Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Наложение реакций

    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (20.5) величина не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода ( + 1,23 В при ан = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала больщинство металлов термодинамически неустойчивы, и вместо реакции выделения кислорода идет процесс их анодного растворения или окисления. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых ноложительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными оксидами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аоп-= 1 и 25° С он составляет около +0,41 В), в качестве анодов применяют также металлы группы железа, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной, и поэтому кислород выделяется обычно не на самом металле, а на его оксидах. [c.421]


    Вопрос о влиянии структуры диаграммы фазового равновесия жидкость— пар и процесса открытого испарения при наложении условия химического равновесия не рассматривался в приведенных примерах потому, что это влияние будет наибольшим в условиях мгновенной реакции. [c.207]

    Наложение внешнего тока (катодного или анодного) на такой редокси-электрод не меняет направления протекания этих реакций, пока не достигнуто определенное значение потенциала. Растворе- [c.387]

    Внешне такое наложение реакций проявляется в смещении максимума скорости газовыделения в сторону более высоких температур [10, 11]. Иначе говоря, динамика процессов, протекающих при нагреве в крупных кусках, может суп ,ественно от.личать-ся от процессов с тонко измельченным материалом. Если в последнем случае скорость нроцесса мон ет определяться химической реакцией, то в случае куска кинетические уравнения и для простых и для сложных реакций могут лишь формально описывать скорость протекания процесса [12, 13]. [c.141]

    Электрогравиметрия основана на использовании процесса электролиза. Наложение внешнего напряжения на электроды электрохимической ячейки приводит к определенным электрохимическим реакциям при прохождении тока. Проходящий ток линейно зависит от разности вн— эл и подчиняется закону Ома  [c.179]

    Н,+С0 С + Н,0 могут рассматриваться как результат наложения реакции водяного пара (8.17) и реакции термического распада окиси углерода (8.13), т. е. не являются независимыми. [c.387]

    Джонс [102] исследовал образование N0 , КгО и НЫОд в смесях М +Оз различного состава в присутствии паров Н5О под действием электронов с энергией I мэв. Выход N02 и НЫОз имеет максимум при содержании кислорода около 15%. Поскольку этот результат является следствием наложения реакций образования и разложения окислов и НКОз, роль кислорода в этих процессах может быть достаточно многообразна. [c.184]

    Принцип независимости (наложения) реакций Оствальда если в среде протекает одновременно несколько реакций, то они идут так, как будто бы каждая протекала отдельно. Принцип, выраженный в такой крайней форме, конечно, неверен — реакции влияют друг на друга. Но он является правильным первым при- ближением. Это значит, что наблюдаемые обычно реакции можно разложить на более простые. [c.298]

    Объяснение возникновения к. э. как результата наложения реакций, протекающих на различного рода активных центрах, согласуется с тем фактом, что к. э. обнаруживают многие многокомпонентные катализаторы к. э. не наблюдается, если различного рода термической обработке подвергнуть очень чистые вещества [17]. Это, возможно, свидетельствует о том, что многие, активные центры обусловлены загрязнениями и их число меняется в зависимости от характера предварительной обработки катализатора в результате, например, агрегации, испарения этих примесей и т. д. В качестве иллюстрации табл. 2 и 3 приведены данные по разложению N2O на MgO, приготовленном из синтетического и природного магнезита, а также данные по орто-пара-превращению водорода на чистых металлах и сплавах. [c.100]


    До сих пор рассматривалось изменение потенциала электрода под током в случае протекания на электроде лишь какой-либо одной реакции. Однако электродный процесс может, в принципе, представлять собой наложение одной реакции на другую или даже совокупность нескольких реакций. Такие реакции, протекающие на одном и том же электроде и объединенные общностью электродного потенциала, называются совмещенными или сопряженными электрохимическими реакциями. [c.386]

    Использование принципов изучения совмещенных реакций целесообразно пояснить на примере наложения двух электродных процессов. Полученные при этом выводы ле1 ко распространить на случаи совместного протекания любого числа реакций. [c.389]

    Ниже проводится исследование переходных гидродинамических процессов в аппарате после наложения небольших возмущений на расходы фаз лишь для двух предельных случаев. В первом из них рассматривается ситуация, когда постоянная времени системы автоматического регулирования уровня значительно превышает время r , за которое концентрационная волна проходит расстояние от точки ввода дисперсной фазы до поверхности раздела фаз. В пределе может стремиться к бесконечности, что означает полное отсутствие регулирования уровня, как,- например, в непроточном аппарате. Второй случай, наоборот, предполагает настолько быструю реакцию системы автоматического регулирования на изменения расходов фаз, что уровень поверхности раздела фаз в процессе распространения концентрационной волны может рассматриваться практически постоянным. [c.119]

    Двустороннюю стрелку, являющуюся символом наложения резонансных структур, не следует путать с символом, состоящим из двух стрелок, которые направлены в противоположные стороны ( ), и означающим протекание обратимой химической реакции. Двусторонняя стрелка вовсе не означает, что молекула или ион совершает беспрерывные переходы между двумя структурами. Она лишь говорит о том, что электронная формула NOJ представляет собой нечто среднее между двумя резонансными структурами-их гибрид. Если для молекулы или иона можно записать две или несколько резонансных структур, электронная формула такой частицы рассматривается как резонансный гибрид этих структур. [c.478]

    Следует особо отметить, что соображения, наложенные в данном разделе, полностью приложимы и к цепным реакциям, проводимым в условиях двухфазного потока, например прп окислении углеводородов воздухом. В этом случае система уравнений (6,9) должна быть дополнена уравнением межфазной диффузии, учтен объем газовой фазы и скорректировано значение коэффициента теплопередачи (см. гл. 7). [c.106]

    Таким образом, независимо от способа выражения общей движущей силы процесса и, следовательно, коэффициента массопередачи наложение химической реакции приводит к изменению как обшей движущей силы процесса, так и коэффициента массопередачи, определенного как коэффициент пропорциональности между движущей силой и потоком массы. [c.226]

    После наложения каждой покомпонентной материальной связи рассматривается нагрузка (производительность) этих связей для каждого компонента. Если задано потребление к-го компонента в данном стоке, то нагрузка на связь по к-му компоненту равна этому потреблению. Если же к-й компонент применяется в серии последовательных реакций или на первом этапе анализа было решено, что этот компонент присутствует в избытке, то возможно, что нагрузка связи по этому компоненту будет превышать его расход в точке стока. [c.195]

    Аналогично следует предусмотреть связи рассматриваемого выходного потока реактора со всеми точками стока данного дополнительного компонента. Наложение таких вторичных связей для компонентов, не предусмотренных выбранной схемой химической реакции и рассматриваемых лишь как допустимые примеси в ранее введенных потоках, приводит к созданию схемы покомпонентных материальных связей, структура которой далеко не очевидна, если исходить только из выбранной схемы химической реакции. [c.196]

    Следовательно, при переходе от лабораторных исследований, начало которым было положено Фростом [16— 19], к крупнотоннажному производству необходимо изучение процесса на пилотных установках при искусственном наложении отдельных осложнений или их комплекса. Углубленное изучение характера протекания реакций при наложении на них гидродинамических, массообменных и теплотехнических осложнений в нефтепереработке носит название исследования прикладной макрокинетики [14]. В лабораториях обычно исследуют истинную кинетику или микрокинетику. Существуют другие названия макрокинетики химико-технологическая кинетика [20], промышленная кинетика [21, 22], динамика промышленных процессов [4], кинетика каталитических реакций с массо- и теплопередачей [23, 24], инженерная химия [22] и просто макрокинетика [25]. [c.139]


    Термин перенапряжение применяется, таким образом, и к данному процессу электролиза в целом перенапряжение при электролизе), и к отдельным электродным процессам в отдельности перенапряжение на электродах). Он применяется не только для обозначения явления, но и для характеристики величины перенапряжения. Перенапряжение при электролизе равно разности между напряжением разностью потенциалов), наложенным на электроды, и э. д. с. гальванического элемента, отвечающего обратной реакции. Однако, в отличие от потенциалов разложения и выделения, термин перенапряжение применяют к процессам электролиза при любой плотности тока. При очень малой плотности тока перенапряжение т1о равно разности между потенциалом разложения разл и 3. д. с. соответствующего гальванического элемента Е, т. е. [c.451]

    Полученные результаты показывают, что скорость реакции сильно зависит от концентрации перекиси водорода (рис. 194), причем максимум скорости относится к концентрациям 35—40% мол. С повышением температуры скорость реакции увеличивается так, что логарифм скорости находится в линейной зависимости от обратной температуры. В области 10°С прямая имеет излом вследствие наложения влияния диффузии. Энергия активации чисто радиационной реакции равна 6,5 ккал моль эта величина близка к энергии активации при проведении этой реакции в виде фотохимической. Зависимость скорости от концентрации [c.555]

    При невысоких давлениях концентрация водорода на поверхности катализатора мала, и большое число кислотных активных центров не работает в результате дезактивации коксом. Наложение этих двух факторов приводит к наличию максимума скорости реакции как функции давления. Так, скорость гидрокрекинга на катализаторе с высокой кислотной активностью белого вазелинового масла, выкипающего в интервале 352—485°С, проходит через максимум при 21 МПа (табл. 11.7). [c.300]

    Химически действие каталитического риформинга можно представить как наложение одной на другую реакций изомеризации, дегидроциклизации и гидрогенизации, которые приводят в итоге [c.272]

    За последние годы получил применение ядерный магнитный резонанс (ЯМР), который относится к радиоспектроскопическим методам. Явление ЯМР возникает под действием слабого радиочастотного поля, наложенного на сильное магнитное поле. ЯМР — это резонансный эффект изменения намагниченности вещества, который обнаруживают по возникновению электродвижущей силы индукции в катушке, окружающей образец исследуемого вещества. Спектр ЯРМ дает информацию о структуре соединения, о химической природе, пространственном расположении и числе атомов водорода в функциональной группе молекул, о ходе реакции, так как можно [c.230]

    Появление небольших количеств одиночных (непарных) продуктов, подобных метану, в разложении этана или этану и пропану в крекинге пропана или бутанов, является органическим следствием сложного радикально-цепного механизма, в частности результатом реакций обрыва цепей путем рекомбинации радикалов в объеме или на стенках, тогда как с точки зрения молекулярного механизма появление их рассматривают как результат наложения побочных реакций. Возникают также продукты диспропорционирования радикалов. [c.15]

    СОМ будет ионизация адсорбированного водорода с переходом его в раствор. Таким образом, эта область потенциалов отвечает только стадии разряда (при катодном толчке) и ионизации (при анодном толчке), что позволяет исследовать кинетику одной этой стадии без наложения осложняющих эффектов, связанных с процессами рекомбинации или диссоциации молекул водорода. Изучение зависимости емкости двойного слоя и омического сопротивления (эквивалентного торможению па стадии разряда) от частоты наложенного тока в этой области потенциалов позволило Долину, Эрш-леру и Фрумкину впервые непосредственно измерить скорость акта разряда. Параллельные поляризационные измерения при небольщих отклонениях от равновесного потенциала, где неренапряжение еще линейно зависит от плотности тока, дали возможность найти скорость суммарного процесса и сопоставить ее со скоростью стадии разряда. Было установлено, что акт разряда протекает с конечной скоростью, причем ее изменение с составом происходит параллельно изменению скорости суммарной реакции. В то же время скорость стадии разряда всегда больше, чем скорость суммарной реакции (в 27 раз в растворах соляной кислоты и в И раз в растворах гидроксида натрия). Таким образом, акт разряда хотя и протекает с конечной скоростью, но не определяет скорости всего процесса выделения водорода на гладкой платине и не является здесь лимитирующей или замедленной стадией. [c.416]

    В случае химической реакции дело состоит, однако, втом, что имеет место наложение реально существующих механизмов, соотношение между которыми с изменением условий может изменяться. Сколько бы редким и частным случаем суперпозиции эквивалентных механизмов ни являлся пример крекинга алканов, он приобретает принципиальное значение, если только в эксперимент не закралась ошибка. [c.43]

    Данные экспериментального изучения бимолекулярных реакций рекомбинации свидетельствуют о том, что в этих реакциях энергия активации имеет малое значение и изменяется в интервале 2—8 кДж. Значения вращательной и дисперсионной энергий частиц изменяются в этих же пределах. Это позволяет предположить, что энергия активации радикальных реакций рекомбинации есть результат наложения центробежной энергии отталкивания и дисперсионной энергии притяжения. Такое предположение впервые было сделано [c.86]

    После того как зона горения прошла через весь слой катализатора, концентрацию кислорода можно повысить, сохраняя ограничения, наложенные на максимальную температуру до тех пор, пока не будет использоваться чистый воздух. Затем катализатор охлаждают до температуры реакции или температуры предварительного осернения и продувают инертным газом или паром. [c.254]

    Скорость этой реакции в большинстве сред велика, о чем свидетельствует отсутствие поляризации при наложении внешнего анодного тока. Скорость коррозии железа обычно лимитируется катодной реакцией, которая, как правило, значительно медленнее (катодный контроль). В неаэрируемых растворах катодная реакция имеет вид [c.99]

    Б щелочной среде следует считаться с наложением реакций 2Н2О + 2е = Нг + 20Н- (9) [c.120]

    Позднее Кокельбергс и Матьё произвели кинетические расчеты окислительного пиролиза с учетом наложения реакций горения и крекинга. В этой же работе сделана первая попытка использовать кинетические уравнения для количественного исследования влияния давления на выход ацетилена при термоокислительном пиролизе метана. Результаты этих расчетов приведены в табл. 4. [c.36]

    Показаво, что наложением реакции гидролиза в этих условиях можно пренебречь. [c.1068]

    При наложении тока / состав раствора вблизи электрода начнет изменяться, и по истечении определенного промежутка времени, когда будет достигнуто стационарное состояние, активности участников электродной реакции в слое эаствора, примыкающем к электроду, прпмут новые постоянные значения а а, а в, а ь и а м. Потенциал равновесного электрода Ж будет теперь отвечать уравнению [c.300]

    В зависимости от направления реакции (катодная или анодная), знака заря-да частиц, участвующих в ней (катионы, анионы, незаряженные частицы), и их роли в электродной реакции (исходные или ко ючные вещества, прямые участники акта обмена заряда с электродом илн косвенные, например лиганды комплексиы.х частиц) возм()л<по несколько случаев взаимного наложения миграции, диф-фу..5ии и конвекции в нроцесее транс-иортиро-вки. [c.302]

    Электрические методы защиты основаны на изменении электрохимических свойств металла иод действием поляризующего тока. Наибольшее распространение получила защита металлов при наложении на них катодной поляризации. При смещении потенциала металла в сторону более электроотрицательных значений (по сравнению с величиной стационарного потенциала коррозии) скорость катодной реакции увеличивается, а скорость анодной падает (см. рис. 24.8). Если при стационарном потенциале Гкор соблюдалось равенство /а = /к, то при более отрицательном значении это [c.503]

    Стирн и Эйринг [8], исходя из модели переходного комплекса, попытались подсчитать значение для реакций, большинство из которых идет с участием ионов. Хотя во многих случаях получено очень хорошее согласие с опытом, для стадий, в которых происходит изменение общего числа зарядов, это следует рассматривать лишь как случайное наложение ошибок . Лейдлер [29] попытался предсказать для реакций, включающих общее изменение заряда ионов, путем использования эмпирической формулы для частичного молярного объема ионов в водных растворах. Этот метод приемлем как чисто качественный, количественно же он может давать расхождения в два раза. [c.442]

    Так как указанное различие в анергиях меиее выражено для свободно-радикальЕШх реакций, то можно сделать вывод, что обычно при каталитическом крекинге влияние структуры молекулы на скорость и характер начального разложения больше, чем при термическом. Однако для более глубокого рассмотрения обоих видов крекинга следует принимать во внимание значительные вторичные реакции олефинов в ионных системах, что будет рассмотрено ния е. При каталитическом крекинге вследствие многочисленных перегруппировок в образовавшихся первоначально олефинах, конечный продукт является результатом наложения равновесной смеси вторичных продуктов реакций олефинов на первичные продукты крекинга. В силу этого конечная смесь углеводородов до известной степени не зависит от структуры исходной молекулы. Таким образом, присутствие большого количества олефинов, получаемых, как было сказано выше, при крекинге любого из основных классов углеводородов, может являться и действительно является причиной таких реакций, которые затемняют, по крайней мере частично, влияние структуры на начальные стадии разложения. Вторичные реакции олефинов менее выражены в свободнорадикальных системах и поэтому наблюдается кажущийся парадокс, — конечные продукты каталитического крекинга, особенно полученные при крекинге нефтяных фракций, на первый взгляд, меньше зависят от характера структур в исходном веществе, чем при термическом крекинге. По аналогии с механизмом присоединения протона к олефинам может произойти соединение иона карбония с олефином, что приведет к образованию нового большего иона карбония  [c.120]

    Согласно мультиплетпой теории, прп катализе происходит наложение грешны реагирующих атомов субстрата (индексная группа) на группу активных атомов катализатора (мультиплет) с образованием промежуточного мультиплетиого комплекса, в котором ослабленные ва.лентные связи перераспределяются по определенным правилам с образованиед продуктов реакции, которые [c.92]

    Известно [11], что на скорость реакций ароматизации при нлат-форминге влияет размер зерна атализатора и что эти реакции тормозятся внутренним транспортом. Однако выбранные формы кинетических уравнений справедливы и для внутридиффузионного режима. Наложение внутреннего транспорта изменит лишь значения постоянных коэффициентов йо и Е, но не вид функциональной зависимости [И]. Это обеспечивает большую гибкость выбранных форм кинетических уравнений. [c.341]

    Процессы нефтепереработки и нефтехимии, намечаемые к крупнотоннажному осуществлению, должны изучаться предварительно на пилотных установках при искусственном наложении на основные реакции отдельных осложнений или их комплекса. Углубленное изучение характера протекания химико-технологических процессов нефтепереработки при наложении на них гидродинамических, массообменных и теплотехнических осложнений в нефтепереработке носит название исследований прикладной макрокинетики, в отличие от истинной неосложненной микрокинетики, исследуемой в лабораториях. Существуют и другие названия прикладной. макрокинетики химико-технологическая кинетика [20], кинетика промышленная [21, 22], динамика промышленных процессов [7], кинетика каталитических реакций с массопередачей и теплопередачей [23, 24], просто макрокинетика [25, 26] и, наконец, математическое описание [12, 27]. Основам теоретической [c.33]

    Тальрозе с сотр. [82] методом наложения алектрнческого ноля подробно изучил инициированный излучением изотопный обмен (см. так5ке работу Терао и Бэка (552)). Первым авторам удалось достичь G(HD) = 6-10 , что соответствует 2-10 . Ими было также показано, что п< е известные данные по этой реакции можно объяснить, предположив, что продоля<еиие цепи происходит в результате процессов с участием пятиатомных ионов, например [c.226]

    Поскольку в вольтамперометрии один из электродов не поляризуется и для него потенциал остается постоянным, подаваемое на ячейку напряжение проявляется н изменении потенциала только рабочего электрода. Если потенциал рабочего электрода измерять относительно потенциала электрода сравнения, условно приняв последний за нуль, то Е = Еа для рабочего микроанода я Е = —Е/с для рабочего микрокатода. Таким образом, регистрируемая вольтамперная кривая (полярограмма) отражает электрохимический процесс, происходящий только на одном электроде. Если в растворе присутствуют вещества, способные электрохимически восстанавливаться или окисляться, то при наложении на ячейку линейно изменяющегося напряжения (скорость не превышает 200 мВ/мин) кривая /=/( ) имеет форму волны (в отсутствие электрохимической реакции эта зависимость линейна, как следует из закона Ома). [c.139]

    Характерной особенностью всех модификаций риформинга является то, что одна из его основных стадий — ароматизация — эн-дотермична, а другая — гидрокрекинг — экзотермична. Результирующий эффект зависит от соотношения удельных интенсивностей обеих этих стадий. Повышение температуры способствует ускорению реакций ароматизации и гидрокрекинга. Выход аренов, а следовательно, октановое число бензина при этом возрастают. Вместе с тем в процессе гидрокрекинга образу( тся много легких углеводородов (Сз—Са), что приводит к уменьшению выхода бензина. Кроме того, из-за большого расхода воторода в реакциях гидрокрекинга снижается содержание водорода в циркулирующем газе, вследствие чего ускоряется закоксовывание катализатора. Вследствие наложения этих факторов оптимальная температура проведения процесса составляет 480—530 С. [c.257]

    Для подавления реакций, способствующих кокеообразованию, требуются высокое парциальное давление водорода, но при этом увеличивается термодинамическая веро 1тиость гидрирования ароматических колец. В результате наложения этих факторов верхний предел давления обычно не превышает 7—8 МПа. [c.311]


Смотреть страницы где упоминается термин Наложение реакций: [c.977]    [c.231]    [c.227]    [c.174]    [c.101]    [c.151]   
Защита подземных металлических сооружений от коррозии (1990) -- [ c.28 ]




ПОИСК





Смотрите так же термины и статьи:

Наложение



© 2025 chem21.info Реклама на сайте