Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические основания и методы вывод

    В книге кратко описаны методы расчета некоторых параметров фазовых переходов, наиболее существенных для термодинамики химических реакций, в частности процессов перехода из жидкого или кристаллического состояний в состояние идеального газа и обратно при равновесных или при стандартных условиях. Однако автор не затрагивал свойств растворов и методов их расчета, а также специфических особенностей расчетов для области высоких давлений, так как это потребовало бы значительного увеличения объема книги. По тем же причинам не рассмотрены реакции образования комплексных соединений и методы статистической термодинамики, но описаны некоторые методы практического расчета термодинамических функций, основанные на выводах статистической термодинамики. [c.7]


    Гл. X. Основания и методы вывода термодинамических уравнений [c.198]

    Один из важных методов вывода соотношений между различными частными производными термодинамических функций заключается в использовании математического тождества, основанного на правиле дифференцирования функции двух независимых переменных f = у) [c.37]

    ОСНОВАНИЯ И МЕТОДЫ ВЫВОДА ТЕРМОДИНАМИЧЕСКИХ УРАВНЕНИЙ [c.200]

    Единственный способ развить свои способности различать, выбирать— это самостоятельная работа над проблемами термодинамики. Автор поэтому изложит основания и методы вывода термодинамических уравнений и тем самым подготовит читателей к самостоятельной работе. Но если читатели сами научатся выводить термодинамические уравнения, то нет нужды приводить в этой книге даже часть всех тех полезных уравнений, с которыми можно встретиться в современной термодинамической практике. Повторяем трудности не в выводе, а в выборе. [c.200]

    Автор не собирается выводить даже часть" всех тех уравнений, с которыми можно встретиться в современной термодинамической практике, и не хочет заполнять ими сотни страниц (сейчас это очень легкое дело). Он изложит основания и методы вывода и тем самым подготовит читателей к самостоятельной работе .  [c.194]

    При выводе основного уравнения электрокапиллярности использовалось два подхода. Один из них основан на уравнении Гиббса [12], а второй — на методе термодинамических циклов [И, 18]. При первом подходе применялось как представление о гиббсовской плоскости, соответствующей нулевой адсорбции одного из компонентов (обычно растворителя) [12], так и представление о поверхностном слое конечной толщины [28, 31, разделяющем фазы. [c.217]

    Наиболее объективные и точные методы проверки и обработки экспериментальных данных о равновесии между жидкостью и паром основаны на использовании термодинамической теории растворов, которая в последнее время находит все возрастающее практическое применеиие. При этом конкретные приложения основываются на использовании не строгих общих уравнений равновесия, а вытекающих из них на основании ряда допущений частных уравнении. В связи с этим представлялось необходимым привести вывод некоторых важнейших уравнений, чтобы читателю была ясна сущность допущений, лежащих в основе этих уравнений. Так как весьма затруднительно сочетать популярность изложения с присущей термодинамической теории растворов математической строгостью, последнюю в известной мере пришлось принести в жертву. [c.4]

    Иа основании почти параллельного расположения кривых, изображенных на рпс. 155, для низких концентраций можно сделать вывод о том, что пунктирная линия, проведенная через точку пересечения кривой с осью ординат (lgЖA) будет отражать свойства бесконечно разбавленной уксусной кислоты в растворах хлористого натрия. В таких растворах эффект среды (слабой кислоты) равен нулю. Это обстоятельство свидетельствует о наличии очень важного ограничения по отношению к тем результатам, которые могут быть получены при работе с элементами без жидкостных соединений, содержащими небуферные растворы. Если не учитывать специальных термодинамических данных, эти элементы дают значение величины или растворах солей при нулевой концентрации слабо11 кислоты ( 1 = 0). В растворе, содержащем конечное количество слабого электролита, с помощью таких элементов нельзя определить величину Ад. С другой стороны, этот метод показывает путь решения данной задачи, так как он указывает, что для этого необходимо знать влияние среды — слабой кислоты —или зависимость от т . Когда будут выполнены дальнейшие исследования в этой области и установлены общие законы влияния изменения состава растворителя, тогда, можно будет определить значение /Пц в кислотно-солевых растворах различного состава, а также важную величину гпл в буферных растворах. [c.484]


    Особый характер точки М термодинамически несомненен, поэтому имеются веские основания считать, что нри переходе через точку М начинается адсорбция во втором слое и, следовательно, точка М определяет емкость монослоя. В рассмотренном методе величина ам определяется термодинамически, поэтому получаемый результат совершенно не связан с какими-либо модельными представлениями, положенными в основу вывода уравнения изотермы адсорбции. [c.140]

    ВаО (газ). Окись бария является единственным окислом щелочноземельных металлов, который испаряется в виде молекул ВаО практически без диссоциации. Этот вывод был получен в многочисленных работах, выполненных масс-спектрометрическим методом (библиография приводится в работах [466, 2170 и 3213]). Результаты масс-спектрометрических работ подтверждаются термодинамическими расчетами парциальные давления атомарного бария над окисью бария, вычисленные на основании термодинамических данных, оказались на три-четыре порядка меньше парциальных давлений окиси бария, найденных в экспериментальных исследованиях. [c.855]

    Расчетные значения подобных кинетических изотопных эффектов для разных моделей переходного комплекса во многих случаях оказываются существенно различными. В таких случаях экспериментальное измерение величин этих эффектов делается эффективным диагностическим средством. Было бы, однако, полезным в этом кратком введении указать на одно неизбежное ограничение метода, которое характерно также для всех способов измерения скоростей реакций как абсолютных, так и относительных. Поскольку наиболее удачные и, по-видимому, довольно правильные теории скоростей реакций связывают последние с термодинамическим равновесием между переходным комплексом и реагирующими веществами и параметр времени вводится самым общим и формальным способом, любые измерения скорости могут дать лишь значения свободной энергии переходного комплекса. В более сложной реакции главную роль играет тот переходный комплекс, который соответствует лимитирующей стадии, однако сделать какие-либо заключения о механизме его образования, например на основании предшествующих быстрых стадий реакций, в принципе невозможно. Поэтому не всегда можно получить сведения о всех процессах, происходящих даже в самой лимитирующей стадии. Так, например, в некоторых случаях процесс разрыва связи может только начаться в переходном состоянии и тем не менее завершиться в той же стадии реакции. Максимум потенциальной энергии может быть достигнут в самый начальный период в результате поступления энергии из других источников. Наличие заметного изотопного эффекта никогда нельзя считать подтверждением того, что подобная связь рвется в лимитирующей стадии. Эти соображения следует учитывать, в противном случае выводы могут быть неправильными. [c.11]

    Термодинамические измерения, особенно измерения коэффициентов активности для силиката в равновесии с металлом, производились неоднократно это связано с практической важностью такой информации для вычисления равновесий шлак-металл. Делались попытки определения структуры частиц в расплавленном окисле на основании термодинамических работ. При этом выдвигались гипотезы о существовании определенных молекулярных частиц, и критерием их правильности считалось постоянство вычисленных значений константы равновесия и близость измеряемых величин к этому численному значению. Однако такой подход не учитывает общего вывода Гиббса о невозможности получения структурных данных из чисто термодинамических (не статистических) рассуждений. Приблизительное постоянство теоретически вычисленной константы равновесия при изменении состава не является строгим доказательством в пользу существования в расплавленном окисле предполагаемых частиц, поскольку отношение произведений концентраций ряда различных частиц может оказаться приблизительно постоянным [150] (в противоположность численному совпадению с экспериментом теоретического расчета, включающего кинетический параметр, который зависит от абсолютного значения, а не от отношения значений. В данном случае численное совпадение с экспериментом более убедительно, чем для равновесной константы, зависящей от отношения концентраций). На практике такой метод исследования приводил к выводам относительно структуры, не согласующимся с результатами определений по другим методам. Измерения активности и соответственно определения обратимых э. д. с. ячеек, содержащих [c.239]

    Наиболее ценные для конформационного анализа замешенных гидразинов данные получены к настоящему времени с помощью ЯМР. В основном использовался резонанс на протонах, но в последние годы широко стал применяться и резонанс на ядрах углерода Достаточно полную сводку работ по использованию спектроскопии ЯМР Н и 1 С в кон-формационном анализе гидразинов можно найти в статьях [39, 40]. Применение спектроскопии ЯМР имеет определенное преимущество перед спектроскопией на протонах в связи со значительно большим различием в химических сдвигах ядер углерода, принадлежащих разным конформерам. Это позволяет делать достаточно строгие выводы о термодинамической стабильности конформаций таких гидразинов, изучение которых с помощью спектроскопии ЯМР Н затруднительно или просто невозможно. Параметры активации конформационных переходов в гидразинах находятся обычными методами динамической спектроскопии ЯМР, основанными на измерении температуры коалесценции или на полном анализе температурной зависимости формы линий. [c.21]


    До известной степени противопоставлением статистическому методу является метод термодинамический, принесший богатые плоды и до сих пор остаюш,ийся основанием всех энергетических расчетов и расчетов химических равновесий. Этот метод, занимающий особенно большое место в курсах физической химии, является, прежде всего, широким обобщением фактического материала Б области взаимной связи и взаимных превращений разных форм энергии. Законы термодинамики, по существу, являются выражением суммарного результата статистических закономерностей, и все выводы термодинамики в применении к химии могут, в принципе, быть получены также и с помощью статистического метода, однако, большей частью гораздо более сложным путем. Важно то, что применение термодинамики не требует знания механизма процессов, в то время как для статистического описания это необходимо. Поэтому применение термодинамики в ее классических рамках более просто и не зависит от полноты или правильности наших сведений о внутреннем механизме процессов. Зато термодинамический метод никогда не может дать столь полных сведений, как статистический, и должен быть дополнен последним во всех случаях, когда задача должна быть решена теоретическим путем до конца, вплоть до числовых результатов. [c.13]

    Общая групповая теория неоднородных жидкостей применяется к задаче о распределении ионов и среднего потенциала, во-первых, вблизи межфазной границы, образованной раствором электролита и металлическим электродом (точнее, ртутью), и, во-вторых, в коллоидных суспензиях. Получено в замкнутой форме решение соответствующей электростатической задачи во внутренней и внешней областях Гельмгольца. Посредством суммирования линеаризованных кольцевых диаграмм, отвечающего случаю разбавленных растворов, впервые установлены пределы применимости дебай-хюккелевских выражений для активности, к которым приводит метод локального термодинамического равновесия. Метод, использованный при выводе адсорбционной изотермы, основан на точном рассмотрении диаграмм, вершины которых расположены на внутренней плоскости Гельмгольца. Этот метод позволяет правильно описать как эффект дискретности адсорбированного заряда, так и неэлектростатическне эффекты, связанные с конечным размером ионов. Кроме того, показано, что теория диффузного слоя, учитывающая в наинизшем неисчезающем порядке конечный размер ионов, противоречит результатам, полученным методом локального термодинамического равновесия. Применение последовательной групповой теории к задаче об устойчивости коллоидов позволило также внести в выражение для свободной энергии совокупности двойных слоев поправки, которые до сих пор не учитывались. [c.141]

    Энергия — основная физическая величина. Математический аппарат большинства разделов теоретической физики, включая термодинамику, основан на различных формах закона сохранения энергии. Однако важнейшая особенность макроскопических систем, которые рассматриваются в термодинамике, состоит в том, что энергию макроскопической системы невозможно непосредственно измерить. Различные физические методы позволяют только определять изменения энергии отдельных частиц системы — атомов, молекул, ионов. Однако не существует никаких методов непосредственного измерения энергии системы как целого. Изменение энергии макроскопической системы определяют в виде теплоты или работы. Первоначально они рассматривались независимо. Поэтому для макроскопической системы сам факт существования внутренней энергии макроскопической системы как некоторой физической величины удалось установить только в середине XIX в., причем для этого потребовалось открыть ранее неизвестный закон природы — первое начало термодинамики. Впоследствии возникла необходимость использовать и другие неизмеряемые величины — энтропию, химический потенциал и т. п. Широкое применение в математическом аппарате термодинамики непосредственно не измеряемых величин является особенностью термодинамики как науки и сильно затрудняет ее изучение. Однако каждая неизмеряе-мая величина в термодинамике точно определена в виде функций измеряемых величин и все окончательные выводы термодинамики можно проверить на опыте. При этом для описания свойств системы используют специальные термодинамические переменные (или термодинамические параметры). Это физические величины, с помощью которых описывают явления, связанные с взаимными превращениями теплоты и работы. Все это макроскопические величины, выражающие свойства больших групп молекул. Не все эти величины можно непосредственно измерить. [c.6]

    Существует ряд способов облегчить решение этой проблемы. [15, 113, 140, 283]. Если основание и его сопряженная кислота имеют полосы поглощения при различных длинах волн, то семейство кривых поглощения в области протонирования должно пересекаться в изобестической точке. Один из корректировочных методов Гаммета [113] заключается в смещении измеренных кривых поглощения до обычной изобестической точки, чем снимается влияние растворителя. Другие способы можно применить, когда свет поглощается только одним из соединений — либо В, либо ВН ". Эти способы обычно связаны с предположением, что сдвиги, обусловленные растворителем, постоянны и малы в сравнении с резкими изменениями, вызванными протонированием. Таким образом, с помощью аналитических уравнений, включающих определенное число измерений е , становится возможным рассчитать не только рКа, но и [В] и [ВН+]. В качестве примера можно привести исследование эфиров фенолов как оснований [15], для которых можно наблюдать только одну сильную полосу при 270 М .1, исчезающую по мере протонирования атома кислорода. В этом случае [В] нельзя наблюдать непосредственно из-за очень сильного влияния среды, а [ВН+] — из-за того, что эфиры фенолов быстро сульфируются при высоких значениях кислотности, необходимых для полной конверсии в сопряженную кислоту. Несмотря на это, обработка данных может дать результаты, которые хорошо удовлетворяют уравнению (16). Другой, очень часто используемый метод — метод Дейвиса и Гейссмана [79] и Стюарта и Ейтса [328]. Он применяется в тех случаях, когда В и ВН+ имеют максимумы поглощения при различных длинах волн. Его применение позволяет избежать уравнения (23) благодаря использованию кривой, выражающей зависимость разностей в оптических плотностях двух пиков поглощения от Яд. Обычно получается хорошая ст-образная кривая титрования, точка перегиба которой в середине принимается за рКа- Очевидно, что из этих расчетов нельзя сделать никаких выводов о соблюдении уравнения (16) и, имея мало других данных, можно считать, что такие р/С выражают собой лишь Яо при прото нировании наполовину, а не являются истинными термодинамическими р/Са. [c.211]

    Одним из результатов работы, проведенной в конце 1960-х гг. американской Межведомственной комиссией по ракетным двигателям на химическом топливе СКРО, стало признание того, что экономичность, устойчивость и работоспособность ЖРД взаимосвязаны. Такой вывод был сделан на основании анализа дробления, испарения и горения распыленного топлива, который стал отправной точкой для поиска технических решений в этих трех направлениях. В результате появилась возможность оптимизировать процесс выбора конструкторских решений, сократив тем самым период разработки и уменьшив массу двигателя. Большинство ЖРД, разработанных до 1970 г., создавались методом проб и ошибок. Случалось, что до нахождения оптимальной конструкции приходилось опробовать до 100 вариантов смесительной головки. Обычно лишь после достижения требуемого уровня экономичности и обеспечения устойчивой работы начинались поиски способов обеспечения требуемого ресурса. Поэтому разработанные ранее ЖРД (эксплуатация некоторых из них еще продолжается) имели неоптимальное соотношение компонентов топлива, в них использовались специальные устройства для повышения устойчивости, а масса конструкции оказывалась завышенной. Маршевый двигатель ВКС Спейс Шаттл и экспериментальный ЖРД с кольцевой камерой сгорания и центральным телом стали первыми двигателями, разработанными с применением новых методов. Рабочие характеристики ЖРД определяются выбором установочных параметров, к которым относятся свойства компонентов топлива и технические требования к системе подачи топлива, смесительной головке и камере сгорания. Исходя из них, можно рассчитать полноту сгорания, удельный импульс, устойчивость горения и температуру стенки камеры. Достигнутый удельный импульс, как и для РДТТ, представляет собой разницу между термодинамическим потенциалом топлива и потерями, сопутствующими его реализации. Динамическая устойчивость определяется балансом между причинами, вызывающими внутрика- [c.164]

    В ряде работ были получены уравнения для расчета приближенными методами термодинамических функций отдельных конкретных газов с учетом расщепления уровней в мультиплетных состояниях. Так, Витмер [4301] и Гордон и Барнес [1814] вывели соотношения для расчета термодинамических функций N0 (состояние Пл, случай Гунда а), Хар и Фридман [1910] — уравнения для расчета функций ОН (состояние П/, связь промежуточная между случаями Гунда а и 6). В работах Гордона и Барнес [1814] и Вулли [4324] были получены уравнения для расчета термодинамических функций Ог (состояние случай Гунда Ь). В работе [1814] эти уравнения были получены на основании соотношений Кра-мерса для энергии вращательных уровней этой молекулы, в работе [4324] — на основании уравнений Шлаппа (см. стр. 50). Наконец, в работе Гордона [1808] были выведены уравнения для расчета термодинамических функций газов, молекулы которых находятся в состоянии П вывод был выполнен на примере молекулы Сг. [c.96]

    Классическая работа Термодинамика и свободная энергия веществ , написанная в 1923 г. Льюисом и Ренделлом, по существу является первой полной математической формулировкой химической термодинамики. Поколения студентов изучали эту интересную книгу и убеждались в полезности приведенных там соотношений для решения технических проблем. Одной из двух значительных работ, опубликованных после 1923 г,, было экспериментальное подтверждение третьего закона, выполненное Джиоком и его учениками. Другим исследованием явилась разработка методов статистической механики для расчета термодинамических свойств идеального газа на основании первого и второго законов термодинамики. Сейчас нет никаких сомнений в том, что величины свободных энергий, полученные из термических данных и статистических методов расчета, можно с уверенностью использовать для предсказания состояния равновесия в системах. Тем не менее широкое применение термодинамики в органической химии до настоящего времени тормозилось двумя факторами. Использование неточных литературных данных или непонимание ограничений, налагаемых термодинамикой, вело к тому, что некоторые термодинамические выводы не соответствовали экспериментальным результатам. Это в свою очередь вызывало определенное недоверие к тем общим выводам, которые были сделаны на основе термодинамики. Другой причиной, ограничивающей применение термодинамического подхода к проблемам органической химии, являлся недостаток доступных численных значений свободных энергий. Данные но химической термодинамике настолько рассеяны в научной литературе, что без сводных таблиц было крайне трудно работать термохимикам, занимающимся практическими расчетами. Наряду с этим выявилась скудность данных для органических соединений, что было впервые отмечено Парксом и Хаффманом еще в 1932 г. в их оригинальной монографии Свободные энергии органических соединений . В этой очень полезной книге были полностью учтены оба отмеченных выше фактора. [c.13]

    Вывод кинетических уравнений для макроскопических величин является основной задачей неравновесной статистической механики. Последовательный подход к этой проблеме приводится в работе Цванцига [1], который получил для классического случая уравнение Фоккера — Планка из уравнения Лиувилля методом проекционного оператора. Аналогичное уравнение для квантового случая было выведено Сьюзлом [2]. Несколько другой, более простой вывод кинетического уравнения Фоккера — Планка, основанный на методе Зубарева [3], приведен в работе [4]. Во всех этих работах вывод кинетического уравнения проводится для подсистемы, слабо взаимодействующей с термодинамической равновесной системой — термостатом. Уравнение, описывающее эволюцию такой подсистемы, в общем случае оказывается немарковским. Однако достаточно медлен- [c.188]

    С появлением конформационного анализа стало возможным истолковать многие из результатов по изучению равновесий с точки зрения относительной термодинамической устойчивости геометрических и структурных изомеров природных соединений, содержащих эпимеризуемые центры. Основной принцип метода может быть сформулирован следуюш им образом наименьшей энергией основного состояния будет обладать лишь та конфигурация и конформация, в которой заслоняюш ий эффект и другие неблагоприятные несвязанные взаимодействия минимальны. Следовательно, основное звено проблемы — выбор конфигурации, удовлетворяющей этому условию. При отсутствии экспериментальных данных выводить ймпирически порядок относительной устойчивости изомеров довольно рискованно. Тем не менее во многих случаях, когда нет оснований опасаться осложнений, изучение равновесной изомеризации может явиться очень надежным, а иногда и самым удобным методом установления стереохимии. [c.668]

    Если бы аминокислоты соответствовали формуле I, то частица с подобной структурой, присутствующая в растворе, также не перемещалась бы в электрическом поле. Таким образом, поведение аминокислот при электролизе не дает возможности установить различие между формами I и П. Зато другие физико-химические методы полностью подтверждают биполярную структуру II. На основании определенных термодинамических соображений был сделан вывод, что в растворах аминокислот нейтральные молекулы I могут существовать лпшь в исчезающе малых концентрациях. [c.373]

    Поразительное сходство многих физических свойств муллита и силлиманита, а также незначительная разница их химического состава, вызвали ряд критических замечаний по поводу выводов Боуэна и Грейга. Вследствие этого Виковым было проведено новое исследование с применением рентгенографических методов. Шерер22 пытался доказать сущвсгво)зая ие силлиманита в фарфоре он получил приблизительно одинаковые порошковые рентгенограммы для порошков фарфора и природного силлиманита. Почти полное совпадение структурных свойств обеих кристаллических фаз, которые, однако, отличаются друг от друга по составу и не образуют кристаллических растворов, не так легко объяснить. Результаты рентгенографических исследований силикатов алюминия привели к двум различным результатам на основании видимой тождественности порошковых рентгенограмм было сделано заключение, что либо силлиманит и муллит совершенно тождественны, либо они различны структурно и должны иметь различные термодинамические свойства . [c.460]

    Последним описываемым методом является модификация подхода Чью— Свенсона, основанного на термодинамическом цикле Ватсона [уравнение (5.8. И) ] Этот метод сложнее в использовании, а проверка его точности дала беспорядочные результаты. Для расчетов следует знать критические температуру и давление, теплоемкость жидкости и теплоту парообразования, а также корреляцию давления пара по температуре. При использовании этого метода требуемая теплоемкость жидкости всегда находилась по методу групповых составляющих Чью—Свенсона при 20 °С (табл. 5.12), а теплота парообразования — из приложения А. Сравнение приводит к выводу, что данный метод дает плохие результаты при низких температурах (менее 20 X). Проверочные расчеты по этому методу, проведенные Чью и Свенсоном [11], показали, что в основном погрей1ность менее 5 % (для углеводородов 3 %). [c.164]

    Использование уравнения (46а), не являющегося чисто термодинамическим, для изучения изотерм адсорбции вызвало возражение Парсонса [184], однако высказанные нами выше соображения относительно уравнения (9) дают основание использованию емкостных измерений для изучения изотерм адсорбции органических соединений на поверхности электрода. В работе Лайтинена и Мозьер [185] этим методом были изучены изотермы адсорбции на ртути тридцати различных органических веществ, причем было отмечено, что форма их приблизительно соответствует форме изотермы Ленгмюра. Следует, однако, отметить, что в ряде случаев, когда концентрация органического вещества была мала, а адсорбируемость его велика, при использовании капельного электрода с относительно небольшим периодом капанья (8—10 сек) адсорбционное равновесие, вероятно, фактически не успевало установиться [186, 187]. Это ограничивает значение выводов, относящихся к форме адсорбционной изотермы. [c.206]

    Изложенный способ вывода термодинамических уравнений основан на использовании свойств термодинамических функций и, Н. Р, О и 5. Он оказался наиболее плодотворным для тех случаев, когда помимо теплоты и механической работы нужно принимать во внимание работы других типов обобщенных сил. С наибольшей полнотой этот метод разработан Гиббсом, хотя в виде отдельных примеров до этого он использовался Масье, Дюгемом и многими другими. [c.43]


Смотреть страницы где упоминается термин Термодинамические основания и методы вывод: [c.369]    [c.218]    [c.274]    [c.369]    [c.281]    [c.26]    [c.213]    [c.240]    [c.63]    [c.284]   
Понятия и основы термодинамики (1962) -- [ c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Метод термодинамический



© 2025 chem21.info Реклама на сайте