Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродный потенциал в водном растворе

    Металлы, обладающие более отрицательным стандартным электродным потенциалом, могут быть использованы для вытеснения (восстановления) металлов с более положительным стандартным электродным потенциалом из водных растворов их солей. Отсюда следует, что все металлы, стандартный электродный потенциал которых отрицателен, могут вытеснять водород из водных растворов кислот, а в некоторых случаях — и из воды. Металлы, стандартный электродный потенциал которых положителен, не вытесняют водород из водных растворов кислот. В некоторых случаях такие металлы обладают особой химической инертностью н противостоят даже воздействию сильных окислителей. [c.237]


    Значения стандартных потенциалов металлических электродов в водных растворах приведены в табл. 20, которая является одновременно и рядом напряжения. Стандартные электродные потенциалы металлов указывают на меру восстановительной способности атомов металла и меру окислительной способности ионов металла. Чем более отрицательное значение имеет потенциал металла, тем более сильными восстановительными способностями обладает этот металл. Например, литий, имеющий наиболее отрицательный стандартный потенциал, относится к наиболее сильным восстановителям. И наоборот, чем более положителен потенциал металлического электрода, тем более сильными окислительными способностями обладают его ионы. Из табл. 20 видно, что к наиболее сильным окислителям принадлежат ионы золота, платины, палладия, серебра и ртути. [c.192]

    Исследования показали, что скорость электрохимической коррозии зависит от потенциала корродирующего металла. О термодинамической неустойчивости металлов в водных растворах, т. е. о склонности их к коррозии, можно делать вполне определенные выводы, если сравнивать их электродные потенциалы с потенциалами окислителей, которые участвуют в процессе коррозии. Механические напряжения в металлических конструкциях и деталях также способствуют ускорению процессов коррозии за счет повышения активности металла. [c.274]

    Аналогично при наличии в системе, подвергающейся электролизу, несколько восстановителей на аноде будет окисляться наиболее активный из них, т. е, восстановленная форма той электрохимической системы, которая характеризуется наименьшим значением электродного потенциала. Так, при электролизе водного раствора сульфата медн с инертными электродами (например, угольными) на аноде может окисляться как сульфат-ион [c.190]

    Из формулы Нернста (21.4) следует, что электродный потенциал (и потенциал разряда) падает с повышением температуры и увеличением активности (концентрации) электролита. Поэтому, процесс электролиза водных растворов целесообразно проводить при высоких температурах и из концентрированных растворов. [c.334]

    Этот тип коррозии наиболее распространен. Он имеет место при взаимодействии металлов с жидкими электролитами (водой, водными растворами солей, кислот и щелочей, расплавленными солями и щелочами) и является гетерогенной электрохимической реакцией электролитов с металлами. Однако в принципе не исключена возможность и химической коррозии металлов в электролитах, при которой окисление металла и восстановление окислительного компонента (молекул или ионов) электролита происходят в одном акте, скорость которого не зависит от величины электродного потенциала металла, с образованием соединений и их последующим растворением. [c.148]


    О периодичности изменения химической активности простых веществ свидетельствует характер изменения АЯ и АО/ соответствующих однотипных соединений с увеличением порядкового номера элемента. Об этом же свидетельствует рис. 128, на котором показана зависимость значений стандартного электродного потенциала простых веществ в водном растворе от порядкового номера элемента в периодической системе. [c.238]

    Если система, в которой проводят электролиз, содержит различные окислители, то на катоде будет восстанавливаться наиболее активный пз них, т. е. окисленная форма той электрохимической системы, которой отвечает наибольшее значение электродного потенциала. Так, при электролизе кислого водного раствора соли никеля при стандартных концентрациях (или, точнее, активностях) ионов Н+ и Ni + [c.189]

    В 1914 г. Л. В. Писаржевским было дано новое толкование электродных процессов, позволившее заменить формальную схему осмотической теории Нернста реальной физической картиной. Несколько позже (1926 г.) аналогичные идеи высказаны Н. А. Изгарышевым и А. И. Бродским. По Л. В. Писаржевскому, причинами перехода ионов металла в раствор являются диссоциация атомов металла иа ионы и электроны и стремление образовавшихся ионов сольватиро-ваться, т. е. вступать в соединение с растворителем. Необходимо, следовательно, учитывать два равновесия одно — между атомами металла и продуктами его распада (ионы и электроны) и другое — при сольватации (в водных растворах — гидратации). Таким образом, потенциал металла, погруженного в раствор, зависит от обоих процессов и состоит из двух слагаемых, одно из которых зависит от свойств металла, а второе — от свойств как металла, так и растворителя. Эти новые взгляды, основанные на электронных представлениях, качественно совпадают с современными представлениями, которые, таким образом, были предвосхищены Л. В. Писаржевским задолго до квантовой механики, статистики Ферми и других современных теоретических методов, [c.216]

    Для этого пользуются значениями изобарных потенциа лов образования реагентов, а для весьма частного (хотя и практически важного) случая — разбавленных холодных не сжатых водных растворов — значениями нормальных электродных потенциалов гэа- [c.96]

Рис. 147. Зависимость стандартного электродного потенциала в водном растворе от Рис. 147. <a href="/info/264894">Зависимость стандартного электродного</a> потенциала в водном растворе от
    Наряду с экспериментальными методами определения стандартных электродных потенциалов важное место занимает расчетный метод с использованием термодинамических данных, особенно полезный, когда электроды неустойчивы, например щелочные или щелочноземельные металлы в водных растворах их солей или оснований. Расчетный метод основан на том, что потенциал электрода равен э. д. с. электрохимической цепи, составленной из данного и стандартного водородного электрода. Например, для электрода Na+ Na цепи Ыа Ыа+ЦН+ Н2, Р1 соответствует реакция [c.478]

    Равновесный потенциал различных электродов, погруженных в раствор собственной соли, в котором активность (концентрация) ионов данного металла равна единице (1 моль/л), измеренный относительно нормального водородного электрода, называется нормальным, или стандартным, потенциалом и,.). Для всех металлов они образуют так называемый электрохимический ряд напряжений (табл. 3.1) или стандартные электродные потенциалы элементов в водных растворах при температуре 25 °С. [c.34]

    За нулевую точку измерения потенциалов условно принят нормальный потенциал водородного электрода. В настоящее время наука еще не располагает методами, позволяющими измерять абсолютное значение электродных потенциалов. Мы обычно всегда измеряем только разность потенциалов. Вот почему и понадобилось какой-то потенциал условно принять равным нулю. Таким потенциалом является нормальный потенциал водородного электрода. Для изготовления его используют способность платины растворять газообразный водород. Платиновая проволока или пластинка, содержащая растворенный водород, играет роль водородной пластинки , а функции раствора солей может выполнять любой водный раствор, в котором всегда присутствуют ионы водорода Н+. Причем [c.227]

    Как показывает рассмотренный пример, при электролизе водных растворов солей, реакция которых близка к нейтральной, па катоде восстанавлнваются те металлы, электродные потенциалы которых значительно положительнее, чем —0,41 В. Если потенциал металла значительно отрицательнее, чем —0,41 В, то на катоде будет выделяться водород . При значениях электродного потенциала металла, близких к —0,41 В, возможно, в зависимости от концентрации соли металла и условий электролиза, как восстановление металла, так и выделение водорода (или совместное протекание обоих процессов). [c.190]


    Рассматривая катодные процессы, протекающие при электролизе водных растворов, ограничимся важнейшим случаем — катодным восстановлением, приводящим к вьщелению элементов в свободном состоянии. Здесь нужно учитывать величину потенциала процесса восстановления ионов водорода. Этот потенциал зависит от концентрации ионов водорода и в случае нейтральных растворов (рН=7) имеет значение — -0,059 7 = -0,41 В. Поэтому, если катионом электролита является металл, электродный потенциал которого значительно поло-жительнее, чем —0,41 В, то из нейтрального раствора такого электролита на катоде будет выделяться металл. Такие металлы находятся в ряду стандартных окислительно-восстановительных потенциалов вблизи водорода (начиная приблизительно от олова) и после него. Наоборот, если катионом электролита является металл, имеющий потенциал значительно более отрицательный, чем —0,41 В, металл восстанавливаться не будет, а произойдет выделение водорода. К таким металлам относятся металлы начала ряда — приблизительно до титана. Наконец, если потенциал металла близок к значению -0,41 В (металлы средней части ряда — 7п, Сг, Ре, Сс1. N1), то в зависимости от концентрации [c.282]

    Отношение к перенапряжению — двойственное. С одной стороны, перенапряжение приводит к повышенному расходу электроэнергии, с другой стороны, благодаря перенапряжению удается осаждать из водных растворов многие металлы, которые-но значениям их стандартных электродных потенциалов осаждаться не должны. Это Ре, РЬ, 5п, N1, Со, 2п, Сг. Именно благодаря перенапряжению, а также влиянию концентрации раствора на электродный потенциал возможны электролитическое хромирование и никелирование железных изделий, а на ртутном электроде удается получить из водного раствора даже натрий. [c.361]

    При одном и том же значении потенциала электрода скорость и даже направление электродных процессов могут существенным образом зависеть от адсорбции компонентов раствора. Так, сильное влияние на кинетику и механизм превращений органических веществ на окисленном электроде оказывает природа аниона и катиона фона. Это коррелирует с их различной адсорбируемостью, а также с возможностью специфического каталитического действия заряженных частиц (например, при внедрении их в оксидный слой). Так, при окислении на Р1-электроде фенилуксусной кислоты в метанольно-пиридиновых растворах добавление СЮ4 -анионов приводит к резкому снижению выхода димера в области потенциалов электросинтеза Кольбе, а основным продуктом становится бензилметиловый эфир. Это можно объяснить конкурирующей адсорбцией РЬ СН и С104 . Специфическая адсорбция катионов положительно влияет на выход димеров по Кольбе и Брауну—Уокеру. При электролизе растворов ацетатов в зависимости от природы катиона выход этана возрастает в ряду Li+нитрат-анионы — с другой, по-разному влияют на селективность анодных превращений ацетата в щелочных водных растворах в частности, первые из них увеличивают, а вторые практически не изменяют выход спирта. [c.290]

    В гальваническом элементе отрицательный полюс (анод) — электрод с меньшей величиной электродного потенциала ( °), положительный полюс (катод) — электрод со сравнительно более высокой алгебраической величиной потенциала ( °). Поток электронов при работе гальванического элемента (контакте разных металлов в водной среде, растворе) направлен от отрицательного электрода (более активного металла) к положительному. Отрицательный электрод (анод) окисляется, разрушается. [c.161]

    В том случае, когда в водном растворе содержатся катионы различных металлов (Pt +, Pd +, Ag+, u +, Ni + и др.), при электролизе выделение их на катоде протекает в порядке уменьшения величины стандартного электродного потенциала. Из приведенных выше катионов первоначально будут восстанавливаться (табл. 6.1) катионы Pt2+ ( =1,20 В), а в последнюю очередь Е°= [c.164]

    Элементарный водород по некоторым свойствам (двухатомная молекула, летучесть, отсутствие электропроводности в конденсированном состоянии, непрочность кристаллической решетки молекулярного типа) сходен с элементарными окислителями, по другим свойствам (значение электродного потенциала в водных растворах) — с металлами, хотя и мало типичными. [c.37]

    Абсолютное значение стандартного потенциала <р непосредственно измерить невозможно, так как в любом гальваническом элементе протекают две электродные реакции, и измеряемое напряжение элемента равно разности электродных потенциалов. Поэтому приходится пользоваться относительными электродными потенциалами. Условно принимают равной нулю величину водородного электрода (платиновый электрод в растворе кислоты, насыщенной водородом) при 25 С, давлении водорода 101 кПа и при концентрации ионов водорода в водном растворе, равной [c.206]

    Большое положительное значение перенапряжения можно показать на примере электрохимического выделения водорода. Электродные потенциалы цинка, кадмия, железа, никеля, хрома и многих других металлов в ряду напряжения имеют более отрицательную величину равновесного потенциала по сравнению с потенциалом водородного электрода. Благодаря перенапряжению водорода на указанных выше металлах при электролизе водных растворов их солей происходит перемещение водорода в ряду напряжений в область более отрицательных значений потенциала и - становится возможным выделение многих металлов на электродах совместно с водородом с большим выходом металла по току . Так, выход по току при электролизе раствора 2п504 более 95%. Это широко используется в гальванотехнике при нанесении гальванических покрытий и в электроанализе. Изменением плотности тока и материала катода можно регулировать перенапряжение водорода, а значит и восстановительный потенциал водорода и реализовать различные реакции электрохимического синтеза органических веществ (получение анилина и других продуктов восстановления из нитробензола, восстановление ацетона до спирта и др.). Перенапряжение водорода имеет большое значение для работы аккумуляторов. Рассмотрим это на примере работы свинцового аккумулятора. Электродами свинцового аккумулятора служат свинцовые пластины, покрытые с поверхности пастой. Главной составной частью пасты для положительных пластин является сурик, а для отрицательных — свинцовый порошок (смесь порошка окиси свинца и зерен металлического свинца, покрытых слоем окиси свинца). Электролитом служит 25—30% серная кислота. Суммарная реакция, идущая при зарядке и разрядке аккумуляторов, выражается уравнением [c.269]

    Рассматривая катодные процессы, протекающие при электро-лизе водных растворов, нужно прежде всего учитывать величину потенциала процесса восстановления ионов водорода. Этот потенциал зависит, как указывалось выше, от концентрации ионов водорода (см. стр. 119) в нейтральных растворах (pH = = 7) ф = —0,059-7 = —0,41 В. Отсюда ясно, что если электролит образован металлом, электродный потенциал которого значительно положительнее, чем —0,41 В, то из нейтрального раствора у катода будет выделяться металл. Такие металлы находятся в ряду стандартных потенциалов вблизи водорода (начиная приблизительно от олова) и после него. В случае электролитов, металл которых имеет потенциал значительно более отрицательный, чем —0,41 В, на катоде будет выделяться водород. К таким металлам относятся металлы начала ряда стандартных потенциалов — приблизительно до титана. Наконец, если потенциал металла близок к величине —0,41 В (металлы средней части ряда — 2п, Сг, Ре, d, N1), то, в зависимости ог концентрации раствора, температуры и плотности тока, возможно как восстановление металла, так и выделение водорода нередко наблюдается совместное выделение металла и водорода. [c.124]

    Ртуть, как это видно из значения ее электродного потенциала (ф = +0,850 В), в водных растворах бескислородных кислот не растворяется. [c.243]

    Таким образом, еслн электрод расположен в ряду стандартных электродных потенциалов между ]юдородным и кислородным электродами, то при его контакте с ра твором разложение воды с выделением водорода будет термодинамически невероятно. Однако остается еще возможной реакция восстановления кислорода, поэтому такой электрод должен быть термодинамически неустойчив в присутствии В0Д1Л и воздуха. Если ке водный раствор обезгазить и воздух над ним заменить инертной атмосферой, тогда восстановление кислорода будет исключено и электрод станет термодинамически устойчивым. В этих условия к можно реализоват ) обратимый потенциал электрода и измерить его относительно соответствующего электрода с[)авиеиия. [c.186]

    Такнм образом, по Писаржевскому, переход ионов из металла в раствор совершается не за счет физически неясной электролитической упругости растворения металла, а в результате его взаимодействия с молекулами растворителя. Явление электролитической диссоциации электролитов и возникновение электродного потенциала основаны, следовательно, на одном и том же процессе сольватации (в случае водных растворов — гидратации) ионов. Из уравнения реакции (10.20) следует, что при растворении образуются не свободные, а сольватированные ионы, свойства которых зависят от и >ироды растворителя. Поэтому в отхичие от теории Нернста значение стандартного потенциала данного электрода должно меняться при переходе от одного растворителя к другому. Подобная зависимость была действительно обнаружена и послужила предметом исследований многих авторов (Изгарышева, Бродского, Плескова, Хартли, Измайлова и др.). Было установлено, что изменение электродного потенциала при переходе от одного растворителя к другому оказывается тем большим, чем М зньше радиус и выше заряд иона, участвующего в электродной реакции. По Плескову, меньше всего изменяются потенциалы цезиевого, рубидиевого и йодного электродов, в установлении равновегия на которых участвуют одновалентные ионы значительных размеров. Напротив, эти изменения особенно велики в случае ионов водорода и поливалентных катионов малых размеров. Именно такой зависимости электродных потенциалов от природы растворителя следовало ожидать на основе представлений Писаржевского о роли сольватационных явлений в образовании скачка потенциала металл — раствор. Для количественного сравнения потенциалов в разных растворителях применяют в качестве стандартного нулевого электрода цезиевый [c.221]

    Электрохимическое выделение мета [Лов из водных растворов происходит при более отрицательном иотегщиале, чем равновесный потенциал соответствующего металла в данных условиях. Разность между ноте1щиалом электрода под током (прп катодном выделении металла) и соответствующим обратимым электродным потенциалом дает электродную нолярнзанию [c.453]

    Если кусок какого-либо металла М привести в контакт с водным раствором его соли МА, то через некоторое время на границе между металлом и раствором установится значение потенциала, которое в дальнешем будет сохраняться почти неизменным. Эта постоянная (или почти постоянная) величина отвечает либо равновесию между металлом и раствором, либо стационарности электродного процесса. Какой из этих случаев реализуется в действительности, определяется в первую очередь самой величиной электродного потенциала. Если термодинамический электродный потенциал металла имеет величину, при которой в данных условиях исключено протекание всех других ироцессов (кроме обмена металлическими иоиами между металлом и раствором), то установившаяся величина нотенциала будет отвечать его равновесному значению в данных условиях. Скорость перехода ионов металла в двух противоположных направлениях при достиженип состояния равновесия сделается одинаковой и равной току обмена  [c.488]

    Электрохимическая коррозия — это взаимодействие металла с коррозионной средой (электролитом), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от величины электродного потенциала. Электрохимическая коррозия протекает только при контакте поверхности металла с электролитом, т. е. с токопроводящей средой (водными растворами солей, кислот, щелочей). Практически поверхность любого металла в ат осфе-ре покрывается тонкой водной пленкой различной толщины в зависимости от температуры и влажности воздуха, а также от температуры металлической поверхности. В этой пленке растворяются содержащиеся в воздухе газы (диоксид углерода, оксиды азота и серы, сероводород и др.) и мелкие частицы (пыль) различных солей, что приводит к образованию электролита. [c.279]

    Предельная плотность тока. Если электродный процесс сопровождается уменьшением количества потенциалопределяющих веществ, на поляризационных кривых возникают участки, для которых характерен резкий рост потенциала при практически постоянной плотности тока, называемой предельной (рис. 176). Рассмотрим это явление на примере электролиза водного раствора Си504. На катоде возможно протекание двух процессов разряд ионов (система I) и ионов Н"  [c.502]

    Элементарный водород занимает особое место среди других элементарных веществ по некоторым свойствам (существование в виде газа, состоящего из двухатомных молекул в конденсиро-вапном состоянни летучесть, отсутствие электрической ироводи-мости, непрочность кристаллической решетки молекулярного типа) водород сходен с элементарными окислителями, по другим свойствам (значение электродного потенциала в водных растворах)— с металлами, хотя и мало типичными. [c.111]

    Если водный раствор содержит катионы различных металлов, то можно было бы ожидать, что ири разряде катионов на катоде легче всего будут разряжаться катионы, которым соответствует иаибо.тее положительное значение электродного иоте1шд1ала. Аналогично, при переходе с анода в раствор каких-либо положительных иоиов легче всего будут переходить в раствор те из них, которым соответствует наиболее отрицательное значение электродного потенциала. [c.208]

    На воспроизводимость значения потенциала платинового индикаторного электрода оказывают влияние факторы , мешающие протеканию электродных процессов, а также изменение активности растворенного Оз. Поэтому относительно дорогой водородный электрод часто заменяют так называемым хингид-ронным электродом. Для индикации в этом электроде используют другую обратимую редокс-пару, потенциал которой зависит от pH. Хингидрон представляет собой продукт присоединения хинона (СЬ) и гидрохинона (СЬНг) в молярном отношении 1 В водном растворе он диссоциирует с образованием исходных компонентов. На поверхности хингидронного электрода протекает реакция [c.315]

    Обсуждая электролиз расплавленного Na l или растворов Na l, мы считали электроды инертными. Это означает, что сами электроды в процессе электролиза не вступают в реакцию, а просто служат поверхностями, на которых происходят окисление и восстановление. Однако в электролитическом процессе получения алюминия по методу Холла анод вступает в реакцию (19.40). Следовательно, электродные реакции включают не только окисление и восстановление растворителя и растворенных веществ, но и самих электродов. При электролизе водных растворов на металлических электродах электрод окисляется, если его окислительный потенциал выше потенциала воды. Например, медь окисляется легче, чем вода  [c.225]

    Централыгьгй ион также меняет свои свойства в результате комплексообразования, что можно видеть, например, по изменению соответствующего электродного потенциала. Так, стандартный электродный потенциал системы Fe +IFe " " в водном растворе равен +0,771 В. Если же взять цианидные комплексы, содержащие железо в степени окисления +2 и -1-3, то для системы [Fe( N)e] -l[Fe( N)6] - = -1-0,36 В, из чего следует, что эта система обладает более слабыми окислительными свойствами, чем система Ре Fe " ". В данном, наиболее типичном случае переход от гидратированных ионов к более устойчивым комплексам сопровождается преимущественной стабилизацией комплексного иона, содержащего центральный атом в высшей степени окисления, вследствие чего окислительная способность этого иона ослабляется. [c.377]

    Стандартный электродный потенциал устанавливают относительно избранного эталона. Для электродов, в состав которых входят водные растворы электролитов, стандартны является обратимый водородный электрод Н +, aq/H2(r) Н2(г) ЗЛеКТрОДНЫЙ [c.128]

    В ряду напряжений каждый металл может вытеснить из соединений при определениь[х условиях следующий за ним элемент с большим алгебраическим значением электродного потенциала. Водород вытесняют нз водных растворов кислот (H I, H2SO4) металлы, стоящие в ряду напряжений до водорода, из воды вытесняют водород в основном щелочные и щелочно-земельные металлы .  [c.155]

    Стандартные электродные потенциал ,3 (В) в водных растворах (С д = 1 М все ионь гидратированы)  [c.72]

    Все щелочные металлы - очень сильные восстановители, их стандартные электродные потенциалы р отрицательные и имеют большое абсолютное значение. Литий имеет наибольшее отрицательное значение электродного потенциала (-3,045 В), соответствующее потенциалу окислительно-восстановительной пары U /U в водном растворе. Это 11бусловлено более высокой энергией гидратации ионов Li по сравнению с ионами других щелочных металлов (ион IJ из всех ионов ще очнкдх металлов имеет наименьший радиус). [c.321]


Смотреть страницы где упоминается термин Электродный потенциал в водном растворе: [c.160]    [c.178]    [c.223]    [c.490]    [c.109]    [c.291]    [c.128]    [c.260]   
Краткий справочник физико-химических величин Издание 8 (1983) -- [ c.79 , c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал водном растворе

Потенциал раствора

Потенциал электродный потенциал

Электродный потенциал



© 2025 chem21.info Реклама на сайте