Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллизация полимеров температура

    Масло- и морозостойкость акрилатов зависит от величины алкильного радикала. При к = 2 наблюдается более высокая удельная плотность энергии когезии и, как следствие, высокая маслостойкость и малая морозостойкость. С увеличением длины алкильного радикала падает маслобензостойкость, повышается морозостойкость, увеличивается липкость и ухудшается обрабатываемость полимеров. При Сд и выше наблюдается кристаллизация полимеров [2]. Замена акрилата на соответствующий метакрилат приводит к получению более жестких сополимеров, что объясняется вдвое большей удельной плотностью энергии когезии группы СНз — по сравнению с группами —СНг— или —СН— [3, гл. 1П]. В связи с получением полимеров с более высокой температурой стеклования метакрилаты не применяются в качестве основных мономеров для получения акрилатных каучуков, а используются только при получении пластиков. Низшие алкил-акрилаты и метакрилаты представляют большой интерес для синтеза пленкообразующих латексов [4]. [c.387]


    Особенностью кинетики кристаллизации полимеров является очень сильная чувствительность скорости кристаллизации к изменению температуры. Особенно это проявляется при малых переохлаждениях, т. е. вблизи температуры плавления, где к характеризуется высоким отрицательным температурным коэффициентом при повышении температуры на несколько градусов скорость кристаллизации уменьшается на несколько порядков. [c.190]

    В высокомолекулярных веществах охлаждение до температур, при которых сохраняются только колебания звеньев около положений равновесия, также соответствует обычно состоянию их застеклования, а не кристаллизации. В полимерах при охлаждении резко возрастает внутренняя вязкость, а укладка длинных цепей в правильную решетку встречает дополнительные затруднения (см. ниже) поэтому кристаллизация полимеров при охлаждении наблюдается гораздо реже, чем их переход в застеклованное состояние, в котором в полимере не только цепи, но и все звенья находятся в фиксированном состоянии (сохраняются лишь колебательные движения звеньев), деформация материала сильно затруднена, он становится неэластичным и хрупким, как обычное стекло например, известно, что каучук при замораживании теряет свою способность к растяжению и становится хрупким. Так как морозостойкость полимерных материалов заключается в сохранении ими эластичности при низких температурах, то температура стеклования определяет морозостойкость эластичных материалов и имеет большое техническое значение. Переход полимеров в застеклованное состояние также характеризуется температурами Tg , тех- [c.224]

    Представления о структуре монокристаллов полимеров, полученных из разбавленных растворов, справедливы и для пластин, получающихся при кристаллизации из расплавов. Некоторое различие наблюдается лишь в их размерах. Это связано с тем, что температуры, при которых кристаллизация полимеров из разбавленных растворов происходит с заметной скоростью, обычно значительно ниже температуры плавления. Температуры кристаллизации из расплава могут быть близки к температуре плавления полимера, а это способствует образованию более толстых пластин. Обычно при кристаллизации из расплава вырастают целые блоки пластин — многослойные кристаллы. Как и монокристаллы, выра- [c.173]

    С увеличением молекулярной массы из-за уменьшения подвижности расплава скорость кристаллизации снижается. Температуры, отвечающие максимальной скорости кристаллизации, приведены для ряда полимеров в табл. 3.2. Там же приведены сведения об их молекулярной массе. [c.55]


    Морозостойкость вулканизатов определяется температурами стеклования и кристаллизации полимера, связь которых с его структурой кратко рассматривалась выше (стр. 484). Наиболее морозостойки (сохраняют эластичность до —80- --90 °С)  [c.493]

    Температура кристаллизации полимера - температура, при которой происходит возникновение дальнего порядка во взаимном расположении сегментов макромолекул. [c.406]

    Присутствие алифатических заместителей в метиленовых звеньях диаминов и дикарбоновых кислот затрудняет кристаллизацию полимера и ориентацию его макромолекул. Плотность упаковки в полимере нарушается, при этом снижается температура плавления полимера и уменьшается его механическая прочность. Например, температура плавления полиамида, полученного из метиладипиновой кислоты [c.450]

    Приблизительно те же соображения могут быть высказаны и о влиянии гибкости цепных молекул на способность полимеров к кристаллизации. В области температур, при которых гибкость цепных молекул велика, тепловое движение нарушает ориентацию звеньев и образование кристаллов невозможно. И, наоборот, при пониженных температурах энергии теплового движения может оказаться недостаточно для перегруппировки звеньев, следовательно, кристаллизация полимера возможна только в определенном температурном интервале, обеспечивающем оптимальную гибкость цепи . [c.137]

    Как было показано ранее (см. рис. 111.12), режим сушки значительно влияет на качество изделий. При переработке склонных к кристаллизации полимеров температура сушки должна быть понижена, так как при высоких температурах происходит упорядочение структуры полимера, приводящее к повышению хрупкости изделий. [c.149]

    ЯМР [16], электронно-микроскопического [17]. Установлено, что даже незначительная доля структурных неоднородностей в каучуке оказывает большое влияние на скорость и степень кристаллизации полимера. Полупериод кристаллизации возрастает почти на порядок с уменьшением содержания ис-1,4-звеньев от 98 до 95%, а температура плавления кристаллов изменяется пропорционально изменению содержания 1,4-звеньев в этих пределах [14]. Скорость образования кристаллов в полимерах, содержащих 10% гранс-звеньев, на три порядка меньше величины, характерной для полиизопрена, состоящего исключительно из цис- [c.204]

    ДВОЙНЫХ связей, участки макромолекул с длинными боковыми ответвлениями. Разветвленные макромолекулы образуются в результате реакций передачи цепи через полимер. С повышением температуры полимеризации и количества катализатора или инициатора нерегулярность структуры полимера возрастает, увеличивается количество звеньев, соединенных в положении 1—2 или 3—4, а также разветвленность макромолекул. Наличие неодинаковых по структуре звеньев и различных боковых ответвлений в макромолекуле препятствует кристаллизации полимера и уменьшает подвижность отдельных сегментов макромолекул. Средний молекулярный вес синтетических каучуков обычно меньше среднего молекулярного веса натурального каучука. Все эти структурные различия между синтетическими полимерами и натуральным каучуком определяют более низкую прочность, мень шую морозостойкость и пониженную эластичность резин на основе синтетических полимеров непредельных углеводородов по сравнению с резинами из натурального каучука. [c.237]

    Рассматривая влияние изменений температуры и давления на процессы кристаллизации полимеров в литьевой форме, мы до сих пор не учитывали влияния молекулярной ориентации, возникающей вследствие течения при заполнении формы. Эти эффекты будут рассмотрены ниже. [c.59]

    Важнейшее условие — строение макромолекул полимера цепная макромолекула должна быть регулярной,, так как в этом случае дальний порядок в расположении звеньев вдоль оси цепи заложен в самой структуре ее. Нерегулярные полимеры не способны кристаллизоваться.. Так как процесс кристаллизации связан с организацией структурных элементов макромолекул, то достаточная гибкость цепей — другое необходимое условие кристаллизации, Кристаллизация полимеров с жесткими цепями затруднена. Кроме того, гибкость макромолекул сильно зависит от температуры. Поэтому кристаллизация различных полимеров возможна при оптимальной для каждого из них температуре, когда тепловое движение звеньев, достаточно и в то же время не препятствует их ориентации. Наконец, кристаллизация предусматривает воз  [c.491]

    Механизм влияния кристаллизации на температуру размораживания сегментальной подвижности в аморфных областях полимера рассмотрен Манделькерном [45]. В процессе образования кристаллитов в образующейся кристаллической фазе заметно возрастает плотность полимера, что приводит к деформации аморфных областей, уменьшению возможного конформационного набора для находящихся в них макромолекул и к увеличению времени релаксации процесса их сегментальной подвижности. В связи с этим представляет интерес оценка характера зависимости температуры размораживания сегментальной подвижности в аморфной фазе полимера от степени его кристалличности 2.6]. Для этого рассмотрим 1 моль сегментов аморфной фазы, занимающий объем V. В процессе кристаллизации полимера его аморфная фаза подвергается деформации. Допустим, что эта деформация носит характер всестороннего расширения (или сжатия). Добавочное отрицательное давление, вызывающее это расширение, [c.56]


    Необходимо также, чтобы при температуре кристаллизации макромолекулы сохраняли определенную подвижность, необходимую для их перестройки. Известно, что кристаллизация происходит при температуре ниже температуры текучести Тг, но выше температуры стеклования Тс, т. е, для полимеров в интервале высокоэластического состояния. Следовательно, жесткоцепные полимеры, температура разлол ения которых лежит ниже Гс, вообще не способны кристаллизоваться и всегда находятся в аморфном состоянии. Примером таких полимеров может служить целлюлоза, В то же время слишком большая гибкость макромолекул также мешает кристаллизации, так как в этом случае образующиеся упорядоченные области сразу л<е нарушаются в результате флуктуаций. Следовательно, наибольшей способностью к кристаллизации обладают полимеры с цепями средней гибкости. [c.258]

    Кристаллизация. Кристаллизация полимеров сопровождается выделением скрытой теплоты. Именно это позволяет использовать метод ДТА для наблюдения за ходом кристаллизации по появлению экзотермического пика (рис. VII.4) [3]. Из рисунка видно, что кр< пл, т. е. кристаллизация всегда происходит при переохлаждении. Площадь под пиками отвечает теплоте фазовых превращений и по абсолютной величине одинакова для кристаллизации и плавления. Степень переохлаждения, а именно различие между температурой плавления и температурой начала кристаллизации, как правило, пропорциональна скорости охлаждения. Отсутствие экзотермических ников на кривых ДТА еще не является доказательством того, что кристаллизация в данной температурной области не происходит, поскольку этот процесс может идти чрезвычайно медленно. [c.107]

    В сравнении с низкомолекулярными кристаллами, для которых характерно скачкообразное изменение структуры, кристаллические полимеры переходят в другое фазовое состояние в некотором температурном интервале. Скорость кристаллизации полимеров разного химического состава находится в весьма широких пределах. Одни кристаллизуются быстро, другие медлен-по, что зависит от степени упорядоченности пачек в аморфном состоянии и от сложности построения надмолекулярных структур. Если пачка в аморфном состоянии состоит из более или менее параллельно сложенных макромолекулярных цепей, то процесс кристаллизации заключается в повороте цепей (см. рис. 3). На это требуется относительно малое время. Более длителен переход одной надмолекулярной структуры в другую. Если полимер кристаллизуется быстро, то при охлаждении расплава температура кристаллизации соответствует температуре плавления кристаллов. Если охлаждать расплав полимера, кристаллизующегося медленно, то он может закристаллизоваться при температуре нил<е Тпи или вовсе не закристаллизоваться. Таким образом, ускоряя или замедляя процесс охлаждения расплавленного полимера, можно изменить его структуру и свойства. Этим пользуются при переработке полимеров. [c.21]

    Таким образом, изотермическая кристаллизация полимеров при температурах значительно ниже температуры плавления приводит к образованию неравновесных (метастабильных) кристаллов, средний размер которых вдоль оси макромолекулы зависит от температуры кристаллизации, возрастая с ее повышением. Монокристаллы полимеров, полученные как из растворов, так и из расплавов, неоднородны по строению. Участки макромолекул, находящиеся внутри кристаллов, образуют кристаллическую ре- [c.174]

    Термодинамика. Плавление и кристаллизация полимеров представляют собой фазовые переходы первого рода. Этим переходам соответствует скачкообразное изменение первых производных энергии Гиббса (О), в частности энтальпии Н=0 — Т дС дТ)р, энтропии 8 = — (дО/дТ)р и объема V — дО/дР)т, где Р —давление, Т — температура. [c.182]

    На рис. VI. 20, а приведена типичная зависимость удельного объема низкомолекулярного вещества от температуры. Видно, что плавление происходит практически в точке, в которой скачком меняется удельный объем. Иначе обстоит дело в случае полимеров, кристаллы которых относительно малы и значительно более дефектны по сравнению с низкомолекулярными. Температуры плавления кристаллических полимеров, как правило, ниже равновесной. Разность может достигать от нескольких градусов до нескольких десятков градусов. Редкое исключение составляют лишь упомянутые выше кристаллы с выпрямленными цепями, которые плавятся вблизи TZ- При кристаллизации полимеров из расплава всегда образуются кристаллы, характеризующиеся достаточно широким распределением по размерам и по дефектности, а следовательно, и по температурам плавления. Поэтому поликристаллические полимерные фазы плавятся в определенном интервале температур, иногда весьма широком (рис. VI. 20, б). Последнее, разумеется, не означает нарушения термодинамического требования скачкообразности перехода. Плавление каждого отдельного кристаллита происходит скачком, а кажущаяся плавность перехода отражает лишь структурную неоднородность кристаллического образца. [c.186]

    При понижении температуры политетрафторэтилена, нагретого выше температуры фазового перехода, происходит обратный процесс —кристаллизация полимера, причем скорость кристаллизации наибольшая около 300° С. Если образец охладить быстро, он не успеет закристаллизоваться. Такой полимер, который называется закаленным , мало содержит кристаллической фазы и более растяжим при низких температурах. Закаленный образец постепенно переходит в кристаллическое твердое состояние. Скорость этого перехода возрастает при приближении к 300° С. Поэтому с точки зрения стабильности механических свойств полимера температура в пределах 300°С для эксплуатации нежелательна. При температуре до 250° С этого явления ввиду малой скорости кристаллизации не наблюдается, поэтому до 250° С политетрафторэтилен можно длительно применять, не опасаясь изменения его физических свойств, связанного с изменением кристалличности. [c.145]

    В 50-Х-60-Х годах сведения о ММР ПЭВД получали с помощью препаративного фракционирования с последующим определением молекулярных масс фракций. Проведение фракционирования при температуре выше температуры кристаллизации полимера в растворе и выделение достаточно большого числа (не менее 20) фракций обеспечивает удовлетворительное фракционирование ПЭВД по молекулярной массе, а отсутствие большой полидисперсности позволяет избежать ошибок в определении молекулярной массы фракций названными выше методами. Все это является залогом успешного определения ММР ПЭВД с помощью фракционирования, однако длительность и трудоемкость анализа делают нежелательным применение зтого метода. [c.134]

    При кристаллизации полимер утрачивает способность к высокоэластической деформации, которая может появиться вновь только выше температуры плавления кристаллон. Следовательно, высокоэластическое состояние заключено у кристаллических полимеров между температурой плавленпя Т,,., и температурой текучести Тг- Ес 1и температура плавления ниже температуры текучести, [c.259]

    БК является аморфным в широком интервале температур продуктом кристаллизация полимера происходит при больших (свыше 500%) растяжениях. Склонность БК к кристаллизации в значительной мере определяется содержанием звеньев изопрена в цепи. При содержании до 1% (мол.) двойных связей возможна кристаллизация БК без растяжения. При увеличении ненасыщенности склонность к кристаллизации уменьшается. [c.259]

    Межмолекулярные силы при кристаллизации полимеров играют двоякую роль. С одной стороны, с увеличением межмолекулярного взаимодействия облегчается образование прочных агрегатов и упрочняются кристаллические образования. Температура плавления кристаллических полимеров повышается с ростом величины межмолекулярных сил, например, в ряду гуттаперча, полиэтилен, полипропилен, полиамид. С другой стороны, увеличение межмолекулярного взаимодействия обусловливает повышение вязкости полимера, затрудняющее перегруппировку молекул при кристаллизации. Таким образом, кристаллизации благоприятствует некоторое оптимальное значение межмолекулярных сил. [c.137]

    При нарушении регулярности сочетания звеньев растущей цепи кристаллизация полимера невозможна. В случае полимеризации производных бутадиегга по мере повышения температуры наряду с присое/ инением звеньев по схеме голова к хвосту (1—4-присоединение), возрастает вероятность присоединения молекул мономера по схемам 1—2 и 2--1 и но схемам 3—4 п 4-3. [c.129]

    Скорость кристаллизации достигает максимума при —25. При этой температуре процесс кристаллизации заканчивается в течение 10 час., тогда как при +20 он происходит в продолжение года. Растяжение натурального каучука приводит к ориентации полимера, следовательно, способствует повышению скорости и степени кристаллизации. Этим объясняется высокий предел прочности при растяжении резин на основе натурального каучука. Выше 45° натуральный каучук утрачивает кристалличность и переходит в аморфное состояние, одновременно начинают возрастать пластические деформации. При обычной температуре натуральный каучук представляет собой высокоэластичный полимер. Высокую эластичность каучук сохраняет и при низких температурах, вплоть до —70°, что свидетел1>ствует о высокой морозостойкости этого полимера. Температура перехода его в стекловидное состояние составляет минус 70—минус 75  [c.236]

    Все используемые в технике кристаллизующиеся материалы являются поликристаллитами. Иначе говоря, все они состоят из множества кристаллических областей, каждая из которых граничит с другими кристаллическими или аморфными областями. Поэтому морфология кристаллизующихся материалов носит очень сложный характер. По этой причине основные характеристики их изучают на монокристаллах. Полимеры не являются исключением. Полимерные монокристаллы выращивают из слабоконцентрированных растворов. При температуре кристаллизации способный к кристаллизации полимер высаживается из раствора в виде крошечных пластинок (ламелей), имеющих все характерные черты кристалла, например регулярные грани (видны при электронной микроскопии), и дающих дифракционные картины, присущие монокристаллам. Необходимость применения электронного микроскопа или оптического микроскопа с большим увеличением обусловлена очень малыми размерами полимерных кристаллов максимальные размеры монокристалла ПЭВП составляют несколько мкм, в то время как его толщина очень невелика — порядка 100 А. Монокристаллы других полимеров имеют форму полых пирамид, которые часто закручиваются по спирали, что свидетельствует о существовании винтовых дислокаций. Детальное рассмотрение природы монокристаллов можно найти у Джейла [51, Келлера [6] и Шульца [7]. Наиболее вал<ная и неожиданная особенность монокристаллов состоит в наличии практи- [c.47]

    Если полимер способен к кристаллизации, то на кривой удельного объема при температуре плавления наблюдается разрыв. На рис. 32.2 приведена типичная картина для частично кристаллического полимера, характеризующегося как стеклообразным, так и кристаллическим состоянием. Т — это температура плавления, Тогда как Tg 7g . .. отражают температуры стеклования, полученные при различных скоростях охлаждения. Область между Т и Tg характеризует переохлажденное состояние, сопровождающееся резкой кристаллизацией. Ниже Tg кристаллизация не может протекать с большой скоростью из-за высокой вязкости системы, поэтому полимер остается в неупорядоченном стеклообразном состоянии. При уменьшении скорости охлаждения переохлаждение захватывает область более низких температур, вследствие чего переход Tg, имеет место при температуре более низкой, чем Tg,. При бесконечно большом времени охлаждения температура стеклования стремится к какому-то предельному значению (Tg ). Г1оли-меры в стеклообразном состоянии, достигнутом при различных скоростях охлаждения, характеризуются разными значениями Tg и плотности. У полностью кристаллических полимеров температура стеклования не наблюдается (рис. 32.3). [c.149]

Рис. 3.10. Зависимость обратных полупериодов кристаллизации полиэтиленсеба-цината от температуры кристаллизации. Полимер, соответствующий кривой А, имеет минимальную молекулярную массу, Р — максимальную. Рис. 3.10. <a href="/info/567224">Зависимость обратных</a> <a href="/info/318136">полупериодов кристаллизации</a> полиэтиленсеба-<a href="/info/920598">цината</a> от <a href="/info/3942">температуры кристаллизации</a>. Полимер, <a href="/info/1573666">соответствующий кривой</a> А, имеет <a href="/info/938766">минимальную молекулярную массу</a>, Р — максимальную.
    Для кристаллизации полимеров в равновесных условиях их надо подвергнуть переохлаждению. Скорость кристаллизации чистого полимера определяется произведением скоростей двух процессов зародышеобразования и роста кристаллов. Скорости зароды-шеобразования высоки при низких температурах, когда полимерные цепи находятся на низком энергетическом уровне. С другой стороны, высокие температуры кристаллизации благоприятствуют высоким скоростям роста кристаллов это связано с тем, что цепи, участвующие в кристаллизации, должны извлекаться из расплава и перемещаться к поверхностям кристаллообразования. Повышение температуры, снижая вязкость, увеличивает подвижность цепей и скорость роста кристаллов. [c.54]

    Выше мы говорили об аморфных полимерах. Если полимер состоит из макромолекул с регулярной структурой, то ближний порядок в расположении сегментов может при определенной температуре (температура кристаллизации) и за определенный период времени перейти в дальний порядок. Возникнет кристаллическая структура. В дальнейшем мы более подробно познакомимся с особенностями кристаллизации полимеров. Отметим, что полимер не может закристаллизоваться на 100%, как это происходит с низкомолекулярными веществами. Вследствие значительной перепутанности макромолекуляриых клубков часть сегментов не может участвовать в построении кристалла по чисто стерическим причинам (рис. 7.7). Степень кристалличности полимеров колеблется поэтому в широких пределах от 30 до 80%. В очень регулярных полимерах содержание кристаллической части может достигать 90—95%. [c.103]

    Температуры плавления и кристаллизации полимеров не совпадают. Если вода замерзает при 0°, а лед при обычном давлении плавится при той же температуре, то у полимеров всегда Г л превышает Тир на несколько градусов или десятков градусов в зависимости от скорости нагревания или охлаждения. Кривые охлаждения и нагревания кристаллического полимера образуют петлю, напоминающую петлю гистерезиса, возникающую при на-магнпчнванин н размагничивании железного сердечника (рис. 12.10). Несовпадение Тщ, и 7 пл — следствие замедленности релакса ционных процессов, необходимых для создания кристаллической структуры. Заметная скорость кристаллизации наблюдается лишь при значительных переохлаждениях, которые наступают при охлаждении расплава до температур значительно ниже 7 пл. [c.180]

    Новый полимер в настоящее время вырабатывается на полузаводской установке фирмы Геркулес и выпускается под маркой пептон [92]. Особенность структуры этого нового полимера заключается в том, что хлорметиль-ные группы в нем связаны с атомом углерода, у которого нет незамещенных водородных атомов, поэтому исключается возможность образования хлористого водорода при повышенной температуре. Кроме того, через каждые три углеродных атома в цепи макромолекул пептона имеется атом кислорода. Это заметно повышает гибкость макромолекул, что внешне выражается в повышении эластичности полимера. Одпако это не ухудшает теплостойкости материала, не снижает его механической прочности и не придает ему хладотекучести, так как строго симметричная структура звеньев способствует кристаллизации полимера. Выше температуры плавления полимер приобретает высокую текучесть, позволяющую формовать из него изделия любой сложности. При охлаждении наблюдается сравнительно малая усадка пептона, что облегчает формование изделий строго заданных размеров. [c.800]

    Макромолекулы полимеров фторопроизводных этилепа имеют преимущественно линейное строение. Это обусловливает п высокую степень кри сталлизации полимеров, особенно фторопласта-4. Вследствие высокого молекулярного веса (около 250 ООО) скорость кристаллизации полимера при температуре ниже 250° ничтожно мала и достигает максимума при 300— 310 . При длительном воздействии нагрузки на образец при температуре ниже 250° происходит постепенная ориентация кристаллитных образова- [c.803]

    Кристаллизация полимеров сопровождается выделением теплоты плавления ДЯ л, которая представляет собой разность энтальпий полимера в расплавленном и кристаллическом состояниях. Теплота плавления связана с температурой плавления и энтропией плавления А5ял соотношением  [c.142]

    Получаемые из каучуков различные резиновые изделия эксплуатируются в высокоэластическом состоянии. Для ЭтИХ полимеров температура стеклования или кристаллизации в ряде случаев является нижним температурным пределом их работоспособности и определяет морозостойкость таких материалов Ниже этой температуры полимер находится в твердом состоянии и непригоден для употребления. Следовательно, для каучуков температура стеклования или Кристаллизации должна быть как можно более низкой. Температура стеклования современных высококачественных каучуков, так называемых морозостойких, лежит в области от — 70 до — 90 " С. Кау 1уки с температурой стеклования от —20 до —40° С Относятся к неморозостойким. [c.151]

    Интервал плавления, определенный таким образом, приблизительно на 15° ниже по сравнению с измерением в капиллярной трубке. На температуру плавления оказывает влияние степень кристаллизации и молекулярный вес полимера. Использование ацетона при осаждении (примечание 8) может способствовать кристаллизации, и температура плавления полимера, таким Чбразом, будет выше. Медленное высушивание будет также содействовать ристаллизации. Полимер с характеристической вя зк остью 1,0—3,0 не течет вплоть до температуры порядка 250°. [c.20]


Смотреть страницы где упоминается термин Кристаллизация полимеров температура: [c.424]    [c.47]    [c.185]    [c.184]    [c.112]    [c.196]    [c.127]    [c.91]    [c.268]    [c.255]   
Физико-химия полимеров 1963 (1963) -- [ c.139 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллизация полимеров

Температура кристаллизации

Температура полимеров



© 2025 chem21.info Реклама на сайте