Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды диеновые, получение из непредельных

    Производство низших олефинов пиролизом различного углеводородного сырья характеризуется одновременным получением большой гаммы ценных непредельных углеводородов, диеновых, ароматических, производных ацетилена. Эти углеводороды содержатся в соответствующих фракциях в количествах, достаточных для их экономически обоснованного выделения в чистом виде с целью получения товарной продукции для органического синтеза. К таким углеводородам относятся ацетилен, аллен, метилацетилен, цикло- и дициклопентадиен, бензол, нафталин и др. Кроме того, низкая стоимость, высокая концентрация целевых продуктов, малое содержание сероорганических и практически отсутствие других гетероорганических соединений создают хорошие технологические и экономические предпосылки для переработки побочных продуктов пиролиза. Себестоимость вырабатываемых из пиролизного сырья продуктов (например, дициклопентадиена, бензола) на 15—25% ниже себестоимости. аналогичных продуктов, полученных традиционными процессами [c.27]


    На многих предприятиях в качестве топлива используют заводские газы — побочные продукты технологических установок. Ресурсы заводских газов зависят от глубины переработки углеводородного сырья. В производствах, процессы которых протекают под давлением водорода (риформинг, гидроочистка, изомеризация), образуются газы, не содержащие непредельных углеводородов, п их применение для сжигания в печах не вызывает затруднений. В то же время, состав побочных газов термических и некоторых каталитических процессов характеризуется заметным содержанием непредельных углеводородов. Их концентрация зависит, главным образом, от жесткости режима и в определенной степени от состава сырья и применяемых катализаторов. Входящая в состав заводских газов жирная часть (изобутан, этилены) является ценным исходным сырьем для получения высокооктанового бензина, а сухая часть (водород, метан п этан- -этилен) применяется в качестве технологического топлива. Заводские топливные газы, особенно с установок пиролиза бензина, необходимо подвергать очистке от непредельных углеводородов (фракций С4, С5 и диеновых соединений). Указанные непредельные углеводороды легко полимери-зуются и сополимеризуются с продуктами сероводородной коррозии и образуют плотные отложения в арматуре трубопроводов, в узлах газовых горелок и в капиллярах КИП. Это нарушает работу горелок или совсем выводит их из строя. [c.48]

    Пиролиз прямогонного бензина, сжиженных газов и некоторых других нефтяных фракций осуществляют в большом масштабе с целью получения низших олефинов — этилена, пропилена и бути-ленов. Установлено, что в присутствии водорода пиролиз протекает более эффективно [13]. В процессе пиролиза наряду с газом получаются жидкие продукты — смола пиролиза. Легкие фракции смолы пиролиза используются для получения компонента высокооктанового бензина, а также для получения бензола. Во фракциях смолы пиролиза, выкипающих до 180 °С, содержатся ароматические углеводороды — бензол, толуол, ксилолы, непредельные ж диеновые углеводороды. [c.18]

    Во фракции бензина пиролиза, выкипающей в пределах 70 — 150 С, содержатся значительные количества бензола и других ароматических углеводородов, которые извлекают методом экстракции. Процессу экстракции предшествует гидрирование непредельных углеводородов, содержащихся в бензине, прошедшем холодную гидроочистку от диеновых углеводородов. Гидрирование ведут на алюмокобальтмолибденовом катализаторе при 5 МПа, 360 °С и объемной скорости подачи сырья до 2 ч до остаточного содержания серы 0,001—0,005% (масс.). При этом гидрируются и олефиновые углеводороды. Гидрирование применяют и для получения низших олефинов, а также для удаления ацетилена и его производных из газа пиролиза или из его этан-этиленовой фракции [16]. [c.18]


    Непредельные углеводороды являются продуктами вторичных процессов они делятся на непредельные углеводороды, нормального и изостроения, циклические и на ароматические углеводороды с ненасыщенной связью в боковой цени, содержание которых в тяжелых фракциях, особенно в пиролизной смоле, весьма значительно. Эти соединения играют существенную роль в реакциях полимеризации, протекающих в процессе получения углеродных пластических масс при низких температурах. Наличие диеновых углеводородов в пиролизной смоле способствует увеличению выхода полимер-продукта. Происходит ароматизация диеновых угле- [c.24]

    Антиоксиданты ингибируют только радикально-цепные реакции окисление углеводородов и отчасти полимеризацию непредельных соединений. Однако в топливах, содержащих активные соединения разной природы (диеновые и полицик-лические ароматические углеводороды, азотсодержащие гетероциклы и т. д.), возможны и другие реакции уплотнения, приводящие к образованию осадка и смол. Это особенно характерно для среднедистиллятных фракций, полученных в процессах деструктивной переработки нефти. Введение антиоксидантов в такие топлива не дает ожидаемого эффекта. Поэтому антиоксиданты используются в основном для стабилизации бензинов и реактивных топлив. [c.92]

    Основные научные исследования посвящены полимеризации, изомеризации и гидрогенизации непредельных соединений. Впервые исследовал (1908—1913) кинетику и механиз.м термической полимеризации диеновых углеводородов ряда дивинила и аллена, установил условия раздельного получения циклических димеров ряда циклогексана, с одной стороны, и полимеров, с другой определил зависимость полимеризации от структуры исходных углеводородов. [c.286]

    Методы получения алленов путем отш,епления галоидводородов от соответствующих непредельных галогенидов в известной мере аналогичны обычным методам синтеза ацетиленовых углеводородов -Однако, благодаря неустойчивости и возможности изомеризации в ацетиленовые и 1,3-диеновые системы при высокой температуре в присутствии применяемых агентов (натрий, алкоголят натрия, амид натрия, щелочь и др.) эти методы совершенно непригодны для структурно-незакрепленных алленовых систем. [c.92]

    В качестве сырья для получения ацетальдегида можно использовать не только концентрированный этилен, но и этан-этиленовую фракцию. Содержание в исходном сырье незначительных количеств водорода, оксида и диоксида углерода и предельных углеводородов не препятствует нормальному протеканию реакции. Присутствие других непредельных углеводородов нежелательно, так как они образуют различные побочные продукты. Допускается содержание ацетилена не более 0,005 %, высших олефинов не более 0,03% и серы 0,001 % (масс.). Диеновые углеводороды должны быть удалены селективным гидрированием. [c.226]

    ДЛЯ дальнейшего углубленного изучения процессов полимеризации непредельных углеводородов с двумя двойными связями, обычно называемых диеновыми и являющихся основными исходными веществами для промышленного получения синтетического каучука. [c.63]

    Особое место в истории создания теоретических основ полимеризации непредельных диеновых углеводородов и промышленности синтетического каучука принадлежит работам ученика А. Е. Фаворского С. В. Лебедева и его школы [65]. Выдающийся ученый нашего времени С. В. Лебедев еще в 1910—1911 гг. опубликовал свои наблюдения, касающиеся образования каучукоподобных веществ при полимеризации углеводорода дивинила (бутадиена). Эти работы послужили исходным пунктом для последующих работ С. В. Лебедева и созданной им школы талантливых химиков-органиков, сосредоточивших свое внимание на получении синтетического каучука на основе дивинила. [c.63]

    В настоящее время, несмотря на дефицит низкокипящих ароматических углеводородов, смолы пиролиза практически квалифицированно не используются, поскольку получение из них чистых ароматических углеводородов такими известными методами, как сернокислотная очистка и ректификация, сопряжено с рядом трудностей, обусловленных специфическим химическим составом смол—одновременным присутствием ароматических и непредельных, в том числе диеновых, углеводородов. [c.161]

    С увеличением температуры гидрирования от 50 до 250° С под давлением 40 ат при объемной скорости 1 час- возрастает глубина гидрирования непредельных углеводородов, в результате чего снижается содержание диеновых углеводородов (табл. 2). В гидрогенизатах, полученных при температуре 150° С и выше, диеновые углеводороды отсутствуют. [c.92]

    Ниже приведены способы получения этих веществ при реакции упомянутых выше гидридов бора с алифатическими и алициклическими олефинами, диеновыми и ацетиленовыми углеводородами, а также некоторыми непредельными ароматическими соединениями. [c.93]


    Согласно отечественным и зарубежным данным, для получения изопрена может быть использована свежая бутан-бутиленовая фракция с нефтеперерабатывающих заводов, содержащая 50—60% вес. непредельных углеводородов, в том числе 20—25% изобутилена. Свежая бутан-бутиленовая фракция после предварительной очистки от ацетиленовых и выделения диеновых углеводородов может быть непосредственно направлена на синтез с формальдегидом с целью получения диметил-диоксана. Отходящие газы, содержащие н-бутилены, изобутан и н-бутан, могут быть направлены на экстрактивную дистилляцию с целью выделения н-бутиленов для последующей переработки их в дивинил. Изобутан и н-бутан после их разделения могут быть направлены на дегидрирование с целью получения соответственно изобутилена и н-бутиленов. [c.176]

    Реакция взаимодействия гидридсиланов с непредельными соединениями может быть использована для получения кремнийорганических соединений, содержащих два и более атома кремния в молекуле, связанных углеводородными мостиками. Присоединением различных гидридсиланов к ацетилену, диеновым углеводородам и алкенилсиланам были получены кремнийорганические соединения с чередующимися атомами кремния и углерода. [c.301]

    Прошло несколько лет со времени издания книги, но за этот короткий срок разработаны новые процессы окислительного превращения углеводородов окислительный аммонолиз непредельных и ароматических углеводородов, окислительное дегидрирование олефинов в диеновые соединения, получение акриловой и метакриловой кислот и др. Кинетика и механизм этих процессов изучаются в лабораториях различных стран. [c.3]

    Взаимодействие непредельных углеводородов с формальдегидом в кислой среде с получением циклических формалей (диоксанов) было впервые изучено голландским химиком Принсом в 1917— 20 гг. [1]. В середине 1930-х гг. в Германии и в США возник инте рес к этой реакции с точки зрения использования диоксанов для последующего получения на их основе диеновых углеводородов. Уже тогда наибольщее внимание уделялось реакции формальдегида с изобутиленом с образованием 4,4-диметил-1,3-диоксана (ДМД), каталитическое расщепление которого приводит к получению изопрена. Однако эти исследования были еще весьма далеки от стадии технической разработки. Вскоре после окончания второй мировой войны интенсивные исследования диоксанового синтеза проводились кроме упомянутых стран также во Франции, Англии и несколько позднее в Японии. Работы Французского института нефти привели к созданию оригинальной технологии, которая отрабатывалась на опытной установке в г. Лаке [2]. О создании собственного метода позже объявила также фирма Байер (ФРГ) [3]. Однако промышленной реализации оба эти метода не получили. В 1973 г. появилась первая информация об освоении рассматриваемого процесса за рубежом — пуске промышленной установки по получению изопрена двухстадийным синтезом из изобутилена и формальдегида в Японии (фирма Курарей ) [4]. [c.696]

    Стабильность к окислению бензиновых фракций дистиллятов каталитического крекинга, термических процессов переработки тяжелого нефтяного сырья и бензинов пиролиза углеводородных газов и низкиоктановых бензинов повышают путем насыщения водородом непредельных углеводородов, в частности диеновых (с сопряженными связями), и ненасыщенных боковых цепей ароматических углеводородов (типа стирола). Олефиновые углеводороды в большинстве случаев не влияют на окислительную стабильность крекинг-бензина при получении из указанных дистиллятов автомобильного бензина эти углеводороды, обладающие относительно высокими антидетонационными свойствами, желательно сохранять в продукте. [c.195]

    Жидкие продукты пиролиза (бензиновая фракция) содержат непредельные соединения и легко полимеризующиеся диеновые углеводороды. Чтобы использовать бензин пиролиза в качестве компонента автобензина, его подвергают гидроочистке от диеновых углеводородов. На гидрирование последних расходуется немного водорода — от 0,2 до 0,5% от бензина пиролиза. Поскольку выход бензина пиролиза составляет около 20%, на процесс гидроочистки от диеновых углеводородов затрачивается всего 0,1% Нз в расчете на бензин, поступающий на пиролиз, или около 10% от водорода, полученного в процессе пиролиза. [c.32]

    Пиробензол является продуктом пиролиза нефтяного сырья. Основное назначение процесса пиролиза — получение газообразных олефинов (этилена, пропилена, бутадиена и бутилена) для нефтехимического синтеза. Пиролизу могут подвергаться углеводородные газы, бензиновые и керосино-газойлевые фракции. Процесс пиролиза проводится на установках, основным агрегатом которых является трубчатая печь. Прямогонная бензиновая фракция, используемая в качестве сырья, нагревается в печи до 750°С, при пиролизе пропана его нагревают до 900°С. В результате термического разложения сырья образуются низкомолекулярные олефины, а также высокоароматизированные жидкие продукты — смола пиролиза и кокс. Количество смолы зависит от сырья, чем оно тяжелее, тем больше смолы. В случае пиролиза бензина или керосино-газойлевой фракции выход смолы составляет 20н-35% [9]. Смола пиролиза содержит много диеновых и олефиновых углеводородов и на 70+75% состоит из фракций, выкипаюших до 200°С. Переработка смолы пиролиза может осуществляться по топливному или химическому варианту. В первом случае смола разделяется на легкую (выкипающую до 180°С) и тяжелую части. Для получения пиробензола легкая часть гидрируется для удаления непредельных углеводородов, и из нее выделяется бензол. [c.39]

    Полимеризация. Как и другие непредельные соединения, алкадиены полимеризуются. Продуктами по-. зимеризации некоторых диеновых углеводородов являются каучуки — широко используемые эластичные полимеры. Их получение рассмотрено в 20.6. [c.334]

    С. В. Лебедев был учеником академика А. Е. Фаворского, под руководством которого и выполнены его первые работы. Исследования по.пимеризаини непредельных органических соединений Сергей Васильевич наиал в 1906 г. В декабре 1909 г. на заседании Русского химического общества он сделал доклад о полимеризации диеновых углеводородов и демонстрировал каучукоподобное соединение, полученное из дивинила. [c.102]

    При производстве компонента автомобильного бензина необходимо селективно и практически полностью удалить нестабильные диеновые алкенилароматические углеводороды и реакционноспособные алкены, склонные к образованию смолистых веществ. Стабильные непредельные углеводороды с высокими октановыми характеристиками должны быть сохранены в сырье. Для получения из указанного сырья продукта, пригодного для выделения индивидуальных ароматических углеводородов - g, используемых далее в органическом синтезе, требуется удалить практически все непредельные углеводороды и S-содержащие соединения, не затрагивая при этом ароматические углеводороды. Эти задачи эффективно решаются при гидрогениза-ционной очистке водорода под невысоким давлением, равным 2,5-5,0 МПа. [c.816]

    Существуют различные способы получения ненасыщенных спиртов, такие как гидратация диеновых углеводородов [Пат, 53147013 Япония, 19781, эпоксидирование диеновых углеводородов с последующим их восстановлением [Пат. 1542975 Вели кобритания, 1978], восстановление эфиров непредельных киС лот, окисление диеновых углеводородов [Пат. 3887627 США, 1975]. [c.196]

    Кокс, отлагающийся на поверхности катализатора, будет иметь невысокий процент летучих и водорода и по своему составу будет более благоприятным по сравнению, например, с коксом процесса замедленного коксования. Что касается элементарного состава жидких продуктов переработки, то следует отметить следующее чем больше в составе жидких продуктов непредельных и ароматических, тем ниже в них содержание водорода, так что и в общем случае необходимо затрачивать меньше водорода для их образования. Однако присутствие этих углеводородов в больших количествах не во всех продуктах допустимо. В составе бензиновых фракций весьма желательно иметь высокое содержание ароматических и непредельных углеводородов. При этом следует оговорить, что содержание последних должно позволить получение стабильных товарных продуктов с присадкой ингибитора. Бензины каталитического крекинга, как правило, не содержат диеновых углеводородов и хорошо поддаются ингибитированию. Высокое содержание непредельных и ароматических углеводородов в реактивном и дизельном топливах нежелательно, как как оно приводит к увеличению нагарообразо-вания и жесткой работе двигателя. [c.137]

    Полимеризация смеси, содержащей 97—98% изобутилена и 2—3% изопрена, ведется в среде инертного разбавителя в присутствии катализатора (например, А1С1з) при низкой температуре (—95 °С). Важнейшим условием получения качественного бутилкаучука является максимальная чистота исходных продуктов и реагентов. Молекулярный вес бутилкаучука 35 ООО— 80 ООО. Бутилкаучук отличается от других видов синтетического каучука тем, что в качестве основного исходного мономера берется не диеновый углеводород, а олефин. В результате этого бутилкаучук имеет низкую непредельность, что придает ему ряд отличительных свойств. Он обладает повышенной химической стойкостью к действию кислорода, озона, солнечного света, кислот и высоким сопротивлением всем видам старения. По газонепроницаемости бутилкаучук превосходит натуральный и другие синтетические каучуки, благодаря чему является хоро- [c.84]

    Основные научные работы посвящены химии фосфорорганических соединений. Изучал (1945— 1950) аллильные и ацетиленовые перегруппировки, реакции присоединения к диеновым углеводородам. Открыл (1954) реакцию получения эфиров фосфоновых кислот, заключающуюся в присоединении неполных эфиров алкил(арил)фос-финистых и фосфористой кислот к непредельным соединениям открыл (1955—1960) новые перегруппировки фосфонат-фосфатного типа и термические перегруппировки аллиловых и пропаргиловых эфиров фосфористой кислоты. Изучал различные реакцнп эфиров и ангидридов фосфористой кислоты, амидофосфитов и других фосфорорганических соединений с электрофильными реагентами, которые не содержат атомы галогенов. Получил (1965—1975) ряд новых типов фосфорорганических мономеров и полимеров. [c.413]

    Один из основателей химии ацетиленовых соединений. Открыл (1887) изомеризацию ацетиленовых углеводородов под влиянием спиртового раствора щелочей (аце-тилен-алленовая перегруппировка), которая явилась общим методом синтеза ацетиленовых и дненовых углеводородов. Позднее, накопив большой экспериментальный материал, раскрывающий зависимость процессов изомеризации от строения реагентов и условий реакции, сформулировал закономерности протекания этих процессов (правила Фаворского). Рассмотрел (1891) вопрос о механизме изомеризации в рядах непредельных углеводородов, установив возможность обратимой изомеризации ацетиленовых, алленовых и 1,3-диеновых углеводородов. Обнаружил (1895) новый вид изомеризации а-галогенкетоиов в карбоновые кислоты, положивший начало синтезам кислот акрилового ряда. Открыл (1905) реакцию получения третичных ацетиленовых спиртов конденсацией ацетиленовых углеводородов с карбонильными соединениями в присутствии безводного порошкообразного едкого кали (реакция Фаворского). Предложил (1939) метод синтеза изонрена на основе ацетилена и ацетона через ацетиленовый спирт и винилдиме-тилкарбинол. Разработал способ синтеза диоксана, впервые им полученного и описанного (1906). Впервые установил путь синтеза а-карбинолов ацетиленового ряда на основе кетонов, а также винн-ловых эфиров на основе ацетилена и спиртов. Создатель большой научной школы химиков-органиков. [c.510]

    Исходя из соображений кинетики и термодинамики и промышленной практики термической деструкции углеводородов, можно полагать, что наиболее благоприятными условиями для образования углеводородов С4 и С5 являются температуры, лежащие между температурой крекинга на бензин и пиролиза на этилен и пропилен, под давлением с применением водяного пара. Наличие цикланов в исходном сырье может положительно сказаться на выходах диеновых углеводородов (дивинила, изопрена) наряду с олефинами. Сырьем для такого процесса наряду с вышеуказанными продуктами могли бы служить и более высоко-кипящне фракции нефти — керосины парафинистых нефтей, парафин, петролатум и др. Такой процесс, несомненно, имеет существенные преимущества перед каталитическими процессами дегидрирования бутанов и изопентана. Здесь имеются практически неограниченные возможности по сырью, по организации мощных некаталитических установок, по получению фракций более богатых непредельными углеводородами, чем аналогичные фракции, получаемые в процессах дегидрирования. [c.56]

    При температуре 150 0, давлении 20 ат и объемной скорости 5 ч гидрируется 40—45% непредельных углеводородов, в том числе практически полностью диеновые углеводороды. Расход водорода на реакции составляет около 0,3%. Для удаления растворенных газов и смолистых продуктов гидрогенизат перегоняется с получением 95%-ного отгона, который после ингибитирования является товарным бензином и имеет следующую характеристику  [c.204]

    Значительно большие трудности встречаются при хроматографическом разделении крекинг-бензинов и бензинов пиролиза. В "этих бензицах наряду с парафино-нафтеповыми и ароматическими углеводородами содержатся непредельные углеводороды различного строения. Если диеновых углеводородов содержится большое количество (1,5—4,0%), как, например, в бензинах, полученных при пиролизе керосина, то даже при охлаждении адсорбционных колонок и разбавлении бензина изопентаном наблюдается интенсивная полимеризация диеновых углеводородов, приводящая к полной забивке силикагеля 123]. В этом случае хроматографическое разделение бензинов может быть проведено только после удаления из него диеновых углеводородов, например обработкой малеиновым ангидридом. После этой операции хроматографический анализ позволяет разделить бензиновую фракцию на группы углеводородов. [c.78]

    Позднее для выяснения влияния подобных соединений фосфора и непредельных эфиров фосфористой кислоты на стереоспеци-фическую полимеризацию диеновых углеводородов и свойства образующегося полиизопрена была изучена сополимеризация изопрена с эфирами фосфиновой кислоты на каталитическом комплексе Т1С14—А1 ( зо-С4Н5)з, применяемом в промышленности при получении каучука СКИ-3. [c.183]

    В настоящее время пиролиз стал одним из основных процессов получения нефтехимического сырья. На пиролизных установках вырабатываются газы, богатые непредельными углеводородами — этиленом и пропиленом. Переработкой жидких фракций пиролиза получают широкую гамму ценных продуктов — бутилен-бута-диеновую фракцию, ароматические углеводороды, сырье для производства технического углерода, нафталина и др. Пиролизу подвергают предельные углеводородные газы и бензиновые фракции. Особую раановидность пиролиза представляет пиролиз метана, который проводится при температурах до 1200°С и предназначается для получения ацетилена, водорода и технического углерода. [c.154]

    Принципиально новый и очень изящный путь синтеза изопреноидных соединений был открыт благодаря изученной А. А. Петровым и К. В. Лээтсом реакции теломеризации изопрена с его гидрохлоридами, протекающей в присутствии катализаторов. Эта реакция, приводящая к одностадийному получению геранилхлорида и сесквитерпеновых хлоридов, от которых легко можно перейти к соответствующим альдегидам, легла в основу приемлемого для производства метода синтеза цитраля и родственных соединений на основе изопрена. Аналогичный процесс, основанный на взаимодействии изопрена с гидрохлоридом диметилбу-тадиена, разработан и для синтеза метилцитраля — промежуточного продукта получения ирона (В. Н. Белов, Н. И. Скворцова и др.). Реакция теломеризации различных непредельных хлоридов с алифатическими диеновыми углеводородами была использована также и для синтеза ряда гомологов и аналогов ранее известных терпеновых соединений (А. А. Петров с сотр., В. П. Белов с сотр.). [c.561]

    Одним из удобных путей синтеза непредельных кремнийоргани-ческих соединений может являться путь парциального присоединения гидридсиланов к одной из кратных связей разнообразных диеновых углеводородов и других соединений, содержащх есколько кратных связей [62—68]. В равной степени это относится также к соединениям, содержащим тройную связь. Надо отметить, что присоединение гидридсиланов к бутадиену и другим, легко полимеризующимся соединениям в присутствии органических перекисей или под воздействием ультрафиолетового облучения, не всегда приводит к получению мономерных соединений. Используемые инициаторы часто вызывают полимеризацию исходных соединений, которая протекает в этом случае значительно быстрее чем присоединение гидридсиланов к двойной связи. [c.155]


Смотреть страницы где упоминается термин Углеводороды диеновые, получение из непредельных: [c.479]    [c.143]    [c.289]    [c.391]    [c.51]    [c.111]    [c.107]    [c.440]   
Методы элементоорганической химии (1963) -- [ c.0 ]

Методы элементоорганической химии Магний бериллий кальций стронций барий (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Диеновые углеводороды

Непредельные углеводороды

диенов



© 2025 chem21.info Реклама на сайте