии поверхности адсорбента и природы растворителя. Влияние на адсорбцию полимеров размеров пор адсорбента. Адсорбция из растворов и адсорбционная хроматография олигомеров. Адсорбционная и ситовая хроматография полимеров. Адсорбция и хроматография белков и вирусов. [c.332]

    Суспензии, изготовленные на основе фторопластов-4Д и -4ДП, представляют собой взвесь мельчайших частиц полимера (размеры частиц колеблются от 0,05 до 0,5 мкм) в воде. Для обеспечения агрегатной устойчивости суспензий к ним добавляются поверхностно-активные вещества. [c.40]

    Роль электростатических сил становится очевидной, если принять во внимание, что заряд величиной 30 эВ может удерживать частицы полимера размером 1 мкм. [c.93]

    Процесс ф-релаксации наблюдается только в наполненном полимере, и с увеличением содержания активного наполнителя его вклад в общий релаксационный процесс, как и -процесса, возрастает. ф-Процесс связан с подвижностью коллоидных частнц наполнителя и в целом с перегруппировкой сетки, образованной частицами активного наполнителя. Относительно высокие значения времени релаксации и энергии активации процесса обусловлены заторможенной подвижностью частиц наполнителя, довольно прочно связанных между собой и с полимером. Размеры релаксаторов этого процесса, рассчитанные из формулы (1.24), практически совпадают с размерами частиц сажи, найденными методами электронной микроскопии (30—50 им). [c.63]

    Основными факторами, определяющими гибкость макромолекулы, являются величина потенциального барьера вращения, молекулярный вес полимера размер заместителей, частота пространственной сетки и температура. [c.89]

    Влияние на адсорбцию полимеров размеров пор адсорбента [c.336]

    В высокоэластическом состоянии (см. гл. 7) полимеры имеют в целом неупорядоченную надмолекулярную структуру, в которой имеются как более упорядоченные, так и менее упорядоченные элементы (см. рис. 7.5). Поэтому говорят, что полимер имеет жидкостную структуру, которая характеризуется наличием ближнего порядка. В полимере понятие ближнего порядка относится не к молекулам, а к их сегментам, которые образуют ассоциаты (узлы флуктуационной сетки) с наиболее выраженным ближним порядком. В низкомолекулярной жидкости регулярность в расположении молекул существует только между соседними молекулами уже на расстоянии 4 или 5 молекулярных диаметров эта регулярность полностью исчезает. В полимерах размеры упорядоченных областей могут быть много больше. [c.142]


    При охлаждении значительно уменьшается свободный объем. Коэффициент теплового расширения (сжатия) полимеров в эластическом состоянии составляет (6—7) Ю-" 1/град. Можно полагать, что при достаточном охлаждении свободный объем должен упасть до нуля, но в действительности этого не происходит, поскольку сегменты макромолекул, в которые входит по 5—20 атомов углерода, могут участвовать в тепловом движении лишь при наличии достаточных по размеру пустот или дырок по соседству с ними. В эти дырки и перемещаются сегменты в процессе теплового движения. Если свободный объем становится менее 2,5 /о от общего объема полимера, размеры дырок и их число становятся настолько малыми, что тепловое перемещение сегментов прекращается. Этому способствует и то обстоятельство, что при сжатии тела в результате охлаждения возрастает интенсивность межмолекулярного взаимодействия за счет сближения молекул. [c.142]

    Суспензия политетрафторэтилена представляет собой взвесь частиц полимера размером 0,06—0,4 мк в воде с концентрацией 55—65%. Ее стабилизируют поверхностно-активными веществами (9—12% от массы полимера), улучшающими смачивающую способность эмульсии. [c.148]

    Первые испытания технологий полимерного воздействия на объектах АО Татнефть были начаты в 1973 г. на бобриковском горизонте Ромашкинского месторождения. Вязкость нефти колебалась от 50 до 200 мПа с. В пласт закачивалась оторочка полимера размером 0,1-0,15 объема пор. Максимальная концентрация полимера в растворе составляла 0,2%. Всего было использовано 1500 т полимера, дополнительно было добыто 750 тыс.т нефти. Таким образом, удельная технологическая эффективность составила 500 т нефти на одну тонну закачанного полимера. [c.287]

    От скорости кристаллизации зависят степень кристалличности полимера, размер и форма его кристаллических областей. [c.76]

    Высокомолекулярные соединения (ВМС). К ним относятся природные и синтетические полимеры с молекулярной массой от десятков тысяч до нескольких миллионов. Это белки, полисахариды, каучук, синтетические полимеры. Размер молекул ВМС соответствует частицам коллоидной степени дисперсности. Растворы этих веществ часто называют молекулярными коллоидами, однако на самом деле ВМС образуют истинные растворы, т. е. однофазные системы. От коллоидных растворы ВМС отличает большая устойчивость, связанная с наличием в их молекулах большого количества лиофильных групп, более высокая концентрация растворов, способность сухого вещества набухать и переходить в растворенное состояние. Тем не менее растворы ВМС имеют и некоторые свойства коллоидов. [c.21]

    Для переработки экструзией обычно используют гранулы цилиндрической или кубической формы иногда перерабатывают порошкообразный полимер. Размеры загрузочного отверстия (или загрузочной воронки), расположенного в нижней части конического или прямоугольного бункера, определяются скоростью подачи материала в машину. Подача полимера должна осуществляться плавно, так, чтобы во время процесса экструзии обеспечить постоянное заполнение цилиндра. Соблюдение этого условия особенно важно при использовании высокоскоростных или двухчервячных экструдеров. Температура в зоне загрузки не должна быть слишком высокой, чтобы не происходило размягчение материала вблизи бункера. [c.189]

    Надмолекулярная структура характеризует такие структурные образования в полимерах, размеры которых значительно превосходят размеры молекул. Термин надмолекулярная структура является довольно расплывчатым, особенно для трехмерных полимеров, в которых невозможно выделить отдельные молекулы, и может относиться к самым различным по своей природе образованиям. [c.54]

    Адсорбционные свойства углеродных адсорбентов — графитов, саж, активных углей, углеродных волокон и мембран — обусловлены особенностями их строения размерами кристаллитов углерода в скелете адсорбента, структурой аморфного углерода, химическими соединениями углерода с другими атомами (в основном с кислородом и водородом [38—42]), а также степенью шероховатости поверхности, наличием и структурой пор. Наиболее сильно развита пористость у активных углей, получаемых из природных материалов [43, 44], и у так называемых молекулярно-ситовых углей, получаемых термическим разложением синтетических полимеров. Размеры пор молекулярно-ситовых углей довольно однородны и очень малы [1—4]. [c.40]

    Суспензия фторопласта-4Д представляет собой взвесь частиц полимера (размером 0,06—0,4 мкм) в воде, в которую для стабилизации и улучшения сма- чивания введено 9—12% поверхностно-активных веществ (от массы сухого поли- [c.144]

    Метод Дебая с успехом применим для определения МВ полимеров, размер молекул которых не превышает 1000 А, что соответствует [г]<1,4. Для макромолекул большей величины надежность результатов измерений этим методом уменьшается. В таких условиях более правильным является метод Зимма. Однако при значении [г] <1,4 метод Дебая по точности не уступает методу Зимма, но проще последнего как по выполнению, так и по используемой аппаратуре. [c.82]


    Условия смешения и свойства самих полимеров определяют размер частиц возникающей дисперсии полимера в полимере. Если полимеры смешиваются в виде латексов, и защитные вещества латексов не приводят к агломерации однородных или разнородных частиц, то в процессе коагуляции можно получить смесь полимеров, размер частиц в которой задается размером исходных частиц латекса. Размер частиц в синтетических латексах колеблется в пределах 0,02— 0,2 мкм, поэтому смешением полимеров указанным способом можно добиться значительной дисперсности частиц. [c.26]

    Дисперсии дискретных частиц акриловых полимеров размером [c.304]

    Другая диаметрально противоположная гипотеза исходит из предположения, что в адсорбции участвует только несколько сегментов молекул полимера и не происходит существенного изменения структуры двойного слоя. Большие молекулы полимера, размер Которых составляет доли микрометра, связывают твердые частицы, оставляя их на таком расстоянии друг от друга, где еще не происходит наложение двойных электрических слоев глинистых частиц и не возникают электрические силы отталкивания заметной величины. [c.91]

    Различные виды надмолекулярной организации зависят от строения молекул, их состава, условий полимеризации, переработки, внешних условий обработки, т. е. почти от всех параметров, учитываемых при изготовлении полимеров. Размеры и формы некоторых видов надмолекулярной организации, образующихся на начальной стадии полимеризации гомополимера, показаны на примере волокнистых и глобулярных структур Уристера [21] для полиолефииов. Эти структуры получены в процессе полимеризации из газовой и жидкой фаз при низкой и высокой эффективности титановых, ванадиевых, хромовых и алюминиевых катализаторов. На рис. 2.6—2.8 воспроизводятся электронные микрофотографии образующихся таким образом полимерных структур [21]. При низкой эффективности катализатора в полипропилене формируются глобулы диаметром 0,5 мкм (рис. 2.6), а при высокой — волокна длиной в несколько микрометров (рис. 2.7). Диаметр волокна согласуется с размером боковой стороны основного каталитического кристалла и изменяется в пределах 0,37—2 мкм при изменении ширины кристалла Т1С1з в пределах 5—50 нм. Образцы полиэтилена, изготовленные с помощью катализатора ИСЦ— [c.31]

    Подпитка при литье под давлением. Используя данные, приведенные иа рис. 14.2, оиеннте скорость течения прн подпитке но перепаду давления Р, — P. или Р, - P i, полагая, что за период времени 1,5< / < 3 с в местах расположения датчиков давления Р,, Р, н Р. не произошло образования пристенного слоя затвердевшего полимера. Размеры распределителя н впуска те же, что и в Задаче 14.3. Можно считать, что ири таких малых обт.емных pa xoдa расплав ведет себя как ньютоновская жидкость с вязкостью, рассчитанной по реологическим данным, приведенным в Задаче 1 .3. Сравните полученный результат с расчетом соответствующего термического сжатия расплава в форме за время 1 с. Козффипнент термического расширения расплава полистирола равен 6- 10 К" . температура расплава на входе вформу 202 С, а температура формы 21 °С. [c.557]

    Структура полимеров определяет их состояния. Полимеры могут находиться в кристаллическом, жидкокристаллическом и аморфном состояниях. Макромолекулы, построенные в строго определенном порядке и с одинаковой пространственной ориентацией боковых заместителей (соответствующие полимеры называют стереорегулярньши), при охлаждении расплава полимера образуют состояние, характеризующееся дальним порядком расположения составных звеньев. Возникает кристаллическое состояние полимера. Размеры кристаллических областей полимеров при этом значительно ниже размеров макромолекул и составляют 5000—25000 пм, что при сравнении с длиной химической связи С-С около 154 пм говорит о том, что в таких областях в заданном направлении находится не более 200 атомов. Поэтому кристаллическое состояние полимеров по своей природе является двухфазным — совмещающим аморфное состояние и наличие кристаллических областей (кристаллитов). За пределами кристаллитов составные звенья макромолекулы располагаются так, что обеспечивается лищь ближний порядок в расположении. Каждая цепь макромолекулы может принимать участие в образовании нескольких кристаллитов. В промежутках между кристаллитами различные макромолекулы не образуют между собой упорядоченных областей, располагаясь менее согласованно. [c.614]

    Цель работы, 0л ределбние морфологии полимера, размера структурных элементов и их пространственного расположения в зависимости от деформации образца. [c.117]

    Узлами флуктуационной сетки могут быть ассоциаты сегментов макромолекул, образующие уплотнения с повышенной степенью ближнего порядка (см. гл. 7). В стереорегулярных полимерах, способных к кристаллизации, чти области ближнего порядка особенно велики. Вследствие этого в расплаве стсреорегулярногсГ полимера размеры макромолекуляриы.х клубков заметно больше, чем клубков атактических макромолекул. Клубки в расплаве сте-реорегулярного полимера более развернуты, чем а расплаве атактического некристаллизующегося полимера. При понижении температуры ниже 7 л ближний порядок в расплаве кристаллизующегося полимера возрастает настолько, что некоторые ассоциаты сегментов достигают критических размеров. Это значит, что в таких ассоциатах появляются элементы дальнего порядка и они становятся зародышами кристаллизации. [c.177]

    Разработан ряд методов заполнения каналов в жестких цеолитовых матрицах металлическими К. таким путем получены К. ртути, железа, серебра и др. Показано, напр., что цеолиты, содержащие К. железа,-хорошие катализаторы синтезов по Фишеру-Тропшу, обладают высокой активностью и селективностью по отношению к метану, устойчивы длит, время и легко регенерируются. Исследуются каталитич. св-ва металлонаполненных полимеров и цеолитов. Найдены условия формирования металлич. К. в полимерных матрицах (полиэтилене, полипропилене, полифенилен-оксиде и др.) методом высокоскоростного термораспада р-ров соед. металлов в расплавах полимеров. Размер металлич. К. зависит от концентрации металла и природы матриц и находится в пределах 1,5-3,0 нм с узким распределением по размерам К. расположены периодично в изотропном материале. Такие материалы являются новым классом однофазных металлополимеров с повыш. термич. устойчивостью, улучшенными мех. и необычными маги, и электрич. св-вами. [c.403]

    Для полиорганосилоксанов характерна высокая гибкость скелета макромолекул. Так, полидиметилсилоксан-один из наиб, гибкоцепных полимеров (размер сегмента Куна 0,7-1,0 нм). С увеличением объема и полярности боковых (обрамляющих) орг. заместителей у атома Si гибкость цепи неск. уменьшается. Особенно высока жесткость у лестничных полиорганосилоксанов (размер сегмента Куна у поли-фенилсилсесквиоксана 30 нм). Благодаря гибкости одно-тяжная силоксановая цепь легко сворачивается в а-спираль с наружной ориентацией боковых орг. радикалов. Следствие этого-слабое межмол. взаимод. и малая энергия когезии, что определяет невысокие мех. св-ва полиорганосилоксанов н малый температурный коэф. вязкости кремнийорг. жидкостей. [c.513]

    Р-ры полимеров способ используют, когда поЛймеры подвергаются термич. деструкции в условиях смешения расплавов или получаемые С.п. предназначены быть основой лакокрасочных материалов, клеев, герметиков. Подбирают такой р-ритель или смесь р-рителей, в к-рых С.п. не должны расслаиваться до начала удаления р-рителя. В термодинамически хороших р-рителях достигается более высокая концентрация, при к-рой начинается расслаивание смеси вследствие взаимной нерастворимости полимеров. Размер частиц зависит от скорости удаления р-рителя и колеблется в пределах 0,1-200 мкм. [c.371]

    Таким образом, согласно уравнениям (1.41 —1.46), коэффициент диффузии является экспоненц.иальной функцией температуры, и, следовательно, в координатах lgD—1/7 должна получаться прямая, тангенс угла наклона которой определяется величиной энергии активации.. Однако во многих случаях в полимерах, даже находящихся в одном физическом состоянии, в этих координатах экспериментальные точки образуют выпуклые кривые 4 Тем не. менее, оцениваемая по уравнению (Ь41), кажущаяся энергия активации является важньш параметром для понимания механизма диффузии в тех или иных системах. Согласно рассмотренным выше моделям активированной диффузии, энергия активации связана с работой, требуемой для обра-зования дырки нужных размеров против когезионных сил полимерной среды и энергией, необходимой для преодоления молекулой межмолекулярного взаимодействия с окружающей -средой. При этом количество энергии, необходимое для осуществления элементарного акта диффузии, должно возрастать с ростом размеров диффундирующих молекул. Сопоставление энергии активации с величиной когезионной прочности связей полимеров, размерами диффундирующих молекул и теплотой растворения полимеров в соответствующих растворителях (таб. 1, 2) указывает на качественное согласие теоретических предположений и экспериментальных результатов. Следует также отметить близость энергии активации диффузии с энергией активации вязкого течения полимеров Это позволило ряду авторов высказать предположение о качественной идентичности элементарных актов диффузии и вязкого течения [c.27]

    Растворение линейных аморфных полимеров в отличие от низкомолекулярных веществ начинается с набухания [76]. Молекулы растворителя проникают в полимерную структуру посредством диффузии и образуют набухший поверхностный слой между растворителем и исходным полимером. В случае позитивных резистов достигается минимальная деформация рельефа из-за слабого набухания области, соседней с экспонированной, которая удаляется растворителем. В случае негативных резистов желательно минимальное набухание облученных областей при экстракции растворимой фракции (золя) полимера из структурированной нерастворимой фракции (геля). В результате набухания и увеличения объема полимера происходит распрямление макромолекул и диффузия сольватированных полимерных клубков в растворитель. Скорость набухания и растворения уменьшается с ростом ММ гюлимера. Коэффициент диффузии оказывает влияние на кинетику растворения, а термодинамический параметр растворимости — на толщину набухшего слоя [77]. Скорость растворения и степень набухания определяются концентрационной зависимостью коэффициента диффузии растворителя в полимер [78]. Факторы, определяющие подвижность растворителя в полимерной матрице (тактичность, и характер термообработки полимера, размер молекул растворителя), влияют на растворимость полимера нередко больше, чем его ММ [79]. [c.50]

    Основными факторами, определяющими гибкость макромолекул, являются значение потенциального барьера внутреннего вращения, молекулярная масса полимера, размер заместителей в боксовой цепи, частота пространственной сеткн и температура. [c.21]

    Казалось бы естественным изучение фазового состава основывать главным образом на исследовании микроструктуры смеси полимеров. Прямое исследование микроструктуры в световом (фазово-контрастном) или электронном микроскопе при современных методах подготовки образцов дает интересную информацию о структуре смеси [2, 3, 77, 78, 80, 84, 85, 88—90, 155 165 и др.]. Этот метод дает также информацию, которую вообще нельзя получить другими методами. Но метод имеет и свои недостатки, самый основной из которых обусловлен высокомолекулярной природой полимеров. Если в смеси полимеров размер частиц дисперсной фазы составляет, например, 100— 150 А, то это могут быть либо действительно частицы второй фазы, либо такие микронеоднородности, которые свойствами фазы не обладают. Действительно, одна макромолекула, свернутая на себя, имеет размер указанного порядка. Если полимеры совместимы и произошло диспергирование до отдельных макромолекул, то под микроскопом такие макромолекулы могут выглядеть как частицы второй фазы, даже если произошло самопроизвольное растворение одного полимера в другом. В истинных растворах низкомолекулярных веществ обычно происходит ассоциация однородных молекул. Если макромолекулы образуют ассоциат еще до возникновения новой фазы, то он может иметь размеры обычных коллоидных-частиц. Поэтому наличие микронеоднородности, видимой в микроскоп, не есть еще однозначное подтверждение наличия двухфазной структуры система двухфазна тогда, когда свойства частички идентичны свойствам большого объема материала дисперсной фазы. В сущности такой подход следует из определения Гиббса. Так, в книге Киреева ([166], стр. 232) сказано Фаза — совокупность всех гомогенных частей системы, одинаковых по составу и по всем химическим и физическим свойствам (не зависящим от количества вещества) и отграниченных от других частей системы некоторой поверхностью (поверхностью раздела) . [c.35]

    Другой тип каркаса современных органических нонообменииков представляет так называемая макропористая (макросетчатая) структура. Каркасы этого типа образуются при введении соответствующего растворителя (который легко растворяет мономер) в полимеризационную систему в процессе синтеза. Жидкая фаза затем легко отделяется от сополимера. Полученные гели имеют характерную губчатую структуру, состоящую из агрегатов сфер нормальной гелевой пористости, пронизанных порами негелевой структуры. Однако эти макропоры не являются частью гелевой структуры полимера. Размер пор можно регулировать в процессе получения каркаса. Могут быть получены структуры с размером пор порядка не-скрльких ангстрем в диаметре. Макросетчатые каркасы имеют большую внутреннюю поверхность (до 100 м /г и более). [c.15]

    Понятно, что прямая, соединяющая концы изогнутого участка цепи, короче его контурной длины, и поэтому длина эффективного жесткого сегмента отличается от персистентной длины (рис. 3.125). Соотнощение между ними зависит от степени изгиба участка цепи и не описывается какой-либо простой формулой. В сущности, персистентная длина и длина куновского сегмента применяются параллельно и независимо как две разные величины, характеризующие гибкость макромолекулы. Следует напомнить, что персистентная длина имеет четкий физический смысл, что важно для построения теории полимерных веществ, а длина куновского сегмента доступна экспериментальному определению. Количественная же разница этих альтернативных характеристик гибкости полимерных цепей невелика и практически не зависит от химической природы полимера. Размер куновского сегмента приблизительно в 2 раза больше экспоненциальной персистентной длины и меньше показанной на рис. 3.125 180-градусной длины. [c.732]

    Интерес к разбавленным растворам высокомолекулярных соединений обусловлен прежде всего тем, что растворение полимеров в достаточно большом количестве растворителя яв.1яется единственным способом диспергирования их до молекулярного уровня. Только в разбавленных растворах, когда расстояние между макромолекулами сравнительно велико, появляется возможность определения так называемых макромолекулярных характеристик полимера (размеры и форма макромолекулы, способность ее изменить свою форму и 7 д ). [c.520]

    СТЕКЛОВАНИЯ ТЕМПЕРАТУРА полимеров, температура, прн к-рой полимер переходит при охлаждении из вязкотекучего или высокозластич. в стеклообразное состояние. Условно характеризует интервал стеклования и зависит от скорости охлаждения и способа определения. Дилатометрия, измерениями при стандартной скорости изменения т-ры установлено, что С. т. поливинилацетата 29 С, полиэтилентерефталата 80 °С, поливинилхлорида 82 С, полистирола 100 С, полиметилметакрилата 105 С. При увеличении мол. массы и полярности макромолекул С. т. возрастает. Образование поперечных хим. связей между макромолекулами также приводит к росту С. т., а введение пластификаторов — к ее снижению. В меньшей степени на С. т. влияют степень кристалличности полимера, размер кристаллитов, степень ориентации и введение яапошителей. [c.542]

    Впервые культивирование клеток животных на микроносителях осуществил А. Ван-Везель (Голландия) в 1967 г Гранулированные микроносители изготавливают из альгината, декстрана, синтетических полимеров размером, в среднем, 50—200 мкм в диаметре Клетки прикрепляются к поверхности гранул и образующаяся [c.345]

    Даже в простейшем случае, когда высокомолекулярное соединение состоит из молекул одинакового состава, построенных по одному типу, оно является неоднородным по величине молекулярного веса, т>. е. является смесью полимергомологов. Это относится как к синтетическим полимерам, молекулы которых неодинаковы по величине вследствие особенностей механизма их образования, так и к природным полимерам, которые, по-видимому, претерпевают частичную деструк-пию и структурирование в процессе их выделения и очистки. Лишь использовав особые приемы, можно синтетическим путем получить полимеры, размеры молекул которых будут почти однородными. Так, например, Гипперт, Довел и Фордис [4] путем ступенчатого синтеза получили индивидуальные полиэтиленоксиды с мол. весом около 8000. Венжер [5] предложил способ получения практически монодисперсного поли-а-метилстирола, путем полимеризации мономера в тетрагидрофу-ране в присутствии металлического натрия. Предложен также [6] способ синтеза монодисперсныХ полиуретанов. [c.7]

    Таким образом, для нахождения молекулярного веса полимера, размеры молгкул которого соизмеримы с длиной волны, необходимо найти фактор внутренней интерференции Ф(< , В то же время, поскольку асимметрия рассеяния связана с линейными размерами частиц, зная величину 0(0, можно рассчитать размеры молекулярного клубка (если форма его предполагается). [c.86]


Смотреть страницы где упоминается термин Полимеры размеры: [c.474]    [c.371]    [c.449]    [c.89]    [c.115]    [c.131]    [c.274]   
Кристаллизация полимеров (1966) -- [ c.17 , c.20 ]




ПОИСК







© 2025 chem21.info Реклама на сайте