Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Флуоресценция столкновении

    Некоторые вещества, особенно иодид-ионы в водных системах и бром-бензол в неводных, уменьшают интенсивность флуоресценции. Столкновения между молекулами тушащих веществ и возбужденной флуоресцирующей молекулой усиливают внутренние превращения в последней. Таким образом, если каждое столкновение приводит к тушению, то = с + 2 (Ф. где к и-, — скорость внутреннего превращения в отсутствие тушителя (т. е. внутреннее превращение, обусловленное стерическими факторами или влиянием растворителя) 2 — константа скорости двойных столкновений между тушителем и возбужденной молекулой я Q — концентрация тушителя. Комбинируя это выражение с уравнением ( -1), получаем уравнение Штерна — Фольмера для соотношения интенсивности флуоресценции в присутствии тушителя о) и без него (/о) [c.171]


    Наряду с обменом колебательной, вращательной в поступательной эпергии при столкновениях молекул, находящихся в основном электронном состоянии, значительный интерес представляет обмен энергии электронновозбужденных молекул. Практически единственным экспериментальным методом определения вероятности или констант скорости этих процессов является оптический метод, основанный на измерениях интенсивности электронных спектров испускания (флуоресценции). [c.100]

    Измерения интенсивности флуоресценции нри различных давлениях постороннего газа позволяют определить среднее количество колебательной энергии Е, теряемой возбужденной молекулой при столкновении с молекулой постороннего газа. Полученные таким путем значения величины Е для различных газов и различной степени колебательного возбуждения флуоресцирующих молекул р-нафтиламина составляют от десятых долей до нескольких килокалорий. [c.102]

    Возможен также перенос заряда ионизированной молекулой к другой молекуле с более низким потенциалом-ионизации. Таким образом, для смесей может быть характерна определенная избира-. тельность реакций. Кроме многих предложенных механизмов реакции, есть процессы, при которых возбужденные молекулы беч распада теряют свою избыточную энергию. Хорошо известна флуоресценция — превращение молекулярной энергии в видимое излучение Известен также процесс гашения — постепенное рассеивание энергии путем ее передачи ближайшим молекулам при столкновениях, происходящих в результате теплового движения или каким-либо другим путем. На этих процессах переноса энергии основан механизм защиты от излучения, благодаря которой влияние излучения на чувствительные материалы может быть уменьшено. Другой метод, усиливающий такую защиту, основан на изучении реакций радикалов, часть которых может проходить через многие стадии цепного механизма, например, реакции (2) и (4), Если имеются компоненты, склонные вступать в реакцию со свободными радикалами, то интенсивность излучения может быть уменьшена. К таким акцепторам радикалов относятся иод, ненасыщенные соединения, окиси азота, амины и кислород. [c.159]

    Поскольку триплет — триплетный перенос энергии происходит по обменному механизму, т. е. при столкновении молекул, суммарный спин при этом сохраняется, переход становится разрешенным и не зависящим от степени запрета триплет — синглетного перехода A-v A в акцепторной молекуле. Примером триплет — триплетного переноса энергии в жидком растворе при импульсном возбуждении может служить система нафталин — фенантрен. При увеличении концентрации нафталина уменьшается триплет — триплетное поглощение фенантрена и появляется триплет — триплетное поглощение нафталина. При этом при достаточной концентрации триплетных молекул нафталина вследствие триплет — триплетной аннигиляции наблюдается испускание замедленной флуоресценции [c.168]


    Первая стадия приводит к переходу молекулы (за время 10- с) в электронно-возбужденное состояние А+Кх А. Вторую стадию можно объединить с первой, назвав их вместе первичным фотохимическим процессом. Во второй стадии возбужденные молекулы за время своего существования (10- с) претерпевают различные превращения а) диссоциацию с образованием свободных атомов и радикалов (или ионов при гетеролитическом разрыве), которые вступают в дальнейшее взаимодействие — вторичные реакции (третья стадия) б) дезактивацию при столкновениях с другими молекулами в) переход в основное электронное состояние с испусканием кванта светового излучения (флуоресценция или фосфоресценция) или внутримолекулярное превращение (конверсия) энергии электронного возбуждения в колебания. Изучение спектров поглощения помогает решить вопрос о характере первичного фотохимического превращения. [c.379]

    Ступенчатая столкновительная релаксация колебательных возбуждений является относительно эффективным процессом, сечения рассеяния для одноквантовой дезактивации лежат в пределах 1—100% от газокинетических сечений для многих тушащих газов. Поэтому резонансная флуоресценция не наблюдается при давлениях, для которых кинетическая частота столкновения существенно превышает скорость спонтанной эмиссии например, для Л 10 с наблюдение резонансного излучения ограничивается давлениями ниже 1 мм рт. ст. (или меньше, если Л<10 с ). Нижние колебательные уровни верхнего электронного состояния заселяются переходами с уровня V, заселяемого поглощением, и при умеренных давлениях, при которых излучательные процессы и процессы тушения за счет колебательной релаксации еще конкурируют, излучение будет происходить со всех колебательных уровней верхнего состояния вплоть до V. Например, спектр флуоресценции МОг при низких давлениях, хотя его отдельные линии и не разрешаются, по мере возрастания давления в системе все более сдвигается в длинноволновую область. [c.93]

    Такой процесс кумуляции энергии протекает относительно медленно при низких концентрациях О и А, поскольку столкновения двух возбужденных частиц происходят редко. Однако в некоторых системах наблюдалось образование возбужденных частиц по типу (5.6), получившее название механизма задержанной флуоресценции Р-типа. Подобный механизм может приводить также к химическим реакциям, требующим большей энергии, чем один квант излучения, и такое накопление энергии оказывается необходимым для функционирования ряда фото-биологических систем. [c.121]

    Рассмотрим приведенную выше схему более подробно и попытаемся установить связь между интенсивностью флуоресценции и концентрацией тушителя. Будем предполагать, что внешнее тушение протекает просто при бимолекулярном столкновении А с Q. Скорость образования возбужденных молекул А по реакции (П1.13) постоянна, поскольку интенсивность возбуждающего света поддерживается постоянной. При отсутствии Q суммарная скорость исчезновения А по двум конкурирующим процессам (П1.14) и (П1.15) равна [c.65]

    При выводе уравнения Штерна—Фольмера предполагалось, что каждое столкновение приводит к тушению флуоресценции. Однако образование возбужденного комплекса столкновения может происходить обратимым путем. Тогда схема выглядит следующим образом  [c.144]

    Число безызлучательных переходов можно увеличить путем добавления тушителей. Механизм тушения флуоресценции бывает разным чаще всего оно обусловлено столкновением возбужденного хромофора с молекулой тушителя. Известны вещества, являющиеся особенно эффективными тушителями (например, иодид-ионы). Эффективность флуоресценции в отсутствие тушителя можно выразить через константы скорости флуоресценции (А ), безызлучательного перехода к ) и фосфоресценции ( р)  [c.30]

    Столкновение возбужденных частиц с молекулами газов, таких, как Ог, может привести к тушению флуоресценции. Тушение является результатом [c.159]

    Молекулярная энергия может превращаться в видимое излучение — флуоресценцию. С другой стороны, возбужденные молекулы могут рассеивать свою энергию при столкновениях с ближайшими молеку- [c.99]

    Более распространены случаи, при которых квантовый выход процесса меньше единицы. Снижение квантового выхода может быть обусловлено двумя причинами. Первая - часть возбужденных молекул тратит свою энергию не на фотохимическую реакцию, а на другие, фотофизические процессы дезактивацию при столкновении с другими молекулами, излучение света, в том числе флуоресценцию и фосфоресценцию. Вторая причина - заметное протекание обратной химической реакции, например рекомбинации радикалов. Скорость обратной реакции в растворе часто увеличивается за счет клеточного эффекта. Например, разложение этилиодида [c.162]


    Из других механизмов возбуждения флуоресценции в аналитических целях могут применяться ионизационно-рекомбинационная и сенсибилизированная флуоресценция. Рекомбинационное свечение возникает в результате облучения облака атомного пара светом, частота которого лежит в области сплошного поглощения за границей серии. Энергия этого излучения достаточна для ионизации атомов. При последующей рекомбинации ионов наблюдается излучение, как сплошного спектра, так и отдельных атомных линий. Сенсибилизированная флуоресценция возникает в результате передачи энергии от возбужденного атома А к невозбужденному атому В в процессе их столкновения  [c.851]

    При 77 К (условия наблюдения фосфоресценции) вероятность безызлучательной дезактивации электрон-но-возбужденных состояний при столкновениях существенно ниже, чем при комнатной температуре (условия наблюдения флуоресценции). [c.516]

    Характеристическое время излучения, т. е. среднее время существования возбужденного атома или молекулы при потере возбужденного состояния вследствие излучения, составляет 10 с [16, с. 363]. На основе кинетической теории газов при температуре О °С и атмосферном давлении число столкновений, которое испытывает молекула, составляет около 7-10 в секунду. Это число пропорционально давлению газа. (Высокая температура газов пламени может снизить частоту столкновений примерно до 2-10 в секунду.) Из опытов по гашению флуоресценции и других данных следует, что при атмосферном давлении возбужденный атом может испытывать до 5-10 необходимых для дезактивации столкновений в секунду [8, с. 209]. При полном переходе от одного состояния к другому и характеристическом времени излучения 10 с частица испытывает около 50 столкновений. Локальное равновесие в распределении поступательной энергии частиц устанавливается очень быстро, для этого требуется всего несколько соударений. Следовательно, в обычных условиях при атмосферном давлении процессы активации и дезактивации вследствие столкновений, вероятно, играют значительно более важную роль, чем процессы излучения. [c.29]

    Таким образом, в этой идеально простой схеме возбужденная молекула, образующаяся по реакции (8.1), может принимать участие в одном из трех следующих процессов эмиссии (8.2), внутреннем тушении (8.3) или внешнем тушении (8.4, 8.5 или 8.6). Предположим, что внешнее тушение протекает при простом бимолекулярном столкновении с Q. Данная схема была развита для объяснения простейших соотношений, наблюдаемых между концентрацией растворенного тушителя Р и интенсивностью флуоресценции (см. ниже, рис. 31 и 33). Эти соотношения будут рассмотрены в следующем разделе. [c.152]

    Однако с увеличением концентрации интенсивность флуоресценции заметно уменьшается. В растворах с концентрацией более 10 М фотохимически с высоким выходом образуется стабильный димер (диантрацен). Соотношение между интенсивностью и концентрацией согласуется со схемой реакции, в которой возбужденная молекула А при столкновении реагирует с молекулой А в основном состоянии [c.160]

    Флуоресцирующие ионы присутствуют в водных растворах таких веществ, как флуоресцеин и сернокислый хинин. Флуоресценцию тушат добавлением солей, например подпетого калия. Сравнение констант скорости Aq, рассчитанных по уравнению Штерна — Фольмера, с константами, рассчитанными по теории процессов, лимитируемых диффузией (стр. 22), показывает, что тушение происходит при всех или при большинстве столкновений, по-видимому, из-за переноса энергии [34]. При добавлении глицерина для увеличения вязкости раствора, как и следовало oh i-дать, константа скорости уменьшается [36]. При изменении ионной силы константа скорости меняется таким же образом, как константа скорости обычной ионной реакции второго порядка т. е. при очень низких концентрациях (0,01 М) зависимость log к от корня квадратного из ионной силы приближается к линейной, как это предсказывается теорией Дебая — Хюккеля [35] (см. также стр. 166 и сл.). [c.163]

    Сущность этого эффекта состоит в том, что во бун. денная молекула, обладающая некоторым занасом колебательной энергии, нри столкновении с другими молекулами или атомами переходит па более низкие уровни, в результате чего она становится более стабильной по от1[01Г1спию к самопроизвольному неоптическому переходу в другое электронное состояние. Это приводит к увеличению средней продолжительности жизни возбунаденной молекулы и, следовательно, к увеличению относительного выхода флуоресценции [961. [c.102]

    При изучении тушения 1)-флуоресценции натрия парами иода было получено ссчепие, почти на порядок превышающее газокикетпческое сечение. Так как константа скорости процесса Na - -72 = N3 J также оказывается на порядок больше частоты газокинетических столкновений Ка и 1з [67], то тушение флуоресценции натрия иодом, по-в идиыому, нужно приписать химическому процессу Ка -Ь Яз = КаТ -Ь I. [c.164]

    В качестве сенсибилизатора очень часто применяется ртутный пар, являющийся примером сенсибилизатора, в котором первоначально возникают возбужденные атомы, ([ри облучении смеси реагирующих веществ, содержащей пебольшое количество ртутного пара, светом ртутной дуги образуются возбужденные атомы ртути Hg ( 1), Hg = Hg с энергией возбуждения 112 ккал. Превращепяо энергии возбуждения атома ртути в химическую энергию молекулы (или молекул) реагирующих веществ и является началом собственно импческой реакции. Отметим, что нри давлении 1 тор возбужденный атом ртути за время своей л. изни (1,55-10 сек) испытывает в среднем не болсс одного столкновения поэтому при р тор нужно ожидать большую вероятность флуоресценции и малую вероятность фотохимической активации. [c.167]

    Если возбужденная молекула при излучении возвращается на значительно более низкий колебательный энергетический уровень, возникает спектр флуоресценции. По правилу Стокса длина волны флуоресценции больше длины волны возбуждающего излучения или, по крайней мере, имеет такую же величину. Продолжительность возбужденного состояния при этом составляет примерно 10 с, поэтому флуоресценция наблюдается практически одновременно с возбуждением. Иногда излучение может быть значительно более длительным (в пределах нескольких секунд). Такое явление называют фосфоресценцией. При достаточно большом давлении газа или в конденсированной фазе электроны в возбужденном состоянии из-за взаимных столкновений часто переходят на самый нижний энергетический колебательный уровень, прежде чем произойдет излучение энертии. Спектр флуоресценции характеризует колебательную структуру основного состояния электронов, спектры поглощения преимущественно отражают колебательную структуру возбужденного состояния. Поэтому полосы флуоресценции часто являются зеркальным отражением полос поглощения. [c.354]

    Так как нейтрон не имеет заряда, то его проницаемость очень велика. В камере Вильсона он не оставляет следов, не ионизирует воздуха, не вызывает флуоресценции и об его присутствии и энергии судят по пробегу тех заряженных частиц, например, протонов, с которыми он эластически сталкивается (эластическим столкновением называется столкновение, аналогичное столкновению, например, двух бильярдных шаров). [c.66]

    Одним из наиболее эффективных примеров предиссоциации, индуцируемой внешним полем, а не столкновениями молекул, является тушение флуоресценции 1а при наложении магнитного поля. Излучение флуоресценции в видимой области спектра исчезает при использовании достаточно сильного магнитного поля. В этом случае правило отбора ДЛ = 0 не выполняется строго в присутствии магнитного поля, и может происходить пересечение с одним из предиссоциационных состояний с последующим образованием двух атомов иода в основном состоянии. [c.56]

    Остолк — сечение столкновения, равное я(/ A + rв) , где г а, гв — газокинетические радиусы столкновений реагентов, а р, — их приведенная масса а — энергия активации реакции). Для столкновительного тушения "а обычно близко к нулю, поэтому одна из возможностей сравнения состоит в том, что из величины кщ определяют сечение тушения (которое мы теперь будем обозначать а< ) и сравнивают его с o тoлr<. В табл. 4.1 представлены некоторые данные, полученные для тушения флуоресценции N0, в сравнении с газокинетическими сечениями. Отношение Оч7о2отолк соответствует хорошо известному фактору Р теории столкновений (в предположении, что а = 0) результаты показывают, что эффективность тушения растет с увеличением числа атомов в молекуле М (особенно отметим данные для СО2, из которых следует, что тушение происходит со скоростью, превышающей скорость столкновений). Даже для М = Не необходимо в среднем только около 20 столкновений для полного тушения. [c.87]

    При высоких давлениях газов, при которых скорость столкновений существенно превышает скорость излучения, колебательная релаксация протекает очень быстро и флуоресценция с уровней v >0 не наблюдается. Скорость колебательной релаксации очень велика в растворах, поэтому флуоресценция с колебательно-возбужденных уровней никогда не наблюдается в жидкой фазе. Более того, ни спектр флуоресценции, ни скорость дезактивации не изменяются с изменением длины волны возбуждающего излучения, до тех пор пока оно лежит в пределах полосы поглощения. Переходы 5о->-51 в органических соединениях часто бывают частично запрещены поэтому для того чтобы получить достаточное с точки зрения возможности регистрации газофазной флуоресценции поглощение света, требуются высокие давления, которые приводят к колебательной релаксации молекул на уровень и = 0. Эта релаксация совместно с безызлучательными потерями энергии у сложных частиц способствует тому, что в сложных органических молекулах эффекты резонансной флуоресценции или излучение с колебательновозбужденных уровней наблюдаются крайне редко. [c.93]

Рис. 31.11. Форма линий излучения, рассчитанная для максвелловского распределения излучающих частиц по скорости с учетом столкновений (включает компонент урезонансной флуоресценции) Рис. 31.11. <a href="/info/122617">Форма линий</a> излучения, рассчитанная для <a href="/info/332825">максвелловского распределения</a> излучающих частиц по скорости с учетом столкновений (<a href="/info/1088668">включает компонент</a> урезонансной флуоресценции)
    Авакян П. и Меррифилд Р. исследовали влияние внешнего магнитного поля на триплет-триплетную аннигиляцию экситонов в молекулярных кристаллах [2]. При столкновении двух триплетных экситонов возможен перенос энергии с образованием одной синглетно-возбужденной молекулы. Образовавшаяся таким образом возбужденная молекула высвечивает квант света, и в эксперименте регистрируется именно эта задержанная флуоресценция. Физика магнитного полевого эффекта для этого процесса связана с тем, что два триплетных экситона встречаются в состояниях с суммарным спином 5 = О, 1 или 2. Только пара триплетных экситонов с 5 = О дает задержанную флуоресценцию. Но если при встрече двух экситонов происходит спиновая динамика, т.е. осуществляются переходы между состояниями с 5 = О, 1, 2, то в итоге в задержанную флуоресценцию могут дать вклад все столкновения, столкновения с разными значениями суммарного спина в момент сближения экситонов друг к другу. Насколько эта спиновая динамика окажется эффективной, зависит от напряженности внешнего магнитного поля. Как мы увидим позже, формально схема влияния внешнего магнитного поля на аннигиляцию триплетных экситонов аналогична ситуации рекомбинации РП. Отличие прежде всего в том, что аннигиляция триплетных экситонов - это еще не химическая реакция, и в том, что в случае триплетных экситонов и в случае радикалов эффективны разные магнитные взаимодействия. [c.5]

    Помимо того, что поглощение может сопровождаться флуоресценцией (разд. 8.3), взаимодействие рентгеновского излучения с атомами также может привести и к рассеянию, которое может быть упругим (эффект Рэлея) или неупругим (эффект Комптона). При упругом рассеянии электроны атома, вовлеченного в процесс, ускоряются падающим рентгеновским излучением и сами становятся источником излучения, имеющего такие же точно энергию и длину волны, что и падающее рентгеновское излучение. Б отличие от этого, эффект Комптона отражает корпускулярную природу электромагнитного излучения, и его можно рассматривать как столкновение между протоном и электроном, которое приводит к потере энергии и увеличению длины волны рентгеновского излучения в соответствии с законами сохранения энергии и количества движения. С счастью, неупругое рассеяние играет незначительную роль для таких длин волн, как СиКа (1,5418 А) или МоКа (0,7107 А), которые широко используются в рентгеновских экспериментах. Этот эффект, тем не менее, приводит к относительно высокому фоновому сигналу рассеяния. В процессе упругого (когерентного) рассеяния ускоренные электроны приводят к возникновению рассеянного излучения, испускаемого во всех направлениях. [c.389]

    Основные помехи в методе АФА. Основными помехами в методе АФА являются неселективно рассеянное излучение возбуждающего источника света и тушение флуоресценции при столкновениях возбужденного атома с окружающими его атомами и молекулами. Оба процесса происходят в атомизаторе. Неселективно рассеянное излучение, проникая вместе с полезным сигналом в систему спектральной фильтрации, завышает его величину. Наиболее сильно влияние рассеянного излучения проявляется в случае наблюдения резонансной флуоресцещии. Для учета рассеянного излучения применяются устройства, аналогичные зеемановскому корректору фона в атомно-абсорбционном методе, и различные способы временной селекции полезного сигнала и фона. Влияние рассеянного излучения резко снижается в случае наблюдения смещенных линий флуоресценции. Однако этот способ не всегда может бьггь реализован в силу специфики строения энергетических уровней атомов. [c.854]

    Фотоокисление антрацена . Если растворы антрацена облучить ультрафиолетовым светом, то в них образуется стабильный димер (диантрацен). В присутствии кислорода образуется также трансаннулярная перекись антрацена. Изучение флуоресценции (стр. 163—166) показывает, что эти две реакции независимы и что СИНГ летное возбужденное состояние участвует в димеризации, но не в фотоокислении (за исключением высоких концентраций), которое должно быть приписано некоторому другому возбужденному состоянию, по-видимому, низшему триплетному состоянию. Флеш-методы подтверждают и расширяют эти выводы [6, 39—41]. На триплетное состояние не влияют столкновения с нормальным антраценом, и, следовательно, триплетное состояние пе участвует в димеризации. Одн о оно дезактивируется кислородом почти при каждом столкновении, что и следовало ожидать, если это то возбужденное состояние, которое ответственно за фотоокисление. Константы скоростей в различных растворителях порядка 10 л-молъ -сек . [c.123]

    Тушение флуоресценции антрацена процессы., лимитируемые диффузией. Измерения тушения флуоресценции в растворе интересны в связи с теорией процессов, лимитируемых диффузией, так как при их использовании можно определить большие константы скорости в растворителях с различной вязкостью и в широком температурном интервале. Для бимолекулярных реакций между незаряженными молекулами, происходящих нри каждом столкновении, приблизительная величина вычисленной константы скорости равна (8ДГ/ЗОООт]) л-молъ -сек , где т] — вязкость. Это выражение предсказывает 1) обратную зависимость скорости от вязкости 2) значение константы скорости порядка 10 л-молъ сек нри 25° в воде (т] = 0,01 пуаз) и в органических растворителях, имеющих сравнимую вязкость 3) зависимость от температуры определяется температурной зависимостью Т 1ц, что дает эффективную энергию активации в несколько килокалорий на моль. Было изучено тушение флуоресценции антрацена и его замещенных кислородом в различных органических растворителях при температурах от —50 до Н-20° при таких концентрациях, когда димеризация незначительна [17, 30, 311. Константы скорости в бензоле, ацетоне, хлороформе и т. д. лежат в интервале 2-10 —8-10 л-молъ -сек- . Эти значения с точностью до 50% согласуются со значениями, рассчитанными из простой теории диффузии нри условии, что в качестве коэффициента диффузии кислорода берут неносредственно наблюдаемую величину [5], а не значение, получаемое из уравнения Стокса — Эйнштейна, которое используется в приближенной теории (Л Г/бят г). (Для тушения двуокисью серы получены сравнимые значения, для тушения четыреххлористым углеродом и бром-бензолом они примерно в 100 раз меньше.) Растворы в различных парафиновых фракциях с вязкостью 0,03—1,9 пуаз обнаруживают зависимость от вязкости [30]. Температурные коэффициенты малы но сравнению с температурными коэффициентами боль- [c.162]

    Интересно, что константы скорости тушения кислородом и двуокисью серы можно также определить в газовой фазе [30]. Было найдено, что они того же порядка, что и число столкновений, рассчитанное из кинетической теории доля эффективных столкновений в газе колеблется от /г до /е- Константы скорости в растворе в 10—20 раз меньше, чем в газовой фазе. Имеются числовые значения параметров уравнения Аррениуса для случая тушения флуоресценции Р-пафтиламина четыреххлористым углеродом [32] в изооктане константа скорости равна (2,0-10 ) ехр (—1100/ДГ) и в циклогексане (4,5-10 )х X ехр (—2470/7 Г) л-молъ -сек . Здесь А несколько больше, чем константа скорости, найденная для газовой фазы, которая не зависит от температуры и равна 5,9-10 л-молъ -сек . Таким образом, диаметр столкновений в растворе, по-видимому, несколько больше, чем для газовой фазы. Возможное объяснение этого заключается в том, что, когда две молекулы сближаются на расстояние, сравнимое с. размерами молекул, окружающие молекулы растворителя толкают их друг к другу, так же как и при клеточном эффекте (стр. 282). [c.163]


Смотреть страницы где упоминается термин Флуоресценция столкновении: [c.102]    [c.104]    [c.163]    [c.187]    [c.131]    [c.88]    [c.112]    [c.141]    [c.66]    [c.121]    [c.851]    [c.12]    [c.124]   
Фото-люминесценция растворов (1972) -- [ c.76 ]




ПОИСК





Смотрите так же термины и статьи:

Столкновения

Флуоресценция



© 2025 chem21.info Реклама на сайте