Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод химические превращения при

    Для приобретения и закрепления знаний на основе самостоятельной работы выделяются такие вопросы, которые могут быть рассмотрены учащимися при незначительной помощи учителя. Например, по теме Углерод и кремний самостоятельные работы можно организовать при изучении особенностей строения атомов углерода и кремния, характера связей в образуемых углеродом соединениях, состава этих соединений, свойств аллотропных видоизменений углерода, адсорбции, химических свойств углерода, свойств оксидов углерода, химических превращений угольной кислоты и ее солей, строения, свойств кремния и его соединений, коллоидных растворов, [c.129]


    Механизм образования сажи (дисперсного углерода) при горении реактивного топлива и в общем случае при химических превращениях углеродсодержащих веществ изучен еще недостаточно. Исследователи основную роль отводят полимеризации или цепным разветвленным реакциям. В последнем случае физико-химическая модель процесса включает разветвленные цепные реакции образования радикалов-зародышей, превращение их в зародыши твердой фазы (минимальные частицы, имеющие физическую поверхность) и дальнейший рост зародышей за счет гетерогенного разложения углеводородов на их поверхности. Сторонники полимеризационной схемы отмечают, что образование ацетилена наблюдается даже в метано Кисло-родном пламени. После достижения максимальной концентрации ацетилен превращается в моно- и полициклические ароматические углеводороды и полиацетилен. Экспериментально показано также, что в соответствующих условиях появлению сажевых частиц предшествует образование (в результате полимеризации) крупных углеводородных молекул с молекулярной массой примерно 500. [c.168]

    Значительно упрощая проблему, делим весь технологический процесс на единичные элементы 1) единичные типовые процессы химической технологии и 2) единичные процессы с участием химических превращений. Во многих случаях разграничение между такими единичными процессами чисто условное. Часто единичные элементы процесса можно отнести к обеим указанным группам. Критерием классификации можно считать цель, для достижения которой предназначен единичный элемент. Если элемент процесса включает в себя химическое превращение и целью его является производство определенного продукта, то он относится к единичным химическим процессам, как, например, процесс абсорбции двуокиси углерода аммиачным раствором хлористого натрия в производстве соды по методу Сольвея. Абсорбцию же, проводимую с целью очищения отходящих газов от незначительных количеств вредных веществ, следует отнести к единичным типовым процессам химической технологии. [c.343]

    В заключение можно отметить, что процессы гидрокрекинга отличаются большой специфичностью в отношении характера химических превращений сырья. Многие особенности этих превращений объясняются соотношением ионных и радикальных реакций в зависимости от природы катализатора и условий процесса. Некоторые необычные реакции, например спаривание метильных заместителей, скелетная изомеризация в ароматических углеводородах (обмен атомов углерода заместителей и кольца) характерны только для условий гидрокрекинга и для новых катализаторов [c.323]


    О структурных изменениях, происходящих в нерастворимом в щелочи продукте окисления, свидетельствовала информация, полученная методом протонно-магнитного резонанса после специальной обработки по методике [61]. Эти изменения сводятся к уменьшению количества атомов углерода метильных групп в результате окисления их в карбоксильные группы, а также в результате и других химических превращений. [c.139]

    В 1869 г. В. В. Марковников следующим образом характеризовал парафиновые углеводороды Едва ли между органическими веществами найдется другой столь обширный и малоизвестный класс, как предельные углеводороды. Количество исследований, посвященных этим соединениям, сравнительно столь незначительно, что мы почти ничего не знаем о их химических превращениях, а между тем это соединения, которые могут служить исходным пунктом для получения множества других веществ. По составу своему они представляют в то же время особенный интерес как простейшие углеродистые соединения, т. е. такие, где характер вещества не усложняется вследствие накопления в частице различных элементов. Зная ту долю влияния, которая принадлежит каждому паЮ углерода и водорода в составе углеводородной частицы, мы с большим основанием могли бы предвидеть направление реакций в других телах более сложного характера [29]. [c.55]

    Так, например, материальный баланс регенератора установки каталитического крекинга составляется на основе данных по количеству и составу выжигаемого с катализатора кокса, учитывая, что известны реакции горения составных частей кокса (углерод, водород, сера) и коэффициент избытка воздуха. Однако в большинстве случаев при химической переработке нефтяного сырья происходят сложные химические превращения и поэтому материальные балансы надежно могут быть составлены только на основе экспериментальных данных, полученных на промышленных или опытных установках. [c.630]

    При использовании приближенных методов расчета распределения температур в массе твердых тел для граничных условий третьего рода (задаются температурой дымовых газов в печи и устанавливают закономерность теплообмена между поверхностью и дымовыми газами) удалось установить, что при размере кусков углерода до 50 мм и температуре дымовых газов 1500 °С длительность прогрева кусков 20—25 мин. Однако для полного протекания физико-химических превращений такого времени недостаточно [101]. Поэтому при выборе кинетических уравнений мы приняли [c.208]

    Следует особо подчеркнуть, что, хотя образование новой связи происходит за счет пары электронов иона ОН , который, таким образом, выступает в роли донора электронной пары, образуется не донорно-акцепторная, а истинная ковалентная связь. Это связано с тем, что атом углерода не является акцептором и приобретает акцепторные свойства лишь в момент химического превращения, передавая один из своих электронов образующемуся иону Г. Поэтому избыточный электрон, получаемый им от ОН , лишь восстанавливает его исходное состояние четырехвалентного атома. [c.15]

    СНз 4- СНз С Нв два атома углерода и шесть атомов водорода вначале скомбинированы в два свободных радикала СНз, а в конце процесса объединены в одну молекулу этана. Таким образом, в ходе элементарного акта химического превращения происходит изменение взаимного расположения атомов в системе. [c.56]

    В качестве примеров сложных условий теплопереноса можно привести процесс сушки, когда направление потока влаги может совпадать или быть противоположным тепловому потоку, и окисление углерода в сталеплавильной ванне, связанное не только с наличием теплоты химического превращения, но и с потоками кислорода в ванну и окиси углерода в обратном направлении. [c.36]

    Стереохимические отнощения в ряду природных аминокислот, входящих в состав белков, в настоящее время достаточно ясны. В их исследовании можно различить две стадии — во-первых, установление стерических отношений между аминокислотами и, во-вторых, установление абсолютной конфигурации. Решающую роль в изучении обеих проблем сыграло химическое превращение различных соединений друг в друга -без затрагивания асимметрического атома углерода, иными словами, непосредственное установление конфигурационного соответствия химическим путем. [c.365]

    Если в органическом соединении имеется асимметрический атом углерода, то его молекулы могут быть в двух энантиомерных формах, из которых одна является зеркальным отображением другой. Вещество оптически активно, т. е. вращает плоскость поляризованного света, если в нем преобладает одна из энантиомерных форм. По своим физическим и химическим свойствам, в частности реакционной способности, энантиомерные формы идентичны. Изучение продуктов превращения энантиомеров, в частности их оптической активности, в некоторых случаях помогает выяснить механизм химического превращения. Когда в реакцию вступает оптически активный реагент (энантиомер), то возможны 3 случая инверсия конфигурации, сохранение конфигурации и рацемизация. [c.318]


    Замедленность химических превращений сближает неравновесные комплексные соединения с органическими, на что указывал еще Д. И. Менделеев. Комплексно построенные вещества отличаются от органических соединений тем, что строение последних укладывается, а комплексных — не укладывается в рамки классических представлений о валентности. Причина этого кроется в там, что органические соединения — это незаряженные комплексные соединения, у которых координационное число центрального атома (углерода) равно его валентности. [c.14]

    Промежуточную группу образуют псевдоравновесные синтезы, которые выполняются в условиях, когда ряд химических превращений запрещен по причине их кинетической заторможенности, а ход остальных полностью определяется термодинамически ми соображениями. Так, изучая системы с участием оксалатных комплексов, следует помнить, что щавелевая кислота уже при 25 °С нестабильна по отношению к распаду на воду, СО и СО . (Д(3° = —76,6 кДж/моль), поэтому термодинамический анализ во многих случаях должен указывать на полное разрушение комплексов с образованием СО и СО2. Но если температура недостаточно велика для того, чтобы процесс разрыва связи С—С шел с заметной скоростью, при выполнении этого анализа нужно игнорировать продукты, содержащие единственный атом углерода. [c.396]

    Длины волн электромагнитных излучений находятся в пределах от 10 до 10 м, что отвечает энергии от 1,9-10 до 1,9-10 Дж (от 1,2 до 12 эВ). Следует отметить, что химическое воздействие на вещество оказывает не каждый вид излучения, а лишь те лучи, кванты которых поглощаются, воспринимаются данным телом или одним из реагентов (закон Гротгуса, 1818). Не каждая молекула, поглотившая квант света, претерпевает химическое превращение для этого данный квант должен обладать соответствующей энергией (не ниже некоторого минимума). Так, окисление монооксида углерода в диоксид углерода происходит при действии кванта света с длиной волны 0,1470 нм сероводород разлагается на водород и серу при воздействии кванта света с длиной волны 0,2080 нм. [c.181]

    Человечество длительное время осваивало тайны химических превращений соединений углерода, сначала [c.166]

    СНз—, так называемый метил, в котором одна валентность углерода не насыщена. Такого рода углеводородные остатки (радикалы) при многих химических превращениях органических веществ в неизмененном виде переходят из одной молекулы в другую [c.38]

    В. И. Касаточкин с сотрудниками [98—103, 148] все коксы, в том числе и нефтяные, относит к карбонизированным веществам. За исключением графитов все карбонизированные вещества являются аморфными сте.клоподобными высокополимера-ми. Основным структурным элементом карбонизированного вещества является плоская атомная сетка циклически полиме-ризованного атома углерода с боковыми радикалами в виде разветвленных цепей по всем трем измерениям линейно полимеризованных атомов углерода. Химические превращения в процессе термической обработки углеродистых веществ сопровождаются относительным возрастанием содержания углерода (карбонизацией) и глубокими изменениями молекулярной структуры. При этом создается межсеточная упорядоченность, увеличиваются размеры углеродных сеток и возрастает электропроводность вещества. [c.66]

    В 1845 г. Адольф Вильгельм Герман Кольбе (1818—1884), ученик Вёлера, успешно синтезировал уксусную кислоту, считавшуюся в его время несомненно органическим веществом. Более того, он синтезировал ее таким методом, который позволил проследить всю цепь химических превращений — от исходных элементов (углерода, водорода и кислорода) до конечного продукта — уксусной кислоты. Именно такой синтез из элементов, или полный синтез, и был необходим. Если синтез мочевины Вёлера породил сомнения относительно существования жизненной силы , то синтез уксусной кислоты Кольбе позволил решить этот вопрос. [c.71]

    Язвикова Н. В., Лейтес И. Л., Сухотина А. С., Труды научно-исследовательского и проектного института азотной промышленности и продуктов органического синтеза, вып. 10, 1971, стр. 54. Скорость химических превращений моноэтаноламина при очистке газов от двуокиси углерода. [c.277]

    R ama handranP. A.,Sharma М. М., hem. Eng. S i., 25, 1743 (1970) . Одновременная абсорбция двух газов А и В, сопровождаемая быстрым необратимым химическим превращением А в В, причем последний растворим в жидкости, но не реагирует с ней (анализ уменьшения скорости абсорбции В в присутствии А применительно, например, к совместной абсорбции водой двуокиси углерода и фосгена, дающего при гидролизе Oj). [c.287]

    Авторы, известные советскому читателю по книге Координация и катализ (М. Мир, 1980), в небольшой по объему монографии сумели охватить все современные аспекты химических превращений монооксида углерода как каталитического, так и некаталитического типа особое внимание уделено ыеханпзму синтеза Фишера — Тропша. [c.294]

    Хотя химические превращения, которые будут обсуждены в настоящем разделе, не относятся к проблеме производства ЗПГ, некоторые вопросы конверсии окиси углерода в метан, являющиеся составной частью этих превращений, по нашему мнению, достаточно тесно связаны с основной темой нашей книги. Одна из главных проблем в использовании генерируемой в атомных реакторах тепловой энергии — трудность передачи ее на расстояние. Высокотемпературные атомные реакторы весьма громоздки, к тому же по соображениям техники безопасности они должны размещаться на достаточном удалении от других промышленных установок, предприятий и жилых районов. С технической точки зрения, тепловую энергию наиболее предпочтительно транспортировать в виде пара, горячей воды, электроэнергии или компрпми-рованного газа, однако при выборе наиболее подходящего способа передачи тепловой энергии необходимо учитывать тепловые потери, которые становятся весьма ощутимыми при передаче ее на большие расстояния. [c.228]

    Окислительная регенерация катализаторов-процесс нестацио-нарньш, поскольку содержание кокса на катализаторе во времени снижается. Более того, сложный характер изменения в течение выжига скорости удаления кокса (см. рис. 2.12, гл. 2) не позволяет использовать различные упрощающие квазистационарные приближения. Удаление кокса, согласно кинетической модели (4.6), есть результат отрыва атома углерода с внешней поверхности коксовой гранулы в процессе образования оксидов углерода на 2, 3 и 5-й стадиях химического превращения. Происходящая при этом перестройка внешней поверхности за счет обмена поверхность-объем гранулы (стадии 6 и 7) изменяет во времени содержание водорода и кислорода в объеме коксовых отложений. Тогда изменения кокса на катализаторе и объемных компонентов 2о и описываются следующими уравнениями материального баланса  [c.68]

    Исследованиями зарубежных и отечественных ученых усгановлено, что эксплуатационные свойства углеродных материалов находятся в прямой зависимости от структуры и, в частности, кристаллической структуры нефтяных коксов. При высокотемпературной обработке нефтяных коксов при прокаливании и графитации происходит целый ряд физико-химических превращений, в результате которых несоверщенный по своей структуре кокс перестраивается в кристаллический материал с трехмерно упорядоченной структурой. Особый интерес представляет перестройка тонкой кристаллической структуры, так как многообразие переходных форм углерода, многообразие свойств углеграфитовых материалов определяется сочетанием углерода в различных гибридных состояниях с разным типом углерод-углеродных связей, а также надмолекулярной структурой, определяемой ориентацией графитовых слоев и степенью их совершенства. [c.117]

    Для правильного понимания и оценки глубины и направления химических превращений, происходящих в процессе перехода смол в асфальтены, необходимо было смолы разделить на фракции близкого химического состава. Методика такого разделения смол должна была гарантировать химическую неизменность содержащихся в сырых нефтях смол и давать надежные, хорошо воспроизводимые результаты. Наиболее удовлетворительные данные были получены с помощью метода вытеснительной хроматографии на силикагеле с применением набора растворителей для последовательного вытеснения различных фракций смол. Этот метод предложен Черножуковым и Тилюпо [И, 12]. Детально были исследованы природные смолы, выделенные из индивидуальных сырых нефтей различной химической природы. В качестве адсорбента применялся крупнопористый активированный силикагель определенной степени дробления. Адсорбированные на силикагеле смолы вытеснялись последовательным применением четыреххлористого углерода, бензола, спирто-бензольной смеси (1 1 об.) [c.50]

    При нормальной температуре химическому превращению на угле подвергаются также сероокиоь углерода и некоторые другие соединения. Основная масса сероорганических соединений может быть удалена физической адсорбцией на активном угле. Процесс циклический, состоит из чередующихся фаз. Десорбция сернистых соединений производится паром, после чего уголь просушивается газом. Преимуществом этого способа является возможность полной очистки газа от тиофена. [c.88]

    В процессе физико-химических превращений получают более широкий ассортимент твердых нефтепродуктов, чем в процессах, основанных на физических переходах. В ходе термодеструктив-ных процессов формируются нецелевые (кокс на стенках труб, аппаратов, на поверхности катализаторов) и целевые (нефтяно углерод — коксы, иекп, технически углерод, а также битумы, сера) дисперсные структуры ра лпчноп степени симметрии. [c.169]

    Исследование парамагнетизма различных нефтяных остатков и дистиллятных продуктов [29] показало, что ЭПР (в относительных единицах) для парафиннстых выделений процесса коксования равен 8 для остатков прямогонного происхождения от мазута до асфальта — от 25 до 91 для остатков, подвергнутых химическим превращениям (крекииг-остатки, окисленные битумы),— 100—250. Как и следовало ожидать, наибольшим парамагнетизмом обладают нефтяные коксы (2000—6300). Это можно объяснить тем, что свободные связп углерода в различных высокомолекулярных углеводородах обладают неодинаковой способностью к рекомбинации. В кристаллитах кокса (в связи с их малой подвижностью и стери-ческими затруднениями) свободные радикалы исчезают медленно, что и обусловливает их повышенный парамагнетизм и реакционную способность. [c.52]

    Бреслоу и Кхапна исследовали [267] различные системы, которые в общих чертах моделируют гомологический распад В 2-снстем, и обнаружили простые химические превращения, которые достаточно надежно подтвер кдают наличие стадии с внедрением ио неактивированиому атому углерода. Они получили дифеиил-кобалоксимное соединение, которое ири облучении генерирует о кидаемый беи-зильный радикал. [c.393]

    В процессе карбонизации ПАН-волокна происходят такие химические превращения и структурные изменения полимера, конечным результатом которых является образование турбостратной структуры углерода. Карбонизация ПАН-волокна проводится при различных температурах от 700 -800 С и до 1000 - 1500°С. В процессе карбонизации содержание углерода повышается до 90 - 95% и выделяются газообразные и смолообразные продукты, К основным газообразным продуктам деструкции относятся H N, ЫНз, Н2О и, видимо, акрилонитрил. Бурное выделение NH3 происходит в пределах 500 - 850 С, достигая максимального значения при 700 С, для H N характерны два максимума выделения при температуре 450 С и 850°С. Относительно много СО2 образуется в интервале температур 250 450°С. Максимальное количество Hj образуется при 500 С как для окисленных, так и для неокисленных волокон. Из неокисленных волокон Н2 выделяется больше. СО выделяется только из окисленных волокон, причем больше всего при 500 0. Максимальное выделение N2 отмечается при температуре 700 - 900°С. Н2О и СО2 выделяются только из окисленных волокон, максимум выделения при 300°С, причем СО2 образуется больше, чем Н2О. [c.61]

    Энергия связи углерод—хлор меньше энергии связи углерод— ьодород, поэтому поливинилхлорид обладает меньшей термической и химической стойкостью, чем полиэтилен. Подавляющее большинство процессов химических превращений поливинилхлорида, его термическая, световая и окислительная деструкции происходят с замещением или отщеплением H I от макромолекул гюлимера. [c.253]

    Полимеры трифторхлорэтилена уступают политетрафторэти- чену по химической стойкости в агрессивн 1Х средах. В процессах различных химических превращений полимера его уязвимым местом является свя3 1 между атомом углерода и атомом хлора, хотя ее прочность песко, п>ко повг.ипается под влиянием ато.мов фтора. [c.261]

    Химические превращения поливинилхлорида, Поливинилх.ю-рид, в противоположность фторсоде )жа Дим полимерам, обладает высокой химической активностью, В процессах химических превращений в реакцию вступают атомы хлора, В большинстве случаев отщепление атома хлора влечет за собой отщепление атома водорода от соседнего углерода. [c.268]

    Глубина переработки нефти и воздействия на нее в значительной степени влияют на количество ПМЦ [125], содержащихся в исходной нефти. Эта величина в относительных единицах для прямогонных остатков от мазута до асфальта составляет от 25 до 92, для остатков, подвергшихся химическим превращениям (крекинг-остатки, окисленные битумы), — 100-250, для нефтяных коксов — 3000. Предполагается [126], что это связано с различной склонностью к рекомбинации свободных связей углерода в различных высокомолекулярных соединениях. При этом в кристаллитах кокса свободные радикалы исчезают труднее. Высокомолекулярные соединения характеризуются наличием большого количества свободных радикалов, которые образуются и могут сттабильно существовать при высоких температурах. [c.115]

    Многообразие органических соединений нефтей и направлений их химических превращений в процессах химико-технологической переработки обусловливает множественность нефтяного углерода по составу, структуре, дисперсности и свойствам. Эго является предпосылкой возможносш создания и организации производства практически неограниченного числа различных углеродных материалов путем варьирования химическим составом исходного органического материала, технологией и условиями его подготовки и переработки в углерод. [c.113]

    Интересным и важным для развернувшейся уже в 50-х годах дискуссии о роли и значении холодного пламени в общем процессе низкотемпературного окисления является отмеченный Поупом, Дикстра и Эдгаром факт осуществления найденного ими соотношения (02израсх= 1 + СО -]-+ 1,5С02) при окислении всех изученных октанов, вне зависимости от наличия или отсутствия у данного изомера холодпопламеиной реакции. Это соотношение между расходом кислорода и образованием конечных продуктов окисления — окислов углерода, несомненно, связано с механизмом процесса. Поэтому, если холодное иламя представляет собой серьезное качественное изменение реакции с появлением новых путей химического превращения, то естественно ожидать, что найденное авторами соотношение между кислородом и окислами углерода не будет оставаться одним и тем же как для холоднонламенного, так и для лишенного холодных пламен медленного окисления. [c.40]

    В зеленом листе растения под воздействием солнечной радиации протекает целый комплекс фотохимических процессов, в результате которых из воды, углекислого газа и минеральных солей образуются крахмал, клетчатка, белки, жиры и другие сложные органические вещества. Процесс фотосинтеза о гень сложен. Он осуществляется при непосредственном участии важнейшего природного фотокатализатора — хлорофилла и сопровождается целым циклом химических превращений, не зависящих от солнечной радиации. В этих превращениях участвует большое число разнообразных биокатализаторов— ферментов. Суммарное уравнение фотосинтеза обычно выражают в виде реакции превращения двуокиси углерода и воды в гексозу  [c.176]

    АС является результатом химических превращений (присоединения, отщепления и др.), ведущих к образованию соединений с однлгм или несколькими асимметрическими атомами углерода, азота, серы и других элементов. Например  [c.226]

    Химическая реакция в растворе или с участием компонентов раствора сопровождается изменением состава раствора. Например, при растворении цинка в кислоте в растворе появляются ионы цинка, и их концентрация возрастает в ходе реакции. При этом в растворе уменьшается концентрация ионов водорода. Тем самым изменяются и все зависящие от состава свойства раствора. Раствор, компоненты которого участвуют в химическом превращении, является фазой переменного состава. То же относится и к газовой фазе. Так, при синтезе аммиака из водорода и азота в газовой фазе происходит нарастание концентрации аммиака и убывание концетра-ций Н2 и N2. Когда в газовой фазе находится даже один компонент, свойства газовой фазы могут изменяться. Если поместить в закрытую колбу оксид кальция и диоксид углерода, то за счет превращения их в СаСОз будет убывать концентрация СО2 и тем самым его давление. Следовательно, состояние газовой фазы будет изменяться. Поэтому газовая фаза, компоненты которой принимают участие в химическом превращении, также является фазой переменного состава. В этом случае можно искусственно создать такие условия, что давление будет сохраняться. Например, можно проводить ту [c.193]

    Так же как и для химических реакций, теплоты химической адсорбции могут быть весьма значительными — намного больше теплот конденсации. Еще одним принципиальным отличием химической адсорбции от физической является то, что в результате образования более прочных связей хемосорбированное вещество с трудом удаляется с поверхности адсорбента, причем десорбция может сопровождаться химическими превращениями. Так, например, при адсорбции кислорода на поверхности угля образуется настолько прочная связь, что при десорбции в газовую фазу выделяются оксиды углерода СО и СО2. Во многих случаях на поверхности адсорбента могут одновременно находиться физически и химически адсорбированные молекулы газа (например, при адсорбции СО2 на ЛЬОз). [c.318]


Смотреть страницы где упоминается термин Углерод химические превращения при: [c.38]    [c.95]    [c.183]    [c.27]    [c.382]    [c.169]    [c.347]    [c.211]   
Фотосинтез 1951 (1951) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Превращения химические



© 2025 chem21.info Реклама на сайте