Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота поляризации

    Пироэлектрический коэффициент Теплота поляризации [c.195]

    Помимо пироэлектрического и электрокалорического эффектов к векторным эффектам относятся теплота поляризации, т. е. изменение энтропии кристалла под действием электрического поля, и пьезоэлектричество, вызванное гидростатическим давлением. [c.209]

    Между величинами а, Е ж Т есть еще и прямые связи электрическая поляризация может непосредственно вызывать деформацию кристалла путем электрострикции 15) или изменить его температуру из-за выделения теплоты поляризации 13). Линия 14) характеризует теплоту деформации, выделяющуюся при механической деформации. [c.293]


    В случае физической адсорбции силы взаимодействия между адсорбированными молекулами и твердым телом имеют электростатический характер (вандервааль-совские силы и силы электростатической поляризации). Физическая адсорбция — экзотермический процесс. Тепловой эффект этого процесса близок к теплоте конденсации и равен 0,2—8 ккал/моль. Состояние равновесия при физической адсорбции достигается очень быстро даже при низких температурах. С увеличением температуры при состоянии равновесия -количество адсорбируемого вещества уменьшается, а выше критической температуры адсорбированного компонента вообще очень мало. [c.274]

    Диэлектрическими потерями называется та часть энергии диэлектрика, находящегося в переменном электрическом поле, которая переходит в теплоту. В зависимости от времени релаксации различных видов поляризации максимум поляризации диэлектрика Б той или другой степени отстает по времени от максимума [c.595]

    Химическое строение звеньев макромолекулярных цепей влияет на величину сил межмолекулярного взаимодействия. Полимеры, принадлежащие к группе алифатических углеводородов, не имеют полярных групп, поэтому в них связь между отдельными макромолекулами является только результатом действия дисперсионных сил. Дисперсионные силы межмолекулярного притяжения возникают вследствие поляризации молекул под влиянием непрерывного изменения взаимного положения электронов и ядер в каждом атоме, входящем в состав макромолекулы. Величина дисперсионных сил сравнительно мало зависит от температуры, но резко возрастает с уменьшением расстояния между макромолекулами. Силу межмолекулярного взаимодействия характеризуют величиной энергии когезии. Энергией когезии называют энергию, которую необходимо затратить для удаления молекулы из твердого или жидкого тела. Величина энергии когезии приблизительно равна теплоте испарения при постоянном объеме. Для полимеров аморфной и неполярной структуры величина молярной энергии когезии, отнесенной к отрезку [c.27]

    Информацию о структуре вещества получают на основании изучения его физических и химических свойств. Особую роль при изучении структуры играют исследования спектров поглощения и испускания, дифракции различных излучений (рентгеновских, электронных, нейтронных лучей), магнитных и электрических взаимодействий (магнитной восприимчивости и проницаемости, дипольных моментов и поляризации), механических, тепловых, электрических и других характеристик (плотности, вязкости, теплот фазовых переходов, теплот растворения, электропроводности и др.). [c.169]


    Ионы, имеющие большие заряды [железо (III), алюминий], характеризуются и значительными величинами энтальпии и энтропии. Теоретическое вычисление теплот гидратации связано с учетом целого ряда слагаемых. После первых, грубо приближенных расчетов по Борну было сделано много попыток так или иначе улучшить теоретический метод. К. П. Мищенко и А. М. Сухотин, исходя из предположения, что эффективный радиус молекулы воды в гидратной оболочке равен 0,193 нм, предложили метод расчета, в котором были приняты во внимание экзоэффекты взаимодействия иона с жесткими диполями воды, а также ориентационной и деформационной поляризации диполей воды, дисперсионные силы между ионом и молекулами воды, взаимное отталкивание диполей в гидратной сфере, отталкивание иона и диполей при перекрытии их электронных оболочек, поляризация растворителя гидратным комплексом и взаимодействие между водой и гидратным комплексом, отвечающее экзоэффекту. Большое число факторов, принятых во внимание в этих расчетах, делает их результаты наиболее надежными. Между прочим указанные авторы пришли к выводу, что тепловое движение не может существенно влиять на координационные числа гидратации вероятность того, что данная молекула в гидратном слое покинет его и оставит свободное место в гидратной оболочке иона, колеблется по порядку величины от 10 (ион лития) до 10 (ион цезия), т. е. ничтожно мала. [c.255]

    Для полярных адсорбентов теплота сжатия составляет лишь часть дх, разность соответствует теплоте, выделяющейся в результате поляризации адсорбата адсорбентом. [c.122]

    Однако вследствие низкой теплопроводности резиновых смесей и материалов нагрев всей массы заготовки происходит медленно, а теплота нерационально расходуется на возмещение потерь в окружающую среду и на повышение температуры массы оборудования. Указанные недостатки в значительной степени устраняются при использовании электронагрева за счет явления поляризации атомов и молекул диэлектрика, помещенного в высокочастотное электрическое поле. Этот способ называют диэлектрическим нагревом, высокочастотной электротермией, нагревом п" микроволновом поле и т. д. В последнее время данный способ нагрева стал внедряться в производстве неформовых изделий. Диэлектрический нагрев обладает значительными преимуществами, так как позволяет концентрировать очень большие мощности в малых объемах материала получить равномерный нагрев материала с низкой теплопроводностью при большой интенсивности легко осуществлять избирательный нагрев легко регулировать температурный режим осуществить более полную механизацию и автоматизацию технологических процессов. [c.305]

    Суть диэлектрического нагрева состоит в следующем. Под влиянием электрического поля имеющиеся в материале заряды, связанные межмолекулярными силами, ориентируются нли смещаются в направлении поля. Смещение связанных зарядов под действием внешнего электрического поля принято называть поляризацией. Переменное электрическое поле вызывает непрерывное перемещение зарядов молекул вслед за изменениями направлений электрического поля. Это перемещение молекул происходит с некоторым трением и нагревом материала. В диэлектриках имеется также небольшое количество свободных зарядов, которые создают ток проводимости, обусловливающий выделение дополнительной теплоты в материале. Различные материалы нагреваются не одинаково интенсивно, так как п зависимости от природы материала изменяется энергия, затрачиваемая на поляризацию данного диэлектрика и на создание тока проводимости. Зависимость активной мощности, выделяющейся и виде теплоты в теле, помещенном в электрическом поле, от параметров поля и электрических свойств материала, выражается уравнением  [c.305]

    Ионный обмен, который изменяет не только размер пор, о чем говорилось в разд. В, но и теплоту адсорбции, так как тип, размер и порядок размещения катионов влияют иа локальные-электрические поля и на поляризацию адсорбатов. [c.681]

    У инертных газов температуры как плавления, так и кипения чрезвычайно низки (табл. 3.9, разд. 5), столь же малы теплоты плавления и испарения. Дисперсионные силы, действующие между молекулами инертных газов, невелики (табл. 3.1), и силы, удерживающие молекулы вместе, как можно судить по температурам кипения и теплотам испарения, весьма слабы. С увеличением атомной массы возрастают дисперсионные силы и степень поляризации молекул, что связано с более легкой деформацией электронного облака у более тяжелых атомов. [c.88]

    Вода механического удерживания и часть физико-химически связанной воды имеют практически ту же теплоту испарения, что и обычная вода. Влага же мономолекулярной сорбции требует повышенных затрат энергии на ее удаление. Как показали калориметрические исследования, для ее десорбции необходимо до 70—75 кДж/моль [5 . Аналогичные результаты были получены при исследовании энергии активации поляризации с использованием диэлектрических методов [7]. При изучении процессов прессования торфа было показано, что при одном и том же давлении прессования зависимость прочности брикета от влажности проходит через максимум, которому соответствует влагосодержание образца, равное объему мономолекулярной сорбции [81. При этой же влажности наблюдается максимум насыпной плотности торфа. [c.51]


    Уместно вспомнить об одном обстоятельстве из истории развития теории химической связи и межмолекулярного взаимодействия. После первых расчетов энергии связи в молекулах с разными атомами (металл — металлоид) стало ясно, что эта величина мало чувствительна к принятой модели. Расчеты гетерополярных молекул с учетом или без учета поляризации, по модели твердых шаров или по любой модели, учитывающей отталкивание, почти всегда приводили к близким к эксперименту значениям энергии связи. Попытки вычислить энергию, например, водородной связи, основанные на разных моделях как электростатических, так и ковалентных, почти всегда давали вполне удовлетворительный результат. То же относится и к расчетам теплот адсорбции. Правильный порядок величины обеспечивается тем, что из эксперимента берутся две или три константы, а правильный характер всей потенциальной кривой постулирован заранее. Сама по себе полуэмпирическая потенциальная кривая, будь то кривая Леннард-Джонса или кривая, в которой коэффициент при берется по Лондону или каким-либо иным теоретическим способом, ничего не может сказать о природе сил адсорбции, так же как и кривая Морзе для двухатомной молекулы ничего не говорит о природе связи атомов в ней. [c.83]

    Для большей полноты и достоверности получаемых спектральных данных необходимо, чтобы каждый спектр, каждая спектральная характеристика дополнялись данными о кристаллографической, химической и электронной структуре объема и поверхности твердого тела и данными о теплоте и энтропии адсорбции, а по возможности также и о теплоемкости адсорбционных комплексов. Эти данные надо получать одновременно со съемкой спектра или отдельно, но в тех же условиях. Полнота и ценность информации, получаемой спектральными методами, существенно возрастает при комплексном использовании методов оптической и радиоспектроскопии. Поэтому для дальнейшего развития теоретических работ на основании такого комплекса данных существенное значение имеет усовершенствование методики спектрального исследования и главным образом повышение чувствительности и разрешения спектрометров. Эти методические усовершенствования в сочетании с прямыми измерениями количества адсорбированных молекул дадут возможность получать количественные значения спектральных параметров взаимодействия — величин оптических плотностей и поляризации полос поглощения колебательного спектра. [c.147]

    Заутер [125] утверждает, что теплота адсорбции на ненасыщенных местах лишь незначительно больше, чем на других местах поверхности. По данным Заутера, повышенная поляризация, производимая активными центрами на молекулы, которые должны быть активированы, является единственной при-чиной их высокой реакционной способности. [c.154]

    Данные по спектрам поглощения растворов солей показали, что молярные коэффициенты поглощения при разных длинах волн, рассчитываемые как DJ , не изменяются в широкой области концентраций электролита фх —оптическая плотность при длине волны X, с—концентрация раствора исследуемого электролита). Этот факт не мог быть объяснен теорией электролитической диссоциации Аррениуса, поскольку с уменьшением концентрации электролита должно было происходить увеличение степени диссоциации и, следовательно, изменение спектров поглощения. Полная диссоциация сильного электролита объясняла постоянство молярных коэффициентов поглощения, поскольку при всех концентрациях раствора светопоглощающими частицами оставались одни и те же ионы. Аналогичный характер имеет концентрационная зависимость вращения плоскости поляризации и ряда других свойств растворов сильных электролитов. Теория электролитической диссоциации не может объяснить постоянство теплот нейтрализации хлорной, соляной и других сильных кислот гидроксидами щелочных металлов. Однако это можно объяснить полной диссоциацией реагентов при всех концентрациях и протеканием реакции нейтрализации как взаимодействия ионов Н+ и ОН" по схеме Н+ + ОН = НгО. [c.438]

    С. Алгоритм Монте-Карло. Когда инженеру или проектировщику необходимо учесть зависимость от направления, поляризацию или другие осложняющие расчет обстоятельства, алгоритм Монте-Карло является, невидимому, наиболее общим для применения и достаточно легко используемым методом. Метод Монте-Карло применялся в задачах радиационного переноса теплоты в некоторых работах, обзор которых дан в [7], Это упрощенный, приспособленный для машинных расчетов метод статистических испытаний при построении хода луча. Согласно электромагнитной теории поток энергии падающей волны при взаимодействии со стенкой разделяется на доли — отраженную, поглощенную и, возможно, прошедшую, В алгоритме Монте-Карло происходит сравнение случайного числа с найденной теоретически долей, и на основании этого сравнения весь падающий поток присваивается отраженной, поглощенной или прошедшей волне. При многократном повторении вычислительной процедуры окончательный результат получается правильным для полного потока всех лучей, поглощенной, отраженной и прошедшей составляющих, В основу алгоритма Монте-Карло положено исключение ветвления н процессе процедуры иостросиия хода луча. Энергия не отражается и пропускается одновременно, а отражается или пропускается, и один результат следует за другим. Метод Монте-Карло имеет преимущество при вычислении [c.478]

    Адсорбция многих газов на угле в большинстве случаев представляет собой пример процесса адсорбции, в котором участвуют только силы Ван-дер-Ваальса и силы отталкивания. Лондоном [26] было установлено, что если для расчета энергий адсорбции применить выведенные им уравнения (8) и (12), то получается хорошее соответствие между рассчитанными и экспериментальными значениями теплот адсорбции таких газов, как гелий, аргон, окись углерода, метан и углекислота, когда адсорбентом является уголь. К сожалению, этот автор допустил ошибку в расчетах, в результате чего полученные им численные величины оказались завышенными в 10 раз. Наблюдаемое расхождение можно было бы частично, но далеко не полностью, сократить путем замены операции интегрирования суммированием, как показано в разделе V, 1. В 1934 г. нам удалось показать, что адсорбция указанных газов на угле происходит в углублениях, каналах и пустотах, т. е. главным образом на активных участках [18а]. Эта точка зрения получила всеобщее признание и была развита далее Брунауэром [17], который высказал соображение, что все молекулы, адсорбированные в весьма узких капиллярах угля, должны находиться в контакте не с одним, а с двумя слоями углеродных атомов. Такая мысль совершенно правильна, но рассчитанные величины продолжали оставаться слишком низкими. С тедует иметь в виду, что в последних расчетах не были учтены силы отталкивания, которые, как было показано в разделе IV,4, могут играть большую роль. Проведенные недавно исследования [39] показали, что все упо мянутые выше газы пр И адсорбции на угле обладают большой подвижностью и ведут себя как двумерные газы. Входе этих же исследований [41 б, в] было обнаружено, что молекулы адсорбированных газов поляризуются под влиянием электрического поля угля (с.м. раздел V, 7) и что эта поляризация обусловливает суни ственное, возможно даже наиболее важное, слагаемое теплоты адсорбции. [c.70]

    Как мы видели в разделе VI, 2, физическая адсорбция обычных газов на ионных поверхностях происходит вследствие совместного действия сил Ван-дер-Ваальса и поляризации молекул электрическими полями поверхности. Активные центры (раздел V, 12) оказывают влияние на оба эти эффекта. Поэтому реальные неоднородные поверхности ионных адсорбентов, состоящие из различных кристаллографических граней, межкристаллитных границ, ребер, вака.нтных мест и других типов активных участков, будут практически во всех случаях адсорбировать первые молекулы с относительно большой теплотой адсорбции. С увеличением степени заполнения теплота адсорбции будет заметно уменьшаться [177]. Крофорд и Томпкинс [178] при изучении адсорбции сернистого газа, двуокиси углерода и других газов на фтористом кальции и фтористом барии нашли, что теплоты адсорбции уменьшаются с увеличением количества адсорбированного газа. Они приписывают этот эффект неоднородности исследованных поверхностей, а также наличию различных кристаллографических плоскостей. [c.112]

    Таким образом, мы видим, что при низких значениях О электростатическая поляризация играет более важную роль, чем притяжение под влиянием сил Ван-дер-Ваальса. Согласно приведенной выше интерпретации, это должно озна.чать, что действие электростатических полеСг выражается в том, что молекулы адсорбируются на электростатически активных центрах, а не на активных центрах, действующих за счет сил Ван-дер-Ваальса. Конкуренция между этими двумя типами а.ктив-ных центров проявляется в увеличении с ростом заполнения теплоты адсо збции, обусловленной силами Ван-дер-Ваа.тьса (кривая. 3). [c.114]

    Молекулы способны адсорбироваться во втором слое только в том случае, если теплота нх адсорбции в этом слое выше, чем теплота сжижения (затвердевания), или энтропия молекул, когда они находятся во втором слое, выше, чем энтропия жидкого (или твердого) состояния. Этот критерий, основанный на энтропии, может быть полезным только для самого верхнего слоя, поскольку если поверх BTopoi o слоя адсорбируется третий слой, то энтропия второго слоя может и не быть очень высокой. Следовательно, для многослойной адсорбции требуется, чтобы теплота адсорбции во втором и последующих слоях (т. е. во всех слоях, кроме одного) была выше теплоты сжижения. Хилл [1, 189], а также Хэлси [174б] предполагают, что вандерваальсовое поле поверхности способно передавать энергию второму и последующим слоям. В дополнение следует указать, что при физической адсорбции на угле и на металлах, а также на ионных поверхностях адсор-бироваицые молекулы поляризуются (см. выше). Электрическое поле этих диполей может оказать влияние иа молекулы второго слоя и т. д. Это представление и лежит в основе наиболее старой концепции многослойной адсорбции 190]. К сожалению, многие авторы в более поздней литературе ошибочно утверждают, что, согласно старой концепции, многослойная адсорбция объяснялась одной поляризацией. На самом же деле последней обусловлен только небольшой избыток энергии сверх теплоты сжижения, позволяющий образоваться следующему слою. [c.118]

    Положительная поляризация атомов водорода наблюдается в его многочисленных соединениях, являющихся ковалентными при обычных условиях это газы (НС1, НзЫ), жидкости (НаО, НР, НМОз), твердые вещества (Н3РО4, Н2310з). Свойства этих соединений сильно зависят от природы элемента, с которым непосредственно связан водород. В частности, для соединений, содержащих связи Р—Н, О—Н и N—Н, особо характерна водородная связь. Вследствие этого НР, НаО и НзМ проявляют аномально высокие температуры плавления и кипения по сравнению с однотипными бинарными соединениями водорода, образованными остальными элементами данной группы (рис. 156). Аналогичный ход кривых наблюдается и в величинах теплот испарения этих соединений. [c.292]

    Поэтому в электролите постоянного состава для каждой температуры существует определенный минимум плотности тока, ниже которого осаждения хрома не происходит. Для хро-мпрования применяют достаточно высокие плотности тока—в интервале 1— 10 кA/м , что приводит к повышению напряжения на электролизере до 12 В и выделению значительного количества джоулевой теплоты. Выход по току хрома растет с повышением плотности тока. Поэтому электролиты хромирования. чмо.ют плохую рассеивающую способность. Это связано также с тем, что катодная поляризация мало изменяется с плотностью тока. Для хромирования применяют нерастворимые аноды из свинца или сго сплавов с оловом (10%) или сурьмой (6%), на которых протекают процессы выделения кислорода и окисления трехвалентного хрома до шестпиалентного. [c.46]

    Дипольная поляризация диэлектрика сопровол дается потереГг энергии в виде теплоты. В переменных полях потери тем болыле, чем больше частота. Они характеризуются удельной мощностью, выделяющейся при данной частоте в единице объема диэлектрика, зависящей от тангенса угла потерь (1дб). Углом диэлектри еских о-терь б называют угол, дополняющий до 90° угол сдвига фаз (р между током и напряжением в емкостной цепи. В идеальном диэлектрике угол 6 = 0 и 6 = 0. [c.477]

    При диэлектрическом нагреве используются частоты от сотен килогерц до сотен мегагерц. Преимуществом нагрева материалов в поле конденсатора является выделение теплоты непосредственно внутри нагреваемого объекта за счет поляризации (токов смещения). Высокочастотные установки для нагрева непроводниковых и полупроводниковых материалов применяются В различных отраслях промышленности и сельского хозяйства. [c.108]

    Вблизи К. т. наблюдается спецнфич. температурная зависимость не только магн. восприимчивости (или электрич. поляризации), но и теплоемкости, коэф. термич. расширения и др. св-в. Одиако плотность в-ва изменяется непрерывно, теплота не поглощается и не выделяется (см. Фазовые переходы). Для количеств, оценки изменения св-в вводят т. наз. параметр порядка ri, за к-рый в случае перехода ферромагнетик-парамагнетик принимают намагниченность в-ва. При т-ре Т- параметр ri ->0 и при П = О (см. Критические явления). [c.560]

    При Ф. п. П рода сама величина О и первые производные С по Т, р и др, параметрам состояниям меняются непрерывно, а вторые производные (соотв. теплоемкость, коэф. сжимаемости и термич. расширения) при непрерывном изменении параметров меняются скачком либо сингулярны. Теплота не вьщеляется и не поглощается, явления гистерезиса и метастабильные состояния отсутствуют. К Ф. п. П рода, наблюдаемым при изменении т-ры, относятся, напр., переходы из парамагнитного (неупорядоченного) состояния в магнитоупорядоченное (ферро- и ферримагнитное в Кюри точке, анти-ферромагнитное в Нееля точке) с появлением спонтанной намагниченности (соотв, во всей решетке или в каждой из магн, подрешеток) переход диэлектрик - сегнетоэлектрик с появлением спонтанной поляризации возникновение упорядоченного состояния в твердых телах (в упорядочивающихся сплавах) переход смектич, жидких кристаллов в нематич. фaзyi сопровождающийся аномальным ростом теплоемкости, а также переходы меяоду разл. смектич. фазами .-переход в Не, сопровождающийся возникновением аномально высокой теплопроводности и сверхтекучести (см. Гелий)-, переход металлов в сверхпроводящее состояние в отсутствие магн. поля. [c.55]

    Физико-химические методы анализа близко подходят к физическим методам, основанным на измерении только физических свойств вещества. И в физических, и в физико-химических методах используют разнообразную аппаратуру, поэтому их объединяют под общим названием инструментальных методов. Измеряют такие свойства, как теплоты реакций, плотность, поверхностное натяжение, вязкость, показатели преломления,. иолуэлектродные потенциалы, электрическую проводимость, флуоресценцию, вращение плоскости поляризации, помутнение, из-,лучение радиации, поглощение лучистой энергии и др. [c.327]

    Процессы, происходящие как в элементе Лекланше, так и в топливном элементе, можно также определить предложенным нами термином холодное горение , получившим распространение во всем мире [5]. Действительно, батарейка карманного фонаря не нагревается при работе, так как в пей вместо теплоты Т образуется электроэнергия Э. Правда, в отношении топливного элемента этот термин довольно идеа-/ лизирован, так как при работе элемента, кроме электроэнергии Э, неизбежно образуется теплота Т она представляет собой тепло Джоуля или энергию поляризации. Однако даже топливный элемент, преобразующий лишь 49% химической энергии А" в электроэнергию 5 и 51% в теплоту Т, является прогрессом по сравнению с обычной электростанцией, которая превращает в электроэнергию Э лишь немногим более 30% теплоты сгорания топлива Т. Поэтому при определении топливного элемента не сказано образуется главным образом электрическая энергия ,, так как в случае повышения нагрузки на топливный элемент и снижения его к. п. д. с 50,1 до 49,9% определение теряло бы смысл. [c.18]

    Рассмотрение моделей кристаллов разного размера и соответствующие расчеты показывают, что частицы металла, на которых происходит прочная адсорбция азота, сопровождающаяся появлением активной в ИК-снектре полосы, имеют на поверхности наибольшее число так называемых В- цен-тров, т. е. центров, будучи адсорбированным на которых атом металла имел бы контакт с пятью соседними атомами металла. Это в свою очередь позволяет прийти к выводу о том, что, несмотря на относительно высокую теплоту адсорбции и отсутствие подвижности, молекулы азота не образуют с атомами металла химической связи, а удерживаются на поверхности дисперсионными силами и сильным электрическим полем Вд-центров, которое возникает в результате неполной компенсации электрических полей ядер и электронов атомов металла этих центров и поляризует адсорбированные молекулы (рис. 2). Дисперсионное взаимодействие молекул азота с В 5-центрами должно быть более сильным, чем с плоской поверхностью кристалла, так как адсорбированная молекула взаимодействует в этом случае с большим числом атомов металла. Хардевелд и Монтфорт [11] считают, что высокую интенсивность и значительное смещение полосы поглощения физически адсорбированных молекул относительно частоты колебания свободной молекулы азота можно объяснить сильной поляризацией адсорбированных молекул электрическим полем Вд-центров. [c.118]

    Большое значение при специфической адсорбции имеет квадрупольный момент молекулы адсорбата [22—24]. Энергия электростатического взаимодействия с электрическим полем адсорбента пропорциональна квадру-польному моменту х. Экспериментально найденное уменьшение теплоты адсорбции катионированным цеолитом ( 9==о — < е, происходящее в начальной области заполнения Q, когда имеет место непосредственный контакт молекул с обменными катионами, Кингтон [23] принял за величину вклада квадрупольного электростатического взаимодействия. Учтя далее вклад, вносимый поляризацией молекулы в электростатическом поле адсорбента, с помощью величины ( о=о — = Аа. для молекул с т = О и поляризуемостью а, Кингтон нашел константу А индукционного взаимодействия с данным адсорбентом. Вклад энергии дисперсионного взаимодействия принимался близким к (2в, и поэтому его можно было не вводить в расчет. Таким образом, для квадрупольной молекулы с поляризуемостью а [c.138]


Смотреть страницы где упоминается термин Теплота поляризации: [c.292]    [c.113]    [c.50]    [c.183]    [c.72]    [c.154]    [c.179]    [c.118]   
Кристаллография (1976) -- [ c.195 , c.292 , c.293 ]




ПОИСК







© 2025 chem21.info Реклама на сайте