Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Блока молекулярный все

    Техника и стоимость перевода других видов топлива в газы, взаимозаменяемые с природным газом, варьируются в очень широких пределах и зависят главным образом от свойств сырья и, следовательно, простоты его газификации. Качественный заменитель можно получать практически из любого ископаемого топлива, например из угля, сырой нефти или любой углеводородной фракции этих сырьевых материалов. В то же время сложность и стоимость процесса переработки будут значительно меньше, если относительная молекулярная масса топлива будет низкой, а химический состав его простым. Легкие углеводороды, например сжиженный нефтяной газ, лигроин, газовый конденсат или реактивное топливо, в определенных условиях можно газифицировать довольно просто с помощью пара. Более тяжелые фракции реагируют в таких условиях хуже и для инициирования процесса газификации, как правило, требуют наличия свободного водорода, получаемого во вспомогательном блоке. [c.20]


    С другой стороны, в связи с тем, что свойства термоэластопластов в значительной мере определяются степенью разделения фаз, весьма важным параметром их структуры является чистота блоков — отсутствие засоренности их другим сомономером. Для бутадиен-стирольных термоэластопластов, помимо многочисленных электронномикроскопических исследований фазовой структуры, было изучено влияние молекулярной массы, состава и числа блоков в макромолекулах на степень разделения фаз методом измерения температурной зависимости тангенса угла механических потерь [11] и установлено, что увеличение молекулярной массы, а также увеличение числа блоков в макромолекулах снижает степень этого разделения. [c.59]

    ЧИСЛО складок V, равное О, 1 или 2 в зависимости от природы блока, молекулярного веса и состава сополимеров (табл. 13). Складчатость полипептидных цепей после пересечения половины толщины слоя маловероятна [41]. [c.246]

    Блок- и привитыми сополимерами называют сополимеры двух и более мономеров, отличающиеся тем, что отдельные участки (блоки) молекулярных цепей, состоящие из группировок одного мономера, имеют протяженность в несколько десятков нанометров [15, 16, 30-35]. [c.76]

    Равномерность и геометрические параметры двухфазной структуры термоэластопласта (размеры блоков, молекулярно-массовое [c.238]

    В качестве экстрагента ароматических углеводородов из смеси их с парафиновыми углеводородами до недавнего времени применяли 93%-ный водный раствор диэтиленгликоля. Для экстрагирования ароматических углеводородов с различной молекулярной массой требуется соответствующее массовое соотношение экстрагент сырье, равное при использовании диэтиленгликоля (8—15) 1. Чем больше молекулярная масса ароматических углеводородов, содержащихся в катализате, тем выше это соотношение. Замена диэтиленгликоля более эффективным триэтиленгликолем позволяет снизить соотношение экстрагент сырье до (7—10) 1 и, следовательно, обеспечить значительную экономию пара, особенно при экстрагировании ксилолов. При переходе на триэтиленгликоль основное технологическое оборудование блока экстракции и вторичной ректификации то же, 5 с сокращением количества циркулирующего растворителя появляются резервные мощности оборудования, позволяющие увеличить производительность блока. [c.168]

    Блок изомеризации пентан-гексановая фракция подается на смешение с циркулирующим водородсодержащим газом, нагревается в теплообменнике 30 и печи 20 и поступает в реактор 21, где на катализаторе ИП-62 осуществляется процесс изомеризации н-пентана и н-гексана в углеводороды изостроения. Газопродуктовая смесь после выхода из реактора охлаждается в теплообменнике 30, воздушном 32 и водяном 33 холодильниках и поступает в сепаратор 22 на разделение. Часть водородсодержащего газа выводится из системы, а в систему добавляется свежий водородсодержащий газ, который предварительно подвергается осушке в адсорбере на молекулярных ситах и поступает на прием компрессора 23 для обеспечения циркуляции водородсодержащего газа и в узел смешения с сырьем. [c.156]


    Благодаря высокой температуре стеклования блоков поли-а-метилстирола термоэластопласты на основе а-метилстирола выгодно отличаются от термоэластопластов на основе стирола более широким температурным интервалом, в котором сохраняются прочность и эластические свойства материала, при этом с увеличением содержания а-метилстирола температуростойкость полимера повышается. По-видимому, это объясняется уменьшением влияния эластичной фазы на текучесть термоэластопласта в связи с понижением ее доли в полимере, а также повышением молекулярной массы поли-а-метилстирольных блоков. [c.289]

    Синтез термоэластопластов осуществляется с помощью катализаторов, образующих так называемые живые цепи, сохраняющие способность к росту в течение неограниченного времени [4]. В качестве катализаторов такого типа промышленное признание получили литийорганические соединения. Они позволяют получать полимеры с более регулярной микроструктурой эластомерного блока, чем при использовании органических соединений других щелочных металлов, и тем самым обеспечить термоэластопластам лучший комплекс свойств. Литийорганические инициаторы, используемые для синтеза термоэластопластов, должны обладать высокой скоростью инициирования, обеспечивающей получение полимеров с узким молекулярно-массовым распределением. С этой целью обычно применяется вгор-бутиллитий [5]. [c.284]

    На физико-механические свойства термоэластопластов влияют количество связанного стирола (а-метилстирола), распределение его в полимере, молекулярная масса блоков и их молекулярномассовое распределение, микроструктура полидиенового блока. На примере ДСТ-30 показано, что оптимальными свойствами обладают полимеры с узким ММР центрального и конечных блоков [22]. Наличие примеси двухблочного полимера резко уменьшает сопротивление разрыву термоэластопластов. [c.287]

    Влияние молекулярной массы блоков на сопротивление разрыву (---) и [c.288]

    Следует заметить, что использование окислительного метода для обезвреживания таких концентрированных ТК вообще нецелесообразно в связи с высоким солесодержанием и трудностью утилизации окисленных стоков. Как показывает опыт промышленной зксплуатации установок очистки водных ТК, слабоконцентрированные стоки с содержанием сульфидной серы до 1000 мг/л можно обезвреживать окислением воздухом в присутствии катализатора или без него и направлять окисленные стоки на ЭЛОУ для промывки нефти взамен свежей воды. Для удовлетворения требованиям к промывной воде на ЭЛОУ по солесодер-жанию(2000 мг/л), ТК с концентрацией сульфидной серы от 1500 до 4000 мг/л рекомендуется предварительно обессеривать отдувом молекулярно растворенного сероводорода топливным газом, а оставшиеся в конденсате токсичные гидросульфидные соединения обезвреживать методом ЛОКОС. Высококонцентрированные водные ТК, образующиеся в больших объемах на современных установках комбинированной переработки нефти типа КТ и Г-43-107 (особенно на тех, которые имеют в своем составе блоки легкого гидрокрекинга вакуумного газойля, как на Ново-Горьковском и Киришском НПЗ), необходимо очищать методом ректифтацни, позволяющим утилизировать как очищенные ТК, так и содержащиеся в них аммиак и сероводород. [c.151]

    Модификация политетрагидрофурана бутандиолом приводит к падению эластичности блоксополимеров при 20 °С вследствие возросшей жесткости полимерной цепи (увеличения концентрации уретановых групп и связанного с этим усиления межмолекулярного взаимодействия) [44]. С увеличением молекулярной массы кристаллического блока в сополимере наблюдается повышение напряжения при удлинении и твердости полимера. [c.538]

    Ниже приведены свойства уретановых блоксополимеров (образцы I и П), содержащих соответственно эластичный блок (Л эл = 4,5-10 ) из политетрагидрофурана и политетрагидрофурана, модифицированного 1,4-бутандиолом,- и кристаллический блок из полиэтиленсебацината различной молекулярной массы  [c.538]

    Характерно, что сопротивление разрыву модифицированных бутандиолом полимеров намного выше прочности немодифицированных образцов благодаря взаимодействию уретановых групп в прилежащих к кристаллическим блокам аморфных участках. С возрастанием молекулярной массы блоков повышается степень [c.538]

    Из данных спектров релаксации было установлено, что молекулярно-массовое распределение сегментов не сказывается на температурном переходе, обусловленном локальным движением метиленовых групп эластичного сегмента, температура стеклования которого определяется содержанием жесткого блока, а не молекулярно-массовым распределением. Но при идентичных составах полимеры с узким молекулярно-массовым распределением характеризуются более высокой температурой стеклования, что, вероятно, объясняется лучшим разделением фаз и кристаллизацией. [c.541]

    Таким образом, даже те немногочисленные данные, приведенные здесь, убедительно свидетельствуют о том, что молекулярномассовое распределение жесткого блока в сегментированных уретановых эластомерах не менее важный молекулярный параметр, чем содержание жесткого блока или его молекулярная масса. [c.542]


    К этим параметрам относятся общий массовый расход покомпонентный состав смеси параметры физико-химических свойств компонентов смеси (критическое давление, критическая температура, молекулярный вес, точка кипения при нормальных условиях и т. п.). Кроме того, в блоке Инфор содержатся сведения о заданном качестве продуктов разделения и список [c.291]

    В блоке Инфор содержатся также сведения о молекулярном весе, нормальной температуре кипения, критической температуре и о критическом давлении для каждого компонента смеси и для заданных продуктов разделения. [c.295]

    Для получения однородного полимера высокого молекулярного веса полимеризацию ММА в массе проводят при сравнительно небольших температурах (40—100 °С). Применение окислительно-восста-новительных систем, растворимых в мономере, при получении толстых листов органического стекла и крупных блоков позволяет проводить процесс при более низких температурах. [c.44]

    Реактор типа Саксе для проведения описанного выше процесса состоит из камеры смешения, которая может иметь различную форму, диффузора (в нем завершается перемешивание смеси в результате молекулярной диффузии и происходит распределение смеси в горелки), блока металлической или керамической горелки и камеры сгорания (рис. П-16). [c.93]

    Многие положения концепции В. И. Касаточкина вполне приложимы и к объяснению молекулярной структуры нефтяных асфальтенов. Мы имеем в виду прежде всего такие фундаментальные положения этой точки зрения, как зависимость физических свойств от элементного состава этих соединений, утверждение, что основной структурной единицей (блоком) молекулярного строения является плоская гексагональная атомная сетка или копланарно конденсированные бензольные кольца с алифатическими короткими цепями на периферии этих плоских структурных блоков. Размеры и структура этих плоских структурных блоков могут сильно различаться, так же как могут различаться алифатические цени по числу С-атомов, по степени разветвленности и по количеству и характеру функциональных групп в них. Эти структурные блоки образуют трехмерные молекулы за счет валентных связей посредством боковых цепей. Распределение сопряженных кратных связей в основной структурной углеродоатомной сетке, подобной [c.96]

    Исследования связи "структура - свойства" выполнены с помощью компьютерной системы SARD Прогнозирование в этой системе проводится с использованием математических методов теории распознавания образов на основе структурных молекулярных формул. Система включает аналитический блок, который предназначен для оценки влияния фрагментов соединений, формирования моделей и блок молекулярного дизайна потенциально активных структур. [c.5]

    Таким образом, блок-сополимеры (и привитые сополимеры), особенно те, которые содержат длинные последовательности идентичных звеньев, напоминают месь гомополимеров с тем, однако, от-личием7 Тто "блсз ки, будучи соединены между собой прочной химической связью, не могут быть разделены в отличие от гомополимеров, которые обычно термодинамически несовместимы (см. с. 516). Все же блоки достаточной длины ведут себя в известной степени независимо, и при действии на блок- и привитые сополимеры селективных растворителей, растворяющих только блоки одного типа, происходит своего рода внутримолекулярное осаждение нерастворимых блоков. В результате дальнейшей агрегации макромолекул наступает микрорасслоение (в отличие от макрорасслоения, характерного для смеси гомополимеров) с возникновением микрофаз, образуется система, в которой свернутый нерастворимый блок полностью окружен оболочкой из развернутого сольватированного блока — молекулярная мицелла (см. рис. 158, д), и получается мицеллярный раствор. С возрастанием концентрации полимера все больше появляется межмолекулярных контактов между нерастворимыми блоками, которые в совокупности дают лиофобное ядро, окруженное лиофильными блоками, т. е. возникают мицеллы, напоминающие мицеллы мыла в водной среде. Эти представления согласуются с результатами, полученными методом рассеяния рентгеновских лучей под малыми углами (см. 430) и рядом других методов. [c.266]

    Так как блоки молекулярных конструкций в органических кристаллах связаны друг с другом относительно слабыми вандерваальсовыми силами или водородными связями, то их свойства должны быть совершенно отличны от свойств большинства неорганических кристаллов. Поэтому методы, применяемые обычно для выращивания неорганических и металлических кристаллов, часто должны быть сильно изменены для того, чтобы они стали пригодны для выращивания органических кристаллов. В тех случаях, когда это оказывается возможным, рассматриваются влияние этих различий в свойствах кристаллов и те изменения методов выращивания, которые необходимы, чтобы сделать их пригодными для органических кристаллов. [c.191]

    Вместе с тем местные перегревы приводят к образованию полимера с большой полимолекулярностью (полидисперсностью по молекулярному весу), что значительно влияет на физико-механические свойства. Вследствие более высокой температуры и затруднительного отвода тепла во внутренних слоях блока молекулярный вес ниже, чем во внешних слоях. Соответственно этому механические свойства блочного полимера уменьшаются от перпферип к центру. [c.9]

    В настоящее время широкое развитие получили работы по синтезу уретано-вых каучуков на основе олигомерных и низкомолекулярных полиолов и диизоцианатов. Их можно рассматривать как полиблочные сополимеры с относительно малой длиной блоков (молекулярная масса блоков порядка тысячи) или, как их еще называют, сегментированные полимеры. В качестве эластичного блона таких сополимеров выступает полиэфир (простой или сложный), полидиендиол, полисилоксандиол и др. Жесткий уретановый блок образуется на основе низкомолекулярного диола или триола и различных типов диизоцианатов. [c.126]

    При рассмотрении структуры отдельных частиц асфальтенов следует учитывать их происхождение (нативные, подвергнутые термической деструкции), а также возраст нефти. Асфальтены, выделенные из остатков вакуумной перегонки, характеризуются меньшим содержанием водорода и более высоким содержанием гетероатомов, чем нативные. Нативные асфальтены, вьщеленные из молодых нефтей, характеризуются линейной надмолекулярной структурой, в которой связи между структурными блоками осуществляются метиленовыми цепочками [19]. Асфальтены более старых нефтей, прошедшие стадию глубокого катагенеза, имеют пачечную макроструктуру [25]. По этой модели (рис. 1.6) асфальтены ббразуют трехмерную структуру из ряда монослоев полициклических конденсированных аренов. Монослой (рис. 1.7) имеет М 800-3500, а образованная этими частицами слоистая структура М 5 500—5 900. Ассоциаты, образованные слоистыми частицами, могут иметь М 37 ООО-100 ООО. В настоящее время пйлучило всеобщее признание объяснение высоких значений молекулярной массы асфальтенов склонностью их к ассоциации с образованием коллоидных частиц различных размеров [23, 25]. [c.24]

    При низкотемпературной изомеризации на катализаторе Рт — А12О3 — С1, учитывая весьма жесткие требования к содержанию вышеназванных примесей в сырье и водороде (табл. 3.3), в схеме установки предусматривают блоки каталитической очистки сырья и водородсодержащего газа с последующей осушкой на молекулярных ситах. Подобные усложнения технологической схемы и соответственно увеличение эксплуатационных и капитальных затрат оправдываются значительно более высокими показателями процесса. [c.95]

    В общем случае взаимодействия разнородных звеньев энергетически невыгодны, они отталкиваются друг от друга, что приводит к увеличению эффективного объема звена и, соответственно, к улучшению термодинамического качества растворителя и увеличению размеров молекулярного клубка. Таким образом, данный растворитель обычно оказывается лучше для сополимера, чем для каждого из его компонентов. Нередко наблюдается растворимость сополимера в растворителях, являющихся осадителями для обоих его компонентов. С другой стороны, в селективных растворителях, особенно в тех случаях, когда растворитель является осадителем для одного из компонентов, наблюдается явление внутримолекулярной несовместимости, сегрегации — пространственного разделения звеньев разной природы (аналогично описанному выше явлению несовместимости полимеров). Зависимость размеров таких сегрегированных макромолекул от молекулярной массы искажается, не подчиняется описанным выше закономерностям и, в частности, значение показателя степени а = 0,5 в уравнении [т]] = КМ не является для сополимеров бесспорным признаком термодинамической идеальности системы, а значения а < 0,5 — признаком разветвленности молекулярных цепей. Наличие внутримолекуляр-Н0Й сегрегации, очевидно, наиболее характерно для цепей, содержащих длинные блоки хотя бы одного из компонентов. [c.37]

    Молекулярный подход к описанию эластомеров не исключает необходимости учета возникающих в ряде случаев различных надмолекулярных образований [6]. Надмолекулярная структура полимеров, в том числе эластомеров, проявляется, как известно, в трех разновидностях в виде определенного рода упорядоченностей и морфологически обусловленных неоднородностей в аморфном полимере в виде кристаллических образований и, наконец, в виде сегрегированных областей микроскопических либо субмикроско-пических размеров (доменов), возникающих в эластомерных композициях, а также в блок-сополимерах, а в некоторых случаях и в статистических сополимерах вследствие несовместимости компонентов либо участков цепи, различающихся по химической природе. Наличие и конкретная роль того или иного типа надмолекулярных образований зависит от химической природы и молекулярной структуры эластомеров, а также от условий их получения, переработки и эксплуатации. [c.42]

    Важнейшим молекулярным параметром ДССК является наличие длинных стирольных последовательностей в макромолекулах этих полимеров — микроблоков. Из-за несовместимости компонентов сополимера стирольные блоки выпадают , образуя в массе каучука микрогетерогенную твердую фазу, наличие которой [c.57]

    Следует подчеркнуть, что общая ширина ММР блок-сополимера является грубой характеристикой его структуры. Свойства термоэластопластов определяются именно деталями его молекулярного строения. Так, например, примесь низкомолекулярного гомополистирола существенно увеличивая величину MJMn сополимера, практически не оказывает влияния на его свойства [10]. С другой стороны, расширение ММР бутадиенового компонента, представляющего собой эластическую ячейку вулканизационной сетки, приводит к резкому ухудшению свойств термоэластопластов. [c.58]

    Другие каучуки, получаемые методом растворной полимеризации. Методом полимеризации в растворе получают морозостойкие и бензомаслостойкие каучуки на основе циклических окисей— сополимеры окиси пропилена и аллилглицидилового эфира (СКПО), а также сополимеры окиси этилена и эпихлоргидрина [14, 15]. Эти каучуки выпускаются в промышленном масштабе. Предполагается, что для сополимеров типа СКПО ухудшение эластических свойств в области низких температур, по-видимому, связано с образованием стереорегулярных — изотактических блоков пропиленоксида и другими особенностями их молекулярной структуры. В случае сополимеров окиси этилена и эпихлоргидрина, где сомономеры входят в полимер в соизмеримых количествах (обычно 1 1), ухудшение эластических свойств может быть связано с образованием длинных блоков обоих сойолимеров, которые способны к образованию кристаллической фазы. [c.62]

    В СССР разработан большой ассортимент бутадиен-стирольных статистических каучуков растворной полимеризации, различающихся содержанием связанного стирола, типом антиоксиданта,, молекулярной массой, содержанием масла, сажи (табл. 2). Бутадиен-стирольный каучук растворной полимеризации, содержащий блоки полистирола и предназначенный для переработки литьем под давлением, указан под маркой ДССКЛИ. [c.281]

    Физико-механические свойства вулканизатов в большой мере зависят от соотношения звеньев этилена и пропилена в сополимере. Вулканизаты сополимеров, содержащих 73% и больше звеньев этилена, полученных при полимеризации на каталитической системе УСЦ-Ь (ЫЗО-С4Н9) 2А1С1, имеют высокое остаточное удлинение, что можно объяснить наличием в молекулярной цепи сравнительно длинных последовательностей звеньев этилена, ухудшающих релаксационные свойства сополимеров. Блоки с длинными последовательностями звеньев этилена, способные кристаллизоваться, действуют как узлы поперечных физических связей и таким образом, по-видимому, оказывают влияние на подвижность молекул в. соседней аморфной фазе [46]. Наличие микрокристаллической фазы в сополимерах увеличивает сопротивление разрыву невулканизованных резиновых смесей. [c.312]

    Из представленной выше схемы синтеза полидиенуретановых ТЭП следует, что самим способом получения предопределяется блочная структура этих полимеров, так как эластичный блок заданной молекулярной массы вводится в цепь полимера уже в готовом виде (число блоков приблизительно от 5 до 15). [c.450]

    В отличие от других конденсационных методов гомофункцио-нальная поликонденсация позволяет получать полисилоксаны очень высокой молекулярной массы, для чего нужны, однако, мономеры высокой функциональной чистоты . Этим методом синтезируют как гомополимеры, так и статистические и блоксополимеры. Длина силоксановых блоков в последних определяется значением а в исходных силоксандиолах и мольным соотношением мономеров [24]. Однако блоксополимеры, полученные этим методом, неизбежно содержат примеси гомополимеров. [c.467]

    Условно структуру системы можно разбить на два суперблока. Основной суперблок реализует собственно структуру задачи дискретного оптимального управления. Он состоит из блока пО строения математической модели исследуемого химического объекта — пространственной трехмерной модели молекулярной системы. Причем под молекулярной системой понимается не только отдельная молекула, но и любая пространственная совокупность молекул, химическая реакция, поверхность раздела фаз или поверхность катализатора или даже само реакционное пространство и т. п. Этот блок соответствует системе DENDRAL в американских системах. Блок управления движением объекта в фазовом пространстве и блок оптимизации также включаются в первый суперблок. > [c.54]

    Спектральные, радиоспектросконпческие [12, 69, 395, 396 и др.] и масс-спектрометрические [379, 1013, 1045, 1052 и др.] данные свидетельствуют о сравнительно небольших средних размерах отдельных конденсированных полиароматических блоков в молекулах ВМС нефтей (3—4 бензольных цикла). Установлено, что фракции асфальтенов с различными молекулярными массами характеризуются весьма сходными электронными спектрами, содержащими широкую неразрешенную полосу поглощения с максимумом около 260 нм, п.лавно спадающую в длинноволновой области [69]. Отсутствие батохромного сдвига этого максимума поглощения по мере увеличения молекулярной массы асфальтеновых фракций указывает, что укрупнение молекул идет без повышения степени конденсированности ароматических систем, за счет роста числа связывающихся изолированных (не сопряженных) ароматических ядер. Еще ранее на примере ряда американских нефтей показано [1052], что с увеличением возраста вмещающих отложений и глубины катагенной превращениости нефти заметно повышается доля атомов С в ароматических циклах асфальтеновых молекул, особенно в пери-конденсированных структурах, но [c.194]

    Блок расчета физико-химических свойств технологических потоков ХТС в СПЦМ должен автоматически определять параметры свойств всех технологических потоков ХТС на основе минимального объема входной информации. Например, при заданных значениях молекулярной массы, температуры кипения при нормальных условиях и плотности в блоке должны определяться энтальпия, давление паров или параметры физических свойств химических соединений и смесей на основе теоретических и экспериментальных данных по различным регрессионным уравнениям. Эти регрессионные уравнения также должны обеспечивать определение зависимых параметров физико-химических свойств потоков (теплоемкость, плотность и вязкость) как функции независимых параметров состояния потоков— массовый расход, покомпонентный состав, температура и давление. [c.63]

    Особенно интенсивной коррозии подвергается оборудование газо-фракционирующего блока установки каталитического крекинга (НС1 в присутствии влаги). Хлорорганические соединения, неразложивишеся с выделением НС1, также, как и в процессе перегонки нефти, подвергаются частичному расщеплению с уменьшгнием молекулярной массы углеводородной части молекулы и неравномерно распределяются по фракциям. Содержание хлорорганических соединений в продуктах каталитического крекинга увеличивается с утяжелением фракций (табл. 34). [c.126]


Смотреть страницы где упоминается термин Блока молекулярный все: [c.22]    [c.149]    [c.538]    [c.330]    [c.294]    [c.371]    [c.59]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Библиотека молекулярных блоков

Влияние строения жесткого блока на молекулярную релаксацию полиуретановых эластомеров. Е. А. Сидорович, А. И. Марей

Молекулярное движение в блоке

Молекулярные веса компонентов блок и привитых сополимеров



© 2024 chem21.info Реклама на сайте