Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сера, двуокись серы как катализатор при окислении

    Повышение (до определенных пределов) концентрации хлора в серебре уменьшает подвижность кислорода, что приводит к снижению степени превращения этилена в двуокись углерода при сохранении той же степени его превращения в окись этилена. Увеличение количества добавки сверх оптимального может еще более упрочнить связь серебра с атомарным и молекулярным ионами кислорода, что вызовет уменьшение скорости окисления этилена и отравление катализатора. Введение незначительных количеств металлоида (сера, селен), степень заполнения поверхности которыми равна 0 = 10" —10" снижает энергию адсорбции кислорода, что увеличивает активность катализатора. При большем покрытии поверхности (0 — 0,2) активность катализатора уменьшается вследствие блокирования части его поверхности металлоидом. [c.220]


    Серу получают и химическими методами — извлечением ее из ряда природных соединений или из отходящих газов металлургических и коксовых печей. Для получения серы из газов смесь последних, содержащую двуокись серы и сероводород, пропускают при высокой температуре над катализатором. При этом происходит реакция окисления — восстановления [c.564]

    Катализатор на основе окислов марганца, пригодный для окисления HjS при его сравнительно низких концентрациях в газе, предлагался в работах [540, 541]. В этих работах показано, что активный катализатор окисления HaS в серу получается при прокаливании углекислой соли Мп + в токе воздуха при 400—500° С и представляет собой высокодисперсную двуокись марганца (содержащую 61,3% Мп), нанесенную (5—10%) на шамот. При окислении HgS (8—9% в воздухе) использование такого катализатора позволяет проводить процесс без внешнего подогрева при объемной скорости 10 ООО ч со степенью превращения HaS 75—95%. Очевидно, в условиях катализа должна проходить сульфатизация МпОа- [c.271]

    Восстановление плутония (IV) электролитическим путем или с помощью таких восстановителей, как двуокись серы, водород (на платиновом катализаторе), гидроксиламин, ион урана (IV) и ион иода, приводит к образованию плутония (III). Растворы плутония (III) в обычных кислотах окрашены в темносиний цвет. Степень окисления плутония в таких растворах была определена многими методами, включая титрование иода, выделяющегося при действии избытка иодида [c.183]

    По контактному методу двуокись серы окисляется кислородом воздуха на поверхности твердого катализатора. По нитрозному методу окисление двуокиси серы производится кислородом воздуха при помощи окислов азота, являющихся его передатчиком. При этом высшие окислы азота (НгОз, N02), окисляя ЗОг, восстанавливаются до окиси азота N0, которая вновь окисляется кислородом с образованием высших окислов азота. [c.68]

    Для полноты изложения следует добавить, что двуокись серы также применялась в качестве катализатора реакции гидрогенизации [32] и дегидратации [33], катализатора получения фенол-формальдегидных смол [34], этерификации [35] и некоторых реакций окисления [36]. [c.343]

    В основе производства серной кислоты контактным способом лежит процесс окисления двуокиси серы до трехокиси кислородом в присутствии твердого катализатора. Двуокись серы обычно получается путем обжига сульфидных руд или сжиганием элементарной серы. Получаемые газовые смеси содержат от 5 до 9% двуокиси серы и от 10 до 15% кислорода. [c.9]


    В случае окисных катализаторов двуокись серы реагирует с атомами кислорода, входящими в состав катализатора и находящимися на его поверхности. При этом первой стадией является сорбция двуокиси серы, приводящая к образованию поверхностного соединения. Следующим этапом может быть окисление двуокиси серы кислородом окислов на поверхности катализатора. Далее следует отщепление трехокиси серы и возмещение убыли кислорода в катализаторе за счет кислорода газовой фазы. При всех этих последовательных превращениях кристаллическая решетка катализатора остается неизменной. [c.45]

    Серная кислота в свободном состоянии в небольших количествах находится в вулканических районах весьма распространены залежи сульфатов. Промышленное производство базируется на окислении двуокиси серы в трехокись, которая при соединении с водой и дает серную кислоту. Сжигание серы в воздухе дает двуокись серы ЗОг, бесцветный газ с удушающим запахом. Эта двуокись негорюча, но может быть подвергнута дальнейшему окислению в трехокись серы 50з в присутствии окислов азота или других катализаторов. Трехокись серы называется также серным ангидридом. Это призрачное кристаллическое твердое вещество, жадно соединяющееся с водой и образующее серную кислоту. При этом выделяются большие количества тепла. Главная реакция может быть выражена следующим уравнением  [c.115]

    Двуокись серы и кислород в отсутствие катализатора практически не реагируют между собой, так как для окисления 30-необходим разрыв связи между атомами в молекуле кислорода, требующий очень большой затраты энергии. Действие катализаторов, ускоряющих реакцию между ЗО и кислородом, заключается в том, что они способны присоединять атомы кислорода, связывая их менее прочно, чем связаны между собой атомы в молекуле кислорода. Благодаря этому на поверхности твердых катализаторов активационный барьер реакции окисления 30- снижается. [c.164]

    Французские химики Клеман и Дезорм объяснили действие окиси азота как катализатора еще в 1806 г. Они предположили, что катализатор легко вступает в реакцию с одним из реагирующих веществ —с кислородом. Окись азота образует с кислородом двуокись азота. Это соединение легко реагирует с двуокисью серы, отдавая ей один атом кислорода. При этом образуется трехокись серы и освобождается окись азота, являющаяся катализатором. Двуокись азота здесь — промежуточное соединение, которое только помогает окислению, двуокиси серы в трехокись. Освободившийся катализатор снова реагирует с кислородом и снова образует промежуточное соединение — двуокись азота. Двуокись азота окисляет двуокись серы в трехокись, и опять освобождается окись азота. Этот процесс продолжается, пока вся двуокись серы не превратится в трехокись серы. [c.285]

    На отечественных сернокислотных предприятиях двуокись серы окисляют на ванадиевых катализаторах БАВ и СВД, причем процесс на зернах промышленного размера протекает в области, переходной между внутридиффузионной и кинетической [1]. Кинетику реакции окисления 50г изучали на катализаторе БАВ [2, 3], она описывается уравнением [c.91]

    Окислительная способность перекиси водорода широко используется для отбеливания различных материалов. Преимуществом перекиси водорода перед другими окислителями, применяемыми для отбелки, является то, что при ее распаде в процессе окисления не образуется побочных продуктов, в той или иной мере загрязняющих или разрушающих обрабатываемый материал. Перекись водорода относительно дешева и может быть получена в виде высокопроцентных (85—90%-ных) устойчивых и чистых растворов, которые можно перевозить на значительные расстояния и в надлежащих условиях длительное время сохранять. Крупным потребителем перекиси водорода как отбеливающего средства является текстильная промышленность, где перекись водорода почти полностью вытеснила другие отбеливающие средства, в том числе и агенты восстановительного характера (двуокись серы, сернистокислый и тиосернокислый натрий). Щелочные растворы перекиси водорода применяются для отбеливания тонких и дорогих хлопчатобумажных, шерстяных и шелковых тканей, а также мехов, слоновой кости, кожи и т. п. Она применяется также для консервирования пищевых продуктов, для дезинфекции, для осуществления некоторых окислительных реакций (например, при синтезе красителей и фармацевтических препаратов) и в качестве катализатора в реакциях полимеризации. [c.606]

    Если степень переноса заряда от атома серы тиоэфира к катализатору при образовании поверхностного комплекса тиоэфира велика, то произойдет ослабление связи С—5 и ее разрыв. Возникшие фрагменты, взаимодействуя с кислородом, будут превращаться в различные кислородсодержащие продукты — двуокись серы, альдегиды, кислоты, СО, СОг, воду и др. (см. схему 18). Безусловно, образование продуктов деструктивного окисления возможно также вследствие дальнейшего превращения первичных продуктов реакции. Однако в определенных условиях сульфоксид и сульфон могут предохраняться от доокисления. [c.264]


    Таким образом, активный катализатор окисления должен обладать способностью передавать подвергающейся окислению молекуле кислород через свою поверхность. Это служит верным признаком менее высокой энергии активации процесса по сравнению с гомогенным окислением, так как кислород на поверхности находится в более лабильном состоянии. Хотя большинство катализаторов окисления — р-полупроводники, возможно, что серебро (окисляющее этилен) и платина (окисляющая аммиак и двуокись серы) занимают особое положение. Это объясняется тем, что, несмотря на возможное протекание реакции в поверхностном слое окисла, электронное строение аммиака, двуокиси серы и этилена таково, что наличие хемо-сорбированпых ионов кислорода не относится к числу условий, необходимых для окисления. По-видимому, образование ковалентной связи между этими молекулами и поверхностью является более предпочтительным, чем адсорбция их в виде ионов. [c.316]

    При сгорании серы образуется двуокись, которая только при повышенной температуре и в присутствии катализатора окисляется в трехокись серы. Теплота образования 80 АЯ° = —297,1 кДж, а тепловой эффект окисления 80а в 80з АЯ = —96,2 кДж, следовательно, на основании [c.75]

    При процессе окисления двуокиси серы в серную кислоту катализатором является двуокись азота. Двуокись азота ассимилирует вещество среды с образованием новых молекул, склонных к внутримолекулярным реакциям и к выделению образовавшихся веществ во внешнюю среду, с регенерацией катализатора для нового процесса. Это очень точное определение каталитического процесса, которым Энгельс и характеризовал главную особенность белка — вещества — процесса. [c.440]

    Примечание. Авторы применили приведенный метод для определения серной кислоты, образующейся при окислении сернистого ангидрида на специальном катализаторе (двуокись церия на окиси алюминия), и использовали его для определения следов серы в керосине, бензине и т. п. [c.323]

    Литературный материал, собранный мисс Вандерворт, ограничился рефератами Хемикел Абстракте за период с 1940 по 1956 г. Ею собраны данные по вопросам кинетики, механизма реакций, аппаратуры лабораторных и опытных установок, заводского оборудования, а также по катализаторам окисления в паровой фазе и по каталитическим процессам. В предметном указателе Хемикал Абстракте просматривались следующие заголовки окисление, кислород, воздух, аммиак, азотная кислота, окись азота, окись углерода, двуокись серы, серная кислота, трехокись серы, ацетилен, соединения ацетилена, бензол, этилен, окись этилена, антрацен, нафталин, ксилолы, водород, синильная кислота, амины, циклоалканы, толуол, тиолы, соединения меркаптана, альдегид, кетоны, спирты, катализ и катализаторы. В обзор включены статьи, опубликованные в 1957 г. [c.204]

    Соединения кислорода в положительных степенях окисления неизвестны (за исключением его соединений с фтором), поэтому поведение серы в положительных степенях окисления нельзя сравнить с данными для кислорода. Для серы весьма обычны две степени окисления +4 (ЗОг и сульфиты, содержащие 50 ) и +6 (50з и сульфаты, содержащие ЗО ). Двуокись серы ЗОг— основной продукт, получающийся при сжигании серы на воздухе или в кислороде. Но 50з — энергетически более устойчивое соединение и не образуется только из-за низкой скорости реакции 502 и Ог- Скорость этой реакции повышается в присутствии катализаторов, поэтому ее осуществляют в промышленности в очень широком масштабе. Серная кислота (получаемая непрямым растворением 50з в воде) является одним из веществ, производимых в громадном количестве. При температуре, близкой к комнатной, окисление ЗОг катализируется двуокисью азота ЫОг. Юднако поскольку при такой температуре скорость этой газофаз- [c.48]

    Науглероженный кобальт-молибденовый катализатор может быть регенерирован путем использования контролируемого окисления с целью выжечь углеродистые отложения. Через катализатор пропускают измеренные количества воздуха или кислорода в инертном газе (например, в азоте) и тщательно наблюдают за температурой фронта сгорания. Чтобы уменьшить спекание и потерю молибдена (что приводит к необратимому уменьшению поверхности и активности), температура регенерации не должна превышать 550° С. В результате основных реакций из углеродистых отложений образуются двуокись углерода и вода и двуокись серы из серы, имеющейся в катализаторе. После регенерации катализатор идет в работу наравне со свежим. [c.81]

    На контактирование подается смесь воздуха и двуокиси серы, которые поступают в систему из газометра / и из баллона 3. Воздух и двуокись серы предварительно очищают от водяных паров в склянках 4 (с СаС12) и 5 (с НзЗО ). Для улавливания возможных брызг серной кислоты после промывной склянки 5 двуокись серы пропускают через баллончик 6 со стеклянными трубками. Постоянство давления газов поддерживается при помощи маностатов 7 я 8. Скорость воздуха и двуокиси серы измеряется реометрами 9 и 10. Газы, прошедшие через реометры, поступают в смеситель 11. Контактное окисление происходит на катализаторе в фарфоровой трубке 20, помещенной в электрическую печь 18. [c.148]

    Эта реакция также оопровождается значительным выделением тепла. Двуокись серы получается при обжиге серного колчедана (РеЗг) или серы. Источником двуокиси серы служат также отходящие газы предприятий цветной металлургии. Реакция окисления серного газа идет при температуре 400— —470° С в присутствии катализаторов. [c.24]

    Поскольку окислы серы обладают последействием, можно утверждать, что их участие в реакциях окисления связано с модифицированием поверхности катализатора. -Однако их роль этим, по-видимому, не ограничивается Двуокись серы, в частности, может выступать в качестве мяккого и селективного окислителя органических веществ. Так, например, ЗОг в отсутствие кислорода окисляет толуол на окисных ванадиевых катализаторах в бензальдегид с селективностью 90% [67]. Судя по другим публикациям [68, 69], при пропускании смеси толуола и Ог в мольном соотношении 1 0,2 при 350 — 365 °С над УгО образуется бензойная кислота с селективностью по прореагировавшей двуокиси серы 82% (выход кислоты 8 /о). В области более высоких температур (450—465 °С) селективность по ЗОг снижается до 45%. Разбавление реакционной смеси азотом и снижение температуры до 410°С повышает селективность по бензойной кислоте до 97% в расчете на 502. Сходные результаты получены на окиси вольфрама. В аналогичных условиях было получено из этилбензола 12% бензальдегида и 52% бензойной кислоты, из изопропил- и из н-бутилбензола 37—42% бензойной кислоты, из о-ксилола 14 /о о-толуиловой кислоты и 15% фталевого ангидрида (в расчете на прореагировавшую двуокись серы).  [c.26]

    Из других катализаторов практический интерес представляет окись железа. Манимальная температура, при которой двуокись серы окисляется на этом катализаторе, составляет 600° следовательно, высокие степени превращения на нем не могут быть достигнуты, но дешевизна и доступность окиси железа позволяют применять ее для частичного окисления двуокиси серы в загрязненном газе. [c.35]

    Независимо от того, в виде какого соединения первоначально находятся в катализаторе ванадий и щелочные металлы, они при каталитическом окислении двуокиси серы переходят в сульфованадаты щелочных металлов или дают смесь поливанадатов и сульфатов (при низких температурах—пиросульфатов). В чистом виде эти соединения не могут, однако, служить катализаторами окисления двуокиси серы вследствие низкой температуры плавления (сульфованадат калия плавится при температуре около 500° И образует с избытком сульфата калия эвтектику с температурой плавления около 430° температура плавления дисульфованадата калия еще ниже). Для использования в качестве катализатора эти соединения должны наноситься на носитель с достаточно развитой поверхностью. Во всех рецептурах промышленных катализаторов в качестве носителя применяется двуокись кремния. Роль двуокиси кремния не ограничивается созданием достаточно развитой поверхности активного компонента. При нанесении сульфованадатов на носитель их устойчивость значительно повьпиается благодаря взаимодействию с двуокисью кремния. Для тройных катализаторов, содержащих двуокись кремния, значительно снижается температура превращения активного компонента в сульфат ванадила. Одновременно уменьшается. и скорость образования ванадил-ванадатов, что проявляется в повышении термической устойчивости. Роль двуокиси кремния в промотированных ванадиевых катализаторах и заключается в стабилизации сульфованадатов. [c.206]

    В нитрозном способе катализатором служат окислы азота. Окисление ЗОз происходит в основном в жидкой фазе и осуществляется в башнях с насадкой. Поэтому нитрозный способ по аппаратурному признаку называют башенным. Сущность башенного способа заключается в том, что полученная при сжигании сернистого сырья двуокись серы, содержащая примерно 9% 30 и 9—10% Оз, очищается от частиц колчеданного огарка и поступает в башенную систему, состоящую из нескольких (четырех —семи) башен с насадкой. Башни с насадкой работают по принципу идеального вытеснения при политермическом режиме. Температура газа на входе в первую башню около 350° С. В башнях протекает ряд абсорбционно-десорбционных процессов, осложненных химическими превращениями. В первых двух-трех башнях насадка орошается нитрозой, в которой растворенные окислы азота химически связаны в виде нитрозилсерной кислоты МОНЗО . При высокой температуре нитрозилсерная кислота гидролизуется по уравнению [c.10]

    Однако гомогенная газовая. реакция третьего порядка идет очень медленно, поэтому в производстве серной кислоты контактным способом окисляют двуокись серы на катализаторах. Согласно кинетическому уравнению Борескова, общая скорость окисления на ванадиевом катализаторе (УгОз с активатором К2504) пропорциональна концентрации двуокиси серы в степени 0,8 и концентрации кислорода в первой степени. Следовательно, эта реакция дробного (1,8) порядка. Тепловой эффект реакции Q (Дж/моль) в зависимости от температуры определяется уравнением [c.133]

    При 400° С и ниже реакция окисления сернистого газа практически необратима. При температуре порядка 1000° С трехокись серы почти полностью диссоциирует на двуокись серы и кислород. Следовательно, с точки зрения полноты лревращения двуокиси серы в трехокись серы надо было бы выбирать возможно более низкую температуру. Однако кроме полноты прохождения реакции необходимо учитывать и ее скорость. При 400° С реакция окисления двуокиси серы идет с достаточной для производства скоростью лишь на платиновом катализаторе, обладающем наивысшей активностью по сравнению с другими катализаторами. [c.134]

    Сера тоже образует два окисла двуокись серы (сернистый газ) ЗОг и трехокись серы (серный ангидрид) 50з. Сернистый газ образуется при горении серы в кислороде или на воздухе. Серный ангидрид получают окислением сернистого газа в присутствии катализаторов (Р1 или У20а). Этот метод применяется в промышленном производстве серной кислоты контактным способом. [c.84]

    Если сера входит в состав активного компонента катализатора, а в процессе работы частично происходит ее потеря, то добавление сернистого соединения к исходным реагентам благоприятно, так как, химически взаимодействуя с катализатором, оно стабилизирует его состав. При окислении нафталина во фталевый ангидрид в присутствии катализатора УгОб—Кг504—5102 рекомендуется добавлять к реакционной смеси двуокись серы, сероуглерод, тионафтен, восполняющие потерю серы катализатором в процессе [328, 329, 369, 408]. Это справедливо и для некоторых сульфидных катализаторов гидрирования, дегидрирования, изомеризации, конверсии природного газа, для поддержания активности которых на определенном уровне необходимо обеспечить возможность сульфидирования катализатора в процессе работы [380, 395, 418]. [c.74]

    При более высокой температуре тиоэфиры без катализатора окисляются кислородом с образованием сложной смеси веществ. Например, основными продуктами реакции газофазного окисления диметилсульфида при 250°С являются [238, 715, 749] двуокись серы, формальдегид, вода, окись углерода, муравьиная кислота, метиловый спирт, метан-сульфокислота, сероокись углерода в очень небольшом количестве образуется диметилсульфоксид и диметилсульфон. Процесс протекает по свободнорадикальному цепному механизму, всего скорее, через стадии образования радикалов H3S H2, НО2 и их последующих превращений [747, 748]. [c.257]

    К числу производств, в которых катализаторы играют важнейшую роль, прежде всего относится сернокислотное. Долгое время применялся для окисления двуокиси серы платиновый катализатор, механизм действия которого, как полагают, основан на образовании нестойких поверхностных окислов платины Р10 и Р10г, окисляющих двуокись серы и вновь образующихся под действием кислорода. Дороговизна этих катализаторов и их склонность к отравлению побуждала искать катализаторы, менее чувствительные к ядам. Г. К. Боресков предложил катализатор (БАБ)—алюмоцеолит. Его получают, смешивая кислые растворы хлоридов алюми- шя, бария с щелочными растворами ванадата и силиката кальция. [c.359]

    В отличие от потускнения, которое в большинстве случаев имеет место, если воздух загрязнен сероводородом, влажная коррозия в большой степени определяется присутствием в воздухе двуокиси или трехокиси серы. Большая часть серы, присутствующая в свежих продуктах сгорания угля, представляет собой двуокись серы, однако необходимо вспомнить, что сернистый газ (двуокись серы) образуется при сгорании пиритов, в результате которого образуется также окись железа, являющаяся катализатором для окисления двуокиси серы до трехокиси. В период туманов частицы угля из паровозных топок или из низких печных труб несут на себе большое количество серной кислоты и могут вызывать серьезные коррозионные разрушения металлов и вредно действовать на человека. Следует считать, что вопросу о серной кислоте уделено слишком мало внимания в отчетах специального комитета за 1953 и 1954 гг. Не вызывает сомнения, что в газовой фазе воздуха больЩая часть серы присутствует в виде двуокиси серы, что видно из данных Митхема [8] (см. также работы Гарлоу, Уиттингэма, Кейра и др. на стр. 428—430). [c.447]

    Ряд патентов, не раскрывая химизма процесса, указывает на возможность ускорения окисления сырья и улучшения свойств битума. Так, для получения битума, имеющего более высокую пенетрацию при данной температуре размягчения, применяют следующие катализаторы и инициаторы окисления сырья кислородом воздуха двуокись марганца [488] хлорид алюминия [463] двуокись марганца и азотную кислоту [437] мелкораздробленный известняк [528] каустическую соду или углекислый натрий [348] бентонит или мелкоизмельченный кокс [315] серу [293] серную кислоту с добавлением металлических солей серной или борной кислот [388] металлические фторобораты [361] борную, фосфорную или мышьяковистую кислоты [406] пятиокнсь фосфора и его сульфиды (РгЗз, Р45з, Р45 ) [492] смесь пятиокиси фосфора и сополимеров изобутилена и стирола, смесь орто-фосфорной кислоты и борофтористого соединения [270] хлорат калия [479] хлорид или сульфат цинка, алюминия, железа, меди или сурьмы [306] хлорид цинка или [c.157]

    Хармадарьян и Бродович [22], исследуя влияние носителя нэ каталитические свойства пятиокиси ванадия в окислении двуокиси серы воздухом, считали, что двуокись марганца лучший носитель, чем такие вещества, как асбест, инфузорная земля, стекло, фарфор и кварц,и отметили, что действие активаторов— сульфата меди, сульфата железа, хлорида бария и сульфата марганца—является функцией природы носителя. Они также указали, что метод покрьп ия и толщина слоя значительно влияют на эффективность катализатсра. Пятиокись ванадия, осажденная из коллоидного раствора соляной кислотой, имела большую каталитическую активность, чем приготовленная коагуляцией нагреванием. Зависимость активности от концентрации раствора обнаружена у катализатора, приготовленного из метаванадата аммония, нагретого до 440° для получения равномерного распределения. [c.124]

    Иногда при окислении метилового спирта с медью на алунде, употребляемом в качестве носителя, применяют катализатор с постепенно увеличивающимся содержанием меди. Похожий процесс — гидрогенизация с восстановленным никелем в этом случае реагирующие компоненты вначале пропускают через носитель, содержащий небольшое количество катализатора постепенное увеличение содержания катализатора оказывается выгодным [378]. Хармадарьян и Бродович [5, 93] исследовали влияние носителей на катализаторы, в особенности на их контактные свойства. При окислении двуокиси серы с пятиокисью ванадия, употребляемой как катализатор, в качестве носителей рекомендуются двуокись марганца, асбест, инфузорная земля, кварц, фарфор и стекло двуокись марганца, употребляемая в качестве катализатора для контактного процесса получения серной кислоты, дает лучшие результаты [310] (табл. 150). [c.478]

    Производство синтез-газа частичным окислением. Фирмы Монтекати-аи , Тексако и Шелл разработали промышленные процессы гроизвод-гтва синтез-газа непрерывным частичны.ч окислением нефтяных фракций. Общим в этих процессах является то, что в качестве окислителя применяется промышленный кислород. Катализатор отсутствует. В противоположность непрерывным каталитическим процессам можно применять любое сырье и, что особенно важно, нет ограничений в отношении серы. Реакция между нефтяной фракцией, кислородом и разбавителем водяной пар или двуокись углерода для снижения температуры) протекает в пламени при 705—816 °С, т. е. когда любые углеводороды почти полностью превращаются в компоненты водяного газа. [c.100]


Смотреть страницы где упоминается термин Сера, двуокись серы как катализатор при окислении: [c.156]    [c.246]    [c.33]    [c.73]    [c.286]    [c.306]    [c.45]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.935 ]




ПОИСК





Смотрите так же термины и статьи:

Двуокись окисления

Катализаторы от серы

Серы двуокись



© 2025 chem21.info Реклама на сайте