Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение хроматографическое смесей

    Дискриминирующей (разрешающей) способностью [общее число возможных сливающихся (неразделенных) пар равно п(п-1)/2, вероятность того, что два произвольно выбранные вещества сольются, составляет 2М/п(п-1)] определяется вероятность того, что два произвольно выбранные вещества могут быть разделены в конкретной тонкослойной хроматографической системе. Величина ОР для ряда систем определяется вероятностью того, что два произвольно выбранные вещества могут быть разделены по крайней мере в одной системе. Как меры вероятности, значения ОР просто попадают в интервал от О до 1. Если разделению подлежит смесь из малого числа компонентов, то возможно и полное разделение, из-за чего не [c.223]


    При проведении хроматографического разделения анализируемую смесь вводят импульсно в поток подвижной фазы, фильтрующейся через слой сорбента, заполняющий колонку или нанесенный на пластину. Компоненты смеси потоком подвижной фазы перемещаются по колонке или пластине, причем в зависимости от сорбируемости они двигаются с разными скоростями и в результате разделяются. Поэтому ключевым вопросом является установление закономерностей, которым подчиняется скорость перемещения компонента. [c.46]

    Можно было бы попытаться назвать два-три аналитических метода, которые развивались в последние годы наиболее интенсивно. Среди названных непременно была бы газовая хроматография. Она типична для методов, которые мы назвали гибридными. Здесь слиты воедино способ разделения (хроматографическая колонка) и способ неселективного определения разделенных компонентов (детектор). Такая гибридизация реализуется в одном компактном приборе. Таким образом, гибридными мы считаем способы анализа, в которых органически объединено разделение и определение. Это объединение — не просто последовательное использование двух приемов. Появляется новое качество методы разделения и определения образуют не механическую смесь , а новое химическое соединение . [c.90]

    Если хроматографическому разделению подвергается смесь солей многовалентных анионов на анионитной окиси алюминия, то наблюдается совместная адсорбция катионов с многовалентными анионами. [c.399]

    Растворителем служит предложенная Н. С. Полуэктовым и сотрудниками для хроматографического разделения лантанидов смесь равных объемов эфира, ацетона и н-бутанола или изобутанола, содержащая азотную кислоту в концентрации около 0,2 н и приведенная в равновесие с насыщенным раствором азотнокислого аммония. [c.85]

    Для разделения анализируемую смесь нитратов р.з.э. наносят на полосу хроматографической бумаги рядом со смесью известного состава. После увлажнения бумагу помещают в герметически закрытую камеру, где вдоль полосы в течение определенного времени непрерывно протекает раствор родановой кислоты [2J в метилэтилкетоне. Благодаря различным коэффициентам раснределения роданидов р.з. э. между органической (метилэтилкетон) и водной (заключенной в порах бумаги) фазами осуществляется разделение смеси на зоны отдельных элементов. [c.154]

    В распределительной хроматографии на бумаге разделение веществ происходит вследствие различия в распределении между двумя жидкими фазами, одна из которых подвижна (как правило, смесь органических растворителей), а другая — неподвижна и представляет собой воду, находящуюся в волокнах хроматографической бумаги. [c.212]


    Для полного разделения неуглеводородных и углеводородных компонентов и эффективного разделения двух основных составляющих неуглеводородной части нефтей, природных асфальтов и тяжелых нефтяных остатков (асфальтенов и смол), предложено большое число модификаций селективного растворения и осаждения с использованием разнообразных органических растворителей в комбинации с адсорбционной хроматографией. Одним из примеров такой модификации может служить предложенная М. Бестужевым [5] методика выделения асфальтенов из асфальта с последующим разделением их на фракции. В качестве растворителей были последовательно использованы н-гептан (горячий), циклогексан, смесь н-гептана с бензолом, диэтиловый эфир. Фракционирование завершалось хроматографическим разделением. [c.43]

    Принцип хроматографического метода разделения основан на различии в адсорбции веществ, что обусловливается как природой адсорбируемых веществ, так и природой адсорбентов. Различные вещества на одном и том же адсорбенте адсорбируются в разной степени. Это можно представить и таким образом, что при адсорбционном равновесии они неодинаковое время находятся на поверхности адсорбента. Вещество, которое сильнее адсорбируется, дольше удерживается на поверхности адсорбента. Если смесь газов или жидкий раствор пропускать через слой адсорбента, то раньше будут выходить компоненты, которые сорбируются слабее. Б процессе прохождения через слой адсорбента смеси веществ [c.175]

    Кроме колоночной хроматографии, широко реализуемой в разнообразных вариантах, получила распространение и плоскостная хроматография, особенно ее разновидность — бумажная хроматография. Она выполняется на специальной хроматографической бумаге, обладающей изотропностью по всем направлениям, равномерной плотностью и толщиной. На такую бумагу можно нанести осадитель или вещество с ионообменными свойствами, и тогда ее можно использовать для осадительной или ионообменной хроматографии. Хроматографическая бумага весьма гигроскопична, в ее порах и капиллярах при нормальных условиях удерживается более 20% влаги. Процесс разделения на такой бумаге напоминает распределительную хроматографию, в которой неподвижной фазой является вода. Процесс проводят в замкнутом сосуде с растворителем. На бумагу наносят разделяемую смесь и один край листа опускают в растворитель. Под действием капиллярных сил растворитель движется вдоль листа и захватывает разделяемые вещества, скорость переноса которых зависит от их коэффициентов [c.182]

    Адсорбция лежит в основе метода разделения компонентов смесей, называемого хроматографией. Хроматографическое разделение происходит при движении подвижной фазы (раствор, газовая смесь) относительно другой неподвижной фазы (обычно адсорбент или инертный носитель, пропитанный жидкостью) вследствие различного сродства разделяемых веществ с фазами. [c.40]

    Неоднократно делались попытки связать состав газов и их возраст какими-либо закономерностями. Самая идея подобного взаимоотношения правильна, потому чтд деградация молекул продолжается в течение всей геохимической истории нефти, хотя и замедляется в конце процесса. Теоретически можно ожидать, что древние газы должны содержать больше ближайших гомологов метана, чем газы начальных этапов превращения. Можно также ожидать, что переход азотистых соединений в азот должен относительно увеличить концентрацию азота в древних газах. Возможно, что подобное положение вещей и удалось бы показать анализами газа, однако на пути решения подобной задачи появляется множество затруднений во-первых, газ представляет собой подвижную систему углеводородов, смесь которых неизбежно должна менять свой состав в зависимости от давления и температуры, особенно при наличии такого растворителя, как нефть во-вторых, миграция газа связана с своеобразным хроматографическим разделением компонентов вследствие различий в молекулярном весе и вязкости компонентов в-третьих, в каждом месторождении можно предполагать частичное удаление наиболее легких компонентов (метана) в силу диффузии и подобных явлений, наконец, нельзя не считаться с тем, что нет практической возможности принимать известным количественное соотношение между газообразными и жидкими углеводородами нефти. Все это приводит к тому, что всякая проба газа, отобранная для исследования, будет случайной, т. е. обособленной от той среды, из которой она взята. Тем не менее изучение состава природных газов иногда позволяет наметить кое-какие закономерности, отражающие действительное положение дела. [c.77]

    В хроматографическом методе подлежащая разделению смесь веществ поступает в слой неподвижной фазы — сорбента и вместе с потоком подвижной фазы движется вдоль этого слоя. При контакте веществ с поверхностью неподвижной фазы каждый из компонентов смеси взаимодействует с ней и распределяется между [c.8]


    Стационарная хроматермография. Сущность метода — в одновременном воздействии на разделяемую смесь потока газа-носителя и движущегося температурного поля. Одним из наиболее важных результатов такого воздействия является сжатие хроматографической зоны, что приводит к значительному улучшению разделения. Такое сжатие может произойти, если замыкающий край зоны будет двигаться вдоль слоя сорбента под действием температурного поля с градиентом температуры, возрастающим в сторону, противоположную направлению потока (рис. 1.20). [c.63]

    Вытеснительный метод в ионообменной хроматографии применяется шире, чем в адсорбционной. Анализируемую смесь подают в колонку в виде отдельной пробы, а затем производят вытеснение раствором такого электролита, ион которого обладает наибольшим сродством к выбранному иониту и вытесняет его противоион. В хроматографическом фильтрате ионы появляются в той последовательности, в которой они располагаются в сорбционном ряду, причем все фракции вытесняемых ионов содержат и противоион. Последним появляется ион-вытеснитель. Естественно, в реальных условиях всегда образуются переходные пограничные зоны, содержащие два соседних иона ион предыдущей зоны и ион следующей зоны. Размеры пограничных зон тем меньше, чем правильнее выбраны условия хроматографического разделения. [c.110]

    Аналитическая реакционная газовая хроматография. Трудности идентификации по хроматографическим пикам в случае многокомпонентной смеси привели к идее изменения химического состава анализируемой смеси до ее хроматографического разделения. Так, например, идентификация по хроматограммам смеси парафиновых и олефиновых углеводородов может быть затруднена. Если же хроматографирование смеси провести дважды, причем второй раз хроматографированию подвергнуть анализируемую смесь после удаления из нее химическим путем олефинов, то сравнение хроматограмм, полученных до и после удаления олефинов, значительно упростит идентификацию. [c.196]

    При анализе смеси парафиновых и олефиновых углеводородов можно смесь разделить на хроматографической колонке и получить хроматограмму. Для облегчения идентификации соединений целесообразно удалить олефиновые углеводороды. Поэтому продукты хроматографического разделения по выходе из детектора направляют в реактор с углем, пропитанным бромом. В реакторе олефи-ны бромируются и сорбируются углем, а парафины проходят реактор без изменения. Если на выходе из реактора установить второй детектор, то на второй хроматограмме будут выписаны лишь пики парафинов. [c.199]

    Газовая хроматография — наиболее разработанный в аппаратурном оформлении хроматографический метод. Прибор для газохроматографического разделения и получения хроматограммы называется газовым хроматографом. Принципиальная схема газового хроматографа приведена на рис. 5. Газ-носитель из баллона 1 непрерывно в течение всего опыта пропускается через всю систему дозатор, колонку, детектор, измеритель скорости. Дозатор 2 служит для ввода в хроматографическую колонку 3 газообразной, жидкой или твердой пробы анализируемой смеси. В двух последних случаях смесь одновременно должна быть испарена. [c.14]

    Правило подобия. При выборе жидкой фазы можно пользоваться известным правилом подобное растворяется в подобном . Основываясь на этом правиле, для разделения смеси двух веществ необходимо выбрать неподвижную фазу, подобную по своей химической природе и свойствам одному из компонентов разделяемой смеси. Например, если необходимо разделить смесь различных по свойствам, но близкокипящих соединений, таких как спирт и парафиновый углеводород, следует в качестве неподвижной фазы выбрать вещество, либо обладающее функциональной группой, либо являющееся парафиновым углеводородом. В первой жидкости лучше растворяется спирт и, следовательно, он будет вымываться из хроматографической колонки последним. Во второй жидкости картина будет обратной. [c.60]

    Построив по этому уравнению график в координатах 1/Т—lg Vg для нескольких соединений, смесь которых подлежит хроматографическому разделению, получим ряд прямых, угол наклона которых зависит от теплоты сорбции (рис. 26). [c.83]

    Если в качестве неподвижной фазы взять мелкоизмельченный сорбент и наполнить им трубку (стеклянную или металлическую), а движение подвижной фазы (жидкости или газа) осуществлять за счет перепада давления на концах этой трубки, то последняя будет представлять собой хроматографическую колонку, называемую так по аналогии с ректификационной колонкой для дистилляционного разделения. Разделяемая смесь веществ вместе с потоком подвижной фазы поступает в хроматографическую колонку. При контакте, с поверхностью неподвижной фазы каждый из компонентов разделяемой смеси распределяется между подвижной и неподвижной фазами в соответствии с его свойствами, например адсорбируемо-стью или растворимостью. Вследствие непрерывного движения подвижной фазы лишь часть распределяющегося компонента успевает вступить во взаимодействие с неподвижной фазой. Другая же егО часть продвигается дальше в направлении потока и вступает всу взаимодействие с другим участком поверхности неподвижной фазы. Поэтому распределение вещества между подвижной и неподвижной фазами происходит на небольшом слое неподвижной фазы толькО при достаточно медленном движении подвижной фазы. Поглощенные неподвижной фазой компоненты смеси не участвуют в перемещении подвижной фазы до тех пор, пока они не десорбируются и не будут снова перенесены в подвижную фазу. Поэтому каждому из них для прохождения всего слоя неподвижной фазы в колонке потребуется большее время, чем для молекул подвижной фазы. Если молекулы разных компонентов разделяемой смеси обладают различной степенью сродства к неподвижной фазе (различной адсор-бируемостью или растворимостью), то время пребывания их в этой фазе, а следовательно, и средняя скорость передвижения по колонке различны. При достаточной длине колонки это различие может привести к полному разделению смеси на составляющие ее компоненты. [c.8]

    При ацетилировании меркапталя уксусным ангидридом в присутствии пиридина выделена смесь тетраацетильных производных, разделенная хроматографически. Выделение тетраацетильного производного в двух аномер-ных формах свидетельствовало о том, что стрептозная часть молекулы стрептобиозамина имеет строение циклического полуацеталя и что в молекуле стрептомицина остаток стрептидина присоединен к остатку стрептобиозамина через гликозидный гидроксил стрептозной части последнего (Хупер с сотр., 1946). [c.720]

    При помощи радиохроматографического метода Р. Д. Оболенцевым, Б. В. Айвазовым и С. В. Нен-тунской [75] было исследовано разделение изомерных сульфидов. Разделению подвергалась смесь к-октилмеркаптана, ди-к-бутилсульфида и диизобутилсульфида, из которых последний был мечен радиосерой-35. Контроль разделения этой смеси осуществлялся торцевым р -счетчиком, установленным таким образом, что хроматографические фильтраты по выходе из колонки протекали непосредственно перед его окошком (рис. 21). Счетчик четко обнаруживал появление в фильтрате радиоактивного сульфида в концентрации 01<оло 0,01%, что фиксировалось по количеству импульсов в минуту. Хроматографическое разделение проводилось на стеклянных колонках высотой 50 см при диаметре 1 см, заполненных силикагелем марки МСМ с зернами крупностью 50—100 меш. Смесь сернистых соединений растворялась в обессерненной фракции 200—215° С туймазинской нефти и вводилась в колонку в количестве 15 мл. Промывка колонок проводилась бинарными смесями (ацетон-изооктан) или тройной смесью ацетона (6,25%), бензола (31,25%) и изооктана (62,50%). [c.59]

    Для разделения экстрактов нисходящим током требуются хроматографическая камера, представляющая собой высокий цилинДр (высотой в 50—60 см) с притертой крьппкой, стеклянной подставкой и хроматографической лодочкой — сосуд, куда наливают растворитель. Для разделения восходящим током необходим аквариум или вегетационный сосуд, плотно закрывающийся стеклом. Перед началом разделения хроматографическая полоска предварительно уравновешивается в течение нескольких часов в атмосфере растворителей, использующихся для хроматографирования. Атмосферу в камере создают за 1 день до опыта, наливая на дно камеры смесь растворителей. [c.12]

    Стиммель описал хроматографический метод разделения эстрогенов. Смесь эстрогенов, выделенную из мочи, собранной в течение суток, растворяют в смеси метанола с бензолом, адсорбируют на активированной окиси алюминия и элюируют сначала чистым бензолом, затем [c.323]

    При эмиграции микронефти из глинистых нефтематеринских город в прилегающие к ним пласты пористых водонасыщенных гесчаников возникает хроматографическое разделение образовавшейся смеси жидких и газообразных углеводородов. Глинистый пласт представляет собой естественную хроматографическую колонку, а газы и низкокипящие углеводороды выполняют роль элюента. В природной хроматографической колонке происходит частичная задержка асфальтосмолистьгх веществ. В песчаный коллектор выносится смесь нефтяных углеводородов с содержанием 5 — [c.58]

    Предварительное фракционирование по молекулярным массам дает большой эффект при последующем фракционировании на хроматографических колонках. Так, если смесь должна быть фракционирована в широком диапазоне молекулярно-массового распределения, то применение гель-хроматографии малоэффективно, так как раствор должен быть пропущен через ряд колонок, чтобы достичь нужной степени разделения индивидуальных компонентов. Но если исходную смесь предварительно разделить с помощью ультрафильтрации на несколько фракций, то дальнейшее фракционирование на хроматографических колонках не представляет труда. При этом разделение будет пр01ведено не только быстрее, но и качественней. Более того, ультрафильтрацией рас- [c.284]

    При фронтальном анализе смесь компонентов А + Б непрерывно пропускают через хроматографическую колонку с сорбентом до тех пор, пока не выйдет слабо сорбирующийся компонент Б, затем из колонки начинает выходить смесь компонентов. Метод не нашел широкого применения, так как он ие дает полного разделения в чистом виде выделяется только на[1более слабо адсорбирующийся компонент. [c.83]

    Влияние характера разделения смол но описанной выше методике видно из данных, приведенных в табл. 17. При хроматографическом разделении смол, выделенных из сырых нефтей и твердых природных битумов, наблюдаются следующие закономерности в изменении элементного состава фракций смол, полученных десорбцией с силикагеля в следующем ряду элюентов четырххло-ристый углерод—бензол—ацетон—спирто-бензольная смесь. Фракция смолы, извлекаемая четыреххлористым углеродом, характеризуется минимальным содержанием гетероатомов (S, О, N) обычно в пределах 3—5%, лишь в отдельных случаях до 5—8,5%. Весовое отношение С/Н колеблется в пределах 8—8,6. Это фракция [c.61]

    При разделении смеси углеводородов и сернистых соединений можно сначала подвергать смесь окислению [96), а затем хроматографическому разделению. Как правило, сернистые соединения окисляются легче углеводородов, поэтому при правильном выборе условий процесса можно провести окисление с достаточной степенью избирательности, т. е. осуществить окисление атома серы с переводом сульфидов в сульфоксиды (илп сульфоны), по возможности, не задевая углеводородной части. Сернистые соединения, содержащие в молекуле сульфоновую или сульфоксидную группу, уже сравнительно легко можно отделить от углеводородов методом хроматографии. Наиболее трудно отделить сернистые соединения тиофенового тппа от близких к ним по строению ароматических углеводородов, так как даже но склонности к окислендю эти две группы соединений очень мало различаются между собой поэтому проведение избирательного окисления тиофеновых соединений в смеси с ароматическими углеводородами оказывается весьма трудной задачей. [c.363]

    Колоночная адсорбционная хроматография на силикагеле или оксиде алюминия позволяет выделить концентрат гетероатомных соединений. Лишь небольшая часть 2—10 % общего их количества может остаться в углеводородной фракции. Для адсорбционного выделения гетероатомных соединений можно воспользоваться стеклянными хроматографическими колонками, объемное отношение адсорбента к разделяемому сырью от 1 10 до 5 1. При максимальном отношении адсорбента к сырью получают фракции алкано-циклоалкановых, моноцикло- и бициклоаренов, а также адсорбционные смолы (концентрат гетероатомных соединений). Во фракции адсорбционных смол сосредотачивается подавляющая часть серу-, азот- и кислородсодержащих соединений нефтяной фракции. Элюентом углеводородных фракций служит изопентан, петролейный эфир или бензол, десорбентом смол — спирто-бен- зольная смесь (1 1) и некоторые другие полярные растворители. Например, выделение концентрата гетероатомных соединений из прямогонной высокосернистой, высокосмолистой фракции 150— 325 °С арланской нефти осуществлялось с помощью стеклянных хроматографических колонок с восходящим током сырья при объемном соотношении адсорбента силикагеля ШСМ к разделяемой фракции 5 1 [183]. С уменьшением размера частиц силикагеля четкость разделения возрастает, однако скорость перемещения компонентов сырья и растворителей уменьшается, удлиняется время разделения. Оперативный контроль хроматографического процесса и определение группового состава фракции осуществляется по адсорбтограмме, построенной в координатах показатель преломления — массовый выход узких фракций . Показатель преломления отдельных хроматографических фракций и гетероатомных [c.82]

    Во ВНИИНП разработан ускоренный адсорбционно-хроматографический метод определения группового углеводородного состава керосиновых, газойлевых и масляных фракций нефти [157]. Хроматографическое разделение образца проводится в колонке с силикагелем. Десорбция алканов и циклоалканов проводится петролейным эфиром или изооктаном. Начало элюирования аренов устанавливается с помощью формолитовой реакции. Для десорбции конденсированных аренов и смол в качестве растворителей используются бензол и спирто-бензольная смесь. После отгонки растворителей показатель преломления алкано-циклоалкановой фракции не должен превышать 1,4750—1,4800, а для фракции аренов > 1,5100- [c.130]

    Смесь углеводородов, сернистых, азотистых и кислородных соединений разделяют последовательно дёсорбентами с возрастающей полярностью. Петролейным эфиром (изопентаном, изооктаном) отделяют сначала парафино-нафтеновые углеводороды, а затем ароматические углеводороды вместе с основной частью сернистых соединений. После этого бензолом, спирто-бензольной смесью, этанолом, ацетоном и др. отделяют кислородные соединения и смолы. Нри хроматографическом разделении нефтяных дистиллятов основное количество сернистых соединений (но не продуктов их окисления и уплотнения) выделяется вместе с ароматическими углеводородами. Получают сернисто-ароматический концентрат, дальнейшее разделение которого сопряжено с бояьшими трудностями. [c.99]

    Количество окиси алюминия составляло 20 г на 1 г еульфонов. Хроматографическое разделение происходило в колонке из нержавеющей стали высотой З ле и внутренним диаметром 28 мм. Процесс протекал под давлением азота (избыточное давление 0 25 ат). Перед разделением окисленный сернисто-ароматический он-центрат разбавляли алкилатом (алкано-циклановая фракция 60—80° С) в 3—5 раз. Десорбентами являлись последовательно петролейный эфир, смесь петролейного эфира с бензолом, бензол. Сульфоны десорбировали этанолом. [c.125]

    Рассмотрим физико-химические основы сущности хроматографического процесса разделения на примере газо-жидкостпой хроматографии, когда смесь анализируемых компонентов, находящихся в газовой фазе, проходит вместе с газом-носителем вдоль нелетучей жидкости. [c.289]

    Были описаны методы идентификации ацеталей в сложных смесях, содержащих эфиры, альдегиды, кетоны и другие соединения [231]. Поток нз капиллярной колонки поступал непосредственно на время-пролетный масс-спектрометр. Один из коллекторов прибора настраивался на ионы с массой 15, которые использовались для регистрации хроматограммы. На втором коллекторе отбирались все ионы в диапазоне 24— 200 ат. ед. массы полный спектр регистрировался на осцилло- графе в течение 6 сек. При хроматографическом разделении земляничного масла с помощью этой методики удалось идентифицировать 150 компонентов. Аналогичным образом исследовалась сложная смесь углеводородов [232]. [c.128]

    Эффективность хроматографического разделения на окиси алюминия была проверена сначала на примере бензол-тиофеновой смеси (55% тиофена) при соотношении разделяемая смесь адсорбент = 1 20, Бензол-тиофеновую смесь разбавляли равным (по весу) количеством к-пентана и раствор пропускали через колонку с окисью алюминия. Сначала колонку промывали -пептаном до тех пор, пока показатель преломления фильтрата не отличался от показателя преломления чистого -пентана. На это требовалось 13-кратное (по весу) количество пентана. Под конец тиофеп десорбировали с окиси алюминия этиловым спиртом. О характере хроматографпче-СК010 разделения па окиси алюминия исходпой бепзол-тиофеновой смеси дает представление диаграмма (рис. 60). [c.276]

    Разделение смеси веществ цроисходит в том случае, если размеры молекул этих веществ различны, а диаметр пор зерен геля постоянен и может пропускать лишь те молекулы, размеры -которых меньше диаметра отверстий пор геля. При фильтровании раствора анализируемой смеси более мелкие молекулы, проникая в поры геля, задерживаются в растворителе, содержащемся в этих порах, и движутся вдоль слоя геля медленнее, чем крупные молекулы, не способные проникнуть в поры. Таким образом, гель-хроматография позволяет разделять смесь веществ в зависимости от размеров и молекулярной массы частиц этих веществ. Этот метод разделения достаточно прост, быстр и, что самое главное, он позволяет разделять смеси веществ в более мягких условиях, чем другие хроматографические методы. [c.225]


Смотреть страницы где упоминается термин Разделение хроматографическое смесей: [c.95]    [c.49]    [c.245]    [c.545]    [c.52]    [c.206]    [c.276]    [c.368]    [c.62]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние параметров опыта на качество хроматографического разделения смесей

Влияние различных факторов на хроматографическое разделение смеси веществ

Киселев, Е, А. Михайлова. Адсорбция углеводородов и хроматографическое разделение их смесей и нефтепродуктов

Основные рекомендации по выбору сорбентов и условий хроматографического разделения смесей конкретных веществ

ПРИМЕНЕНИЕ ИОННОГО ОБМЕНА В ТЕХНОЛОГИИ И АНАЛИЗЕ МИНЕРАЛЬНЫХ И ОРГАНИЧЕСКИХ ВЕЩЕСТВ Мартыненко. Хроматографическое разделение смесей редкоземельных элементов

Применение хроматографической адсорбции для разделения смесей углеводородов и для их очистки

Р а б о т а 4. Хроматографическое разделение смеси парафино-нафтеновых, углеводородов, выделенных из керосина

Сенявин. Применение радиоактивных изотопов при хроматографическом разделении смесей щелочных металлов и редкоземельных элементов

Системы для хроматографического разделения смесей ионов

Смеси разделение

Смеси сложные летучих соединений хроматографическое разделение

Хроматографические методы анализа и разделения смесей

Хроматографическое разделение смесей известного состава

Хроматографическое разделение смесей кислородсодержащих терпеноидов

Хроматографическое разделение смесей комплексообразователей

Хроматографическое разделение смесей комплексообразователей на закомплексованных хелоновых смолах

Хроматографическое разделение смесей липофильных веществ, отгоняющихся с водяным паром

Хроматографическое разделение смесей различных красителей

Хроматографическое разделение смеси азота и кислорода (воздух) на молекулярных ситах

Хроматографическое разделение смеси ионов с помощью ионообменных смол

Хроматографическое разделение смеси красителей

Хроматографическое разделение смеси нормальных и изопарафиновых углеводородов на молекулярных ситах

Хроматографическое разделение углеводородной смеси

Цвет, разделение смесей хроматографическим методом

Ю р к о в а, М. М. С е н я в и н, К. М. О л ь ш а н о в а. Изучение механизма процесса хроматографического разделения смесей щелочноземельных элементов на анионитах



© 2025 chem21.info Реклама на сайте