Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ван-дер-Ваальса взаимодействия энергия связи

    К очевидным нековалентным взаимодействиям между атомами относится электростатическое взаимодействие между заряженными группами. Но притягиваются друг к другу даже неполярные молекулы. На наличие такого взаимодействия как на одну из причин отклонения газов от идеальности указывал столетие назад Ван-дер-Ваальс. Некоторые из взаимодействий между нейтральными молекулами газа хорошо изучены, и сейчас известно несколько соединений Ван-дер-Ваальса . Например, энергия связи между атомами в димерах благородных газов Ne2, Агг и Хсг равна 0,2 0,92 и 2,2 кДж-моль- (0,05 0,22 и 0,53 ккал-моль- ) соответственно [1]. [c.272]


    При минимальной энергии взаимодействия наблюдается физическая адсорбция. В основе ее лежит диполь-дипольное взаимодействие Ван-дер-Ваальса молекула сорбата и сорбирующая поверхность поляризуют друг друга, и взаимодействие между индуцированными диполями порождает теплоту адсорбции. Ее величина обычно не превышает 0,015—0,03 аДж. При обменном взаимодействии электронов твердого тела с частицей сорбата, когда энергия связи составляет около 0,15 аДж, связь имеет химическую природу, и такая адсорбция именуется хемосорбцией [206]. [c.182]

    Высвобождение из комплекса при его дроблении некоторой части входящих В него молекул также подтверждает физическую природу комплексообразования. Некоторые исследователи [5, 15] считают, что взаимодействие карбамида с н-алканами аналогично взаимодействию их с цеолитами. Однако точка зрения на структуру комплекса как на физическое явление не подтверждается величиной энергии связи углеводорода с карбамидом, приходящейся на каждую группу СН2. Установлено [I, 15], что она равна 6,7 - 11,76 кДж, в то время как силы Ван-дер-Ваальса равны всего 4,19 кДж на каждую СН2. Другие исследователи [25, 2б] относят кристаллические комплексы углеводородов и их производных с карбамидом к чисто химическим соединениям, поскольку реакция комплексообразования подчиняется общим законам течения химических реакций, в частности закону действующих масс. Изменение условий комплексообразования оказывает влияние на равновесие, скорость образования комплекса, эффективность разделения и на другие пока- [c.36]

    В соединениях включения с карбамидом и тиокарбамидом во взаимодействие с каналообразующим веществом вступают все метильные группы углеродной цепи, о чем можно судить по увеличению соотношения комплексообразующего и реагирующего веществ (табл. 7). Истинная природа связи между углеводородами и молекулами карбамида и тиокарбамида в кристаллических комплексах пока не установлена. Многие исследователи склонны объяснить эту связь силами Вап-дер-Ваальса, т. е. считать кристаллические комплексы соединениями адсорбционной природы. Однако этому противоречат более высокие энергии связи углеводорода с карбамидом, приходящиеся на каждую группу СНг (1,6— [c.63]

    При минимальной энергии взаимодействия наблюдается физическая адсорбция, обусловленная диполь-дипольными взаимодействиями Ван-дер-Ваальса. При обменном взаимодействии электронов твердого тела с частицами сорбата образуются химические связи (хемосорбция). При хемосорбции теплота сорбции примерно на порядок больше, чем при физической адсорбции. Если энергия адсорбции сравнима по величине с энергией связей или молекулярной поверхностной энергией твердого тела, то поверхность металла при хемосорбции подвергается структурной перестройке (модификации). [c.46]


    В молекулярных кристаллах (рис. 1.9, г) присутствуют молекулы, связь между которыми осуществляется силами межмолекулярного взаимодействия, называемыми силами Ван-дер-Ваальса (см. разд. 1.10). Силы эти гораздо слабее сил, рассмотренных ранее, и энергия связи в решетке молекулярного типа составляет всего лишь 8—12 кДж/моль. Тела с такой структурой обычно очень мягкие, обладают низкой температурой плавления, высокой летучестью, низкими тепло- и электропроводностями, а также хорошей растворимостью, особенно в родственных растворителях. В качестве представителей веществ, образующих кристаллы молекулярного типа, можно назвать диоксид углерода, аргон и большинство органических соединений. [c.37]

    Чтобы понять характер взаимодействия между частицами, следует остановиться на типах связи, которая может возникать между частицами. Тип связи между частицами вещества в жид ком состоянии в зависимости от энергии связи может изменяться в очень широких пределах — от межмолекулярных сил (сил Ван-дер-Ваальса) до истинно химической связи. [c.72]

    Эти процессы происходят под действием сравнительно слабых межмолекулярных сил притяжения — сил Ван дер Ваальса, имеющих электростатическую природу. Общая анергия взаимодействия молекул адсорбата и адсорбента складывается из энергии дисперсионных, индукционных и ориентационных сил, а иногда и энергии специфического взаимодействия (водородная связь, донорно-акцепторное взаимодействие). [c.15]

    Гидрофобные взаимодействия обусловлены не какими-либо особыми силами, а скорее специфическими особенностями систем, в которых они наблюдаются. Эти взаимодействия возникают, например, между двумя молекулами метана в воде или между ме-тильными группами в длинной цепочечной молекуле полимера. И хотя несомненно, что силы Ван-дер-Ваальса или водородные связи вносят некоторый вклад в подобного рода взаимодействия, все же в основном они определяются свойствами и природой растворителя. Для приблизительной оценки таких сил пользуются моделями. Так, если в результате конформационных изменений открытая цепь полимера, содержащего метильные группы, образует клубок, то две метильные группы могут образовать димерную систему или стать составной частью ассоциата, включающего много таких групп. В этом случае подходящей моделью процесса будет перенос молекулы метана нз водной среды в углеводородную (т. е. определение энергии переноса молекулы метана из воды в углеводород, например в гексан). Такие приемы, конечно, дают лишь приближенные значения энергии гидрофобных взаимодействий, но тем не менее они, несомненно, полезны. [c.269]

    В целлюлозе между макромолекулами действуют два вида взаимодействий силы Ван-дер-Ваальса и водородные связи. Силы Ван-дер-Ваальса в отличие от валентных сил относят к дальнодействующим (см. 5.2). Большое число гидроксильных групп в целлюлозе обусловливает высокую суммарную энергию водородных связей. Водородные связи между ОН-группами образуются при сближении их атомов кислорода на расстояние 0,25...0,28 нм. Считают, что энергия Н-связи у целлюлозы примерно такая же, как у спиртов и составляет в среднем около 28 кДж/моль. Эта энергия зависит от расстояния между ОН-группами. При расстояниях около 0,27...0,28 нм образуются слабые связи, а при расстояниях порядка 0,25 нм - сильные . Существование различающихся по прочности межмолекулярных Н-связей объясняет особенности набухания и растворения целлюлозы - слабое набухание в воде, более сильное в щелочах и возможность неограниченного набухания (растворения) в комплексных основаниях и других растворителях целлюлозы. [c.233]

    Тем не менее свободная энергия связывания в паре хозяин-гость оценивается величиной 10 ккал/моль. В этой паре отсутствуют фрагменты, способные к эффективному электростатическому взаимодействию. Найденную энергию связи следует отнести, таким образом, к ван-дер-ваальсо-вым силам. [c.546]

    В кристаллах красителей, имеющих решетку молекулярного типа, в которой молекула сохраняется как отдельная единица, межмолекулярное взаимодействие на расстоянии 3—4 А определяется наличием сил Ван-дер-Ваальса, энергия связи которых [c.15]

    Решающее влияние на характер протекания хроматографического процесса оказывает взаимодействие между отдельными частицами разделяемых веществ и фазами, с которыми эти частицы входят в соприкосновение. Силы, которые действуют между частицами (атомы, молекулы, ионы), можно разделить на две группы. Действие сил, принадлежащих к первой группе, приводит обычно к образованию химической связи. Энергия химической связи велика и достигает десятков килограмм-калории на моль. В отличие от химического физическое взаимодействие обусловлено действием слабых сил. Энергия связи, образующейся в результате действия таких сил, имеет порядок десятых килограмм-калорий на моль. Эти силы называются силами Ван-дер-Ваальса. Промежуточным типом связи является водородная связь, энергия которой сравнительно велика (порядка нескольких килограмм-калорий на моль). Поведение молекул при физическом взаимодействии определяется их строением, т. е. характером химических связей между отдельными атомами и группами. Поскольку подробное рассмотрение сущности взаимодействия между частицами не является целью этой книги, мы остановимся лишь на основных моментах этого вопроса. [c.64]


    Основной вклад в энергию связи ионных кристаллов дает электростатическая энергия (первых две строки в списке), наименьший ( 1-2%) — притяжение Ван-дер-Ваальса. Если обозначить энергию взаимодействия между ионами i и j через Uij, то полная [c.62]

    Взаимодействия атомов и молекул с поверхностями твердых тел в рамках молекулярных моделей принято подразделять на два типа. Взаимодействие типа физической адсорбции имеет место, когда молекула удерживается у поверхности силами Ван-дер-Ваальса, т. е. не происходит перераспределения электрического заряда в системе. Полуэмпирический подход к расчету взаимодействий адсорбент—адсорбат основан на методе атом-атомных потенциалов, согласно которому энергия межмолекулярного взаимодействия представляется в виде суммы энергий парных взаимодействий атомов, а параметры атом-атомных потенциалов определяют исходя из опытных данных. Другой тип взаимодействия атомов и молекул с поверхностями твердых тел представляет хемосорбция. В этом случае происходит перераспределение заряда в системе и образуется химическая связь между поверхностью и субстратом. Хемосорбция представляет наибольший интерес с точки зрения гетерогенного катализа, поскольку катализ имеет донорно-акцепторный механизм [2]. [c.61]

    Молекулы веществ, находящиеся в твердом, жидком и газообразном состоянии, взаимодействуют друг с другом с разными по энергии силами — силы Ван-дер-Ваальса, водородная связь, химическая связь и др. Такое взаимодействие определяет конденсированное состояние вещества. Эти силы приводят к появлению в жидкостях и газах сольватов и ассоциатов, обусловливают диссоциацию молекул и других частиц в любых агрегатных состояниях вещества, они же характеризуют появление структуры (полиэдры, ансамбли полиэдров или кластеры) в веществе в разных его агрегатных состояниях, определяя аморфную или кристаллическую структуру. Межмолекулярное взаимодействие частиц в системе приводит к отклонению их свойств от идеальных. Такие системы называют неидеальными или реальными. Свойства индивидуальных реальных систем (веществ в чистом виде) могут быть рассчитаны с помощью уравнений состояния вещества. Этих уравнений в литературе приведено несколько сотен. Свойства же смесей расчету пй уравнениям состоянию не поддаются. Это определяется сложностью изменения свойств смесей с изменением их состава. [c.220]

    Особенностью дисперсионного взаимодействия является его всеобщность, так как во всех молекулах есть движущиеся электроны. Дисперсионное взаимодействие для неполярных молекул —главный и практически единственный источник сил Ван-дер-Ваальса. Дисперсионное взаимодействие вносит известный вклад также в энергию ионной связи в молекулах и кристаллах. [c.134]

    Предположим теперь, что в активированном комплексе связь между атомами галогена и инертного газа является ван-дер-ваальсо-вой и энергия этой связи аппроксимируется потенциалом Ленарда-Джонса (11.5). Для оценки и Оц атомов галогенов брали значения, полученные из данных о вязкости ближайшего к галогену в таблице Менделеева инертного газа (например, а, ) = а параметры взаимодействия вычисляли по (11.6). Вычисление расстояний /-ДМ в активированном комплексе производили в предположении, что АМ возникает вблизи состояний, соответствующих в этом случае Лдм можно найти из условия де(г)/дг = О, откуда Лдм = 2 /вОо. Исходя из модели жесткого активированного комплекса, примем Лдв всего на 5% большим, чем равновесное в молекуле Аз- Отношение электронных статистических весов переходного и исходного состояний во всех реакциях взято равным 1/6, = 2. Частоты деформационных колебаний активированного комплекса принимали одинаковыми и были вычислены в гармоническом приближении по формуле  [c.121]

    Весьма подробная информация о механизме реакции (18.1) может быть получена путем расчета поверхности потенциальной энергии. Заметный прогресс в этом направлении наметился в последнее время в связи с упомянутыми выше работами Базилевского, где обращается внимание на то, что применение полуэмпирических вариантов метода МО, явно не учитывающих неортогональность базисных функций (например, метод Хюккеля и др.), не позволяют дать правильную картину взаимодействия реагентов. На основе таких методов удается объяснить лишь притяжение между ними (этот эффект является наиболее существенным, когда расстояния между атомами частиц незначительно превосходят равновесные). Между тем при расстояниях, которые значительно превосходят равновесные, но меньше радиуса действия сил Ван-дер-Ваальса, наблюдается отталкивание между частицами. Это отталкивание можно описать, принимая во внимание неортогональность базисных функций. Поэтому во всех вариантах метода МО, где неортогональность явно не учитывается, не учитывается и эффект отталкивания. Последовательный учет неортогональности АО в методе МО ЛКАО в л-электронном приближении позволил Базилевскому представить потенциальную энергию реагентов в виде суммы, учитывающей энергии притяжения и отталкивания между ними, причем слагаемые этой суммы вычисляются в рамках теории МО при любом расположении атомов исходных частиц. Определение функции (2.3) является основой расчета кинетических параметров А к. Е. [c.177]

    Взаимодействия между частицами как одного, так и разных видов очень разнообразны. Чрезвычайно широк и интервал энергий взаимодействий — от слабых сил Ван-дер-Ваальса да высоких энергий химических связей. [c.120]

    Межмолекулярное взаимодействие отличается от химического небольшими энергиями (от долей кДж/моль до 15—20 кДж/моль, тогда как энергии химических связей, например ковалентной связи, 150—400 кДж/моль), отсутствием специфичности и насыщаемости, проявляется на сравнительно больших расстояниях (порядка 0,4—0,7 нм). Силы Ван-дер-Ваальса действуют при сжижении газов, их кристаллизации, физической адсорбции (поглощение газов и жидкостей поверхностями раздела без образования химических поверхностных соединений) и т. д. [c.125]

    Степень протекания химических сольватационных процессов зависит от электронной структуры молекул и частиц компонентов растворителя и растворенного вещества, способности частиц к ком-плексообразованию, диссоциации, ассоциации, образованию ионных пар и т. д. При сольватационных близкодействующих взаимодействиях их энергия достигает 400 кДж/моль. К дальнодействующим силам взаимодействий относят электростатические взаимодействия между ионами, металлическую связь и силы Ван-дер-Ваальса. Молекулы растворителя ориентируются в структуры различной устойчивости вокруг растворенных частиц с образованием сольватных оболочек. Число частиц растворителя в первой сольватной оболочке определяют как координационное число сольватации (гидратации) Пс- Значение Пс в водных растворах достигает 6—8. [c.91]

    Ван-дер-ваальсовы молекулы. Поскольку энергия межмолекулярного взаимодействия во многих случаях не превышает 1000— 2000 Дж/моль, соединения за счет сил Ван-дер-Ваальса обычно не образуются. Этому препятствует тепловое движение 1/ . кТ). Однако при низких температурах, если /о кТ, удается обнаружить комплексы, такие, как гидраты благородных газов, частицы типа Аг2, Хез, АгНС1, АгЫг и др. Такие молекулы, образовавшиеся за счет ван-дер-ваальсового взаимодействия, называют ван-дер-вааль-совыми. Для них характерны большие равновесные расстояния и очень малые энергии связи. В принципе ван-дер-ваальсово соединение могут образовывать любые две молекулы, если Уд кТ. [c.136]

    Силы Ван-дер-Ваальса определяют характер взаимодействия поверхностей трения с химически инертными компонентами смазочной среды, т. е. адсорбционный эффект. Они определяют структуру и свойства граничных смазочных пленок на поверхностях трения. Особенностью взаимодействия сил Ван-дер-Ваальса является слабая энергия связи, которая на два-три порядка ниже энергии химических связей. Поэтому все структуры, обусловленные этой связью, малоустойчивы и имеют сравнительно низкие температуры плавлсг ния. [c.9]

    Ковалентная связь осуществляется, как правило, двумя электронами от разных атомов, так что оба электрона являются общими для обоих атомов. Вследствие этого атомы оказываются скрепленными один с другим общим электронным облаком, заряд которого равен двум электронам для разрыва такой связи требуется затрата значительного количества энергии. Например, для разделения молекулы СС14 (газ) на атомы надо затратить 270 ккал1моль. В кристаллическом состоянии отдельные молекулы, атомы которых соединены друге другом за счет ковалентных связей, сохраняют свою индивидуальность, между молекулами имеется взаимодействие за счет сил Ван-дер.-Ваальса, но энергия этого взаимодействия обычно незначительна для разрушения кристаллической решетки СС14 и переведения последнего в газообразное состояние надо затратить 14 ктл моль. [c.66]

    Сажевая структура в резине образована ие только за счет взаи.модействия Ван-дер-Ваальса энергия этого взаимодействия и, следовательно, энергия связи между элементами структуры зависит от приролы поверхности сажи, качественно различной для разных саж. — Прим. ред. [c.87]

    Разумеется, можно ожидать, что силы притяжения на таких больших расстояниях очень слабы, поэтому температуры кипения и теплоты испарения инертных газов такие низкие. Эти две характеристики—расстояние, на котором происходит взаимодействие, и энергия взаимодействия — приведены в табл. 8.2 вместе с соответствующими данными для молекул галогенов того же периода. В каждом периоде наличие наполовину заполненной валентной орбитали атома галогена допускает тесное сближение атомов и высокую энергию связи, в то время как полностью заполненные валентные орбитали инертного газа допускают только сближение внешних орбиталей и очень низкие энергии связи. Из-за больших отличий в энергиях, проявляющихся в ряде свойств, такие взаимодействия получили различные названия. Взаимодействия с участием валентных орбиталей называют химическими связями. Связь с участием внешних орбиталей называется .связью Ван-дер-Ваальса (по имени голландского ученого, изучавшего этот тип взаимодействия). Размер атома, который можно считать равным половине межъядерного расстояния в твердом теле, называется вандерваальсовым радиусом. [c.247]

    При низких температурах больщинство благородных газов (Ке, Аг, Кг, Хе) кристаллизуются в структуру ГЦК рещетки. Это диэлектрические кристаллы с низкими температурами плавления и низкими энергиями связи. Электронные оболочки атомов полностью заполнены, распределение электронного заряда в свободном атоме сферически симметрично. Следовательно, должен существовать какой-то механизм взаимодействия между нейтральными атомами, приводящий к образованию таких кристаллов. Такие взаимодействия связываются с именем Ван-дер-Ваальса, который впервые ввел их для описания свойств реальных газов. Природа этой универсальной силы была объяснена в 1930 г. Лондоном. [c.58]

    Силами притяжения, наиболее часто принимающими участие в физической адсорбции, являются неполярные силы Ван-дер-Ваальса. Поскольку же, согласно Лондону [22], между природой этих сил и природой чех факторов, которые вызь(вают дисперсию света, существует близкая связь, эти силы можно назвать также дисперсионными силами. Возннк1[ов< Ине неполярных сил Ваи-дер-Ваальса обусловлено главным образом взаимоде -ствиел) постоянно изменяющихся индуктирующих диполей и индуцированпых диполей. Энергия такого взаимодействия двух атомов обратно пропорциональна шестой сгепени расстояния  [c.29]

    Упорядоченная структура белка обеспечивается системой взаимо действий, составляющих третичную структуру молекулы. К этой системе относятся взаимодействия между фрагментами молекулы за счет сил Ван дер Ваальса, агломерация лиофобных боковых цепей при отталкивании молекул растворителя, нехарактерные водородные связи, межконные взаимодействия (рис. 21). Энергия каждой из этих сил невелика, однако их суммарное действие значительно. Так, энергия вандерваальсовского взаимодействия, приводящего к глобулярному свертыванию белковой молекулы, достигает 2100 — 2500 кДж/моль. [c.172]

    Свойства полимеров определяются не только гибкостью макромолекул, но и их взаимным расположением, т. е. структурой. Для полимерных веществ с линейными и разветвленными макромолекулами характерны два типа связей. Между атомами в цепных молекулах действуют прочные ковалентные химические связи длиной 0,1 0,15 нм. Взаимодействие между цепными молекулами осуществляется за счет сил Ван-дер-Ваальса, проявляющихся на расстоянии 0,3 0,4 нм. Иногда между макромолекулами возникают и водородные связи. Энергия межмолекулярного взаимодействия на 1—2 порядка меньше энергии химической связи. Например, энергия химической связи С—Н (в углеводородах) составляет 415, С—С-связи — 332 кДж/моль, а энергия взаимодействия между молекулами углеводородов — приблизительно 4,18кДжна группу СНз.При увеличении молекулярной массы вещества (например, у полимеров) суммарный эффект межмолекулярных сил резко возрастает. [c.327]

    Особенностью дисперсионного взаимодействия является его всеобщность — во всех молекулах есть движущиеся электроны, поэтому дисперсионное взаимодействш существенно для всех без исключения молекул. Дисперсионное взаимодействие для неполярных молекул — главный и практически единственный источник сил Ван-дер-Ваальса. Дисперсионное взаимодействие вносит известный вклад также в энергию ионной связи в молекулах и кристаллах. [c.260]

    Таковы три основных типа дальнодействующих сил, ответственных за притяжение между молекулами, сил Ван-дер-Ваальса. На коротких расстояниях заметньши становятся силы, возникающие при перекрывании электронных облаков молекул. На больших расстояниях они несущественны, так как электронная плотность в атомах спадает практически до нуля уже на отдалении около 3 1(Г ° м от ядра. Перекрывание электронных облаков может привести к двоякого рода результатам если у частиц имеются незаполненные целиком или низколежащие свободные МО, могут образоваться межмолекулярные химические соединения, донорно-акцепторные, координационные и др. короткодействующие силы другого вида, силы отталкивания, возникающие при перекрывании заполненных оболочек, связаны с проявлением принципа Паули (см. 36). Силы отталкивания — важнейшая компонента межмолекулярного взаимодействия. На коротких расстояниях они значительны и возрастают при сближении очець быстро. Энергию отталкивания аппроксимируют выражением [c.261]

    Межмолекулярные силы принципиально отличаются от химических связей сво- еб. Зависимость энер-ей однозначностью — они представляют гии взаимодействия от меж-собой только силы притяжения. Однако молекулярного расстояния, при тесном сближении любых частиц начинают сказываться силы взаимного отталкивания их внешних электронных слоев. На некотором оптимальном расстоянии притяжение и отталкивание уравновешиваются, причем энергия системы становится минимальной. Половину равновесного расстояния между одинаковыми сферически симметричными молекулами определяют как ван-дер-ваальсозый радиус частицы. На рис. 66 представлена типичная кривая изменения энергии для межмолекулярного взаимодействия. Она характеризуется неглубоким минимумом, который расположен на значительном расстоянии от начала координат. Длина ван-дер-ваальсовой связи больше, а прочность меньше,, чем те же параметры для ковалентной связи. Кроме того, специфическая особенность сил Ван-дер-Ваальса — быстрое ослабление их с расстоянием, так как все составляющие эффекты обратно пропорциональны г [см. уравнение (V.6)]. [c.137]

    Силы притяжения между молекулами, которые называют ван-дер-еаальсовыми, обусловливаются тремя видами межмолекулярного взаимодействия 1) ориентационное — проявляется между полярными молекулами, стремяш,имися занять такое положение, при котором их диполи были бы обращены друг к другу разноименными полюсами, а векторы моментов этих диполей были бы ориентированы по одной прямой 2) индукционное — возникает между индуцированными диполями, причиной образования которых является взаимная поляризация атомов двух сближающихся молекул 3) дисперсионное — возникает в результате взаимодействия микродиполей, образующихся за счет мгновенных смещений положительных и отрицательных зарядов в молекулах при движении электронов и колебании ядер. Дисперсионные силы действуют между любыми частицами. Ориентационное и индукционное взаимодействие для частиц многих веществ, например Не, Аг, На, N2, СН4, не осуществляются. Для молекул ЫНз на дисперсионное взаимодействие приходится 50%, на ориентационное — 44,6 и на индукционное —5,4%. Полная энергия ван-дер-ваальсо-вых сил притяжения характеризуется невысокими значениями. Так, для льда она составляет 11 кДж/моль, т. е. 2,4% энергии ковалентной связи Н—О (456 кДж/моль). С ростом относительных молекулярных масс силы межмолекулярного взаимодействия становятся больше, поэтому повышаются значения таких постоянных, как температуры плавления и кипения. [c.123]


Смотреть страницы где упоминается термин Ван-дер-Ваальса взаимодействия энергия связи: [c.136]    [c.219]    [c.40]    [c.21]    [c.56]    [c.339]    [c.314]    [c.68]    [c.48]    [c.107]    [c.152]    [c.237]    [c.254]    [c.112]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.288 ]




ПОИСК





Смотрите так же термины и статьи:

Ван-дер-Ваальса

Ван-дер-Ваальса связь

Связь связь с энергией

Связь энергия Энергия связи

Энергия взаимодействия

Энергия связи



© 2024 chem21.info Реклама на сайте