Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические термическое

    Термический метод [5.6, 5.7, 5.9—5.11, 5.25, 5.26, 5.29, 5.47, 5.52, 5.54, 5.62, 5.71, 5.73]. Метод основан на окислении кислородом воздуха органических соединений при высоких температурах. В зависимости от условий режима окисления, технологического оформления процесса и состава отходов термический метод подразделяется на ряд способов огневое обезвреживание при температуре выше 800°С и давлении ниже 0,2 МПа (сжигание) окисление газообразных органических соединений в присутствии катализаторов при 100—500°С и атмосферном давлении (катализ) окисление органических соединений при 100—300°С, давлении более 0,2 МПа и неполном испарении воды (мокрое сжигание, процесс Циммермана, жидкофазное окисление, высокотемпературная минерализация). [c.497]


    Уравнение, применяемое для определения коэффициента теплоотдачи, как было отмечено ранее, выведено в предположении, что теплопередающая стенка является чистой. Если же поверхность покрыта тонким слоем органических или неорганических, вязких, твердых, растворимых, труднорастворимых или нерастворимых отложений, то тем самым создаются условия теплопередачи через составную многослойную стенку. При теплопередаче в этом случае термические сопротивления составных частей стенки складываются. К толщине металлической стенки, обладающей большой теплопроводностью, добавляется слой загрязнения или инкрустации. В большинстве случаев этот слой является тонким, но теплопроводимость его, однако, мала и лежит в пределах X = = 0,3 2,0 ккал/м час°С. Воздействие этих слоев на коэффициент теплопередачи при больших значениях коэффициентов теплопередачи значительно. Примером являются испарители, у которых инкрустация, выделяющаяся из упариваемого раствора, образуется почти всегда. В случае образования инкрустации необходимы специальные меры предосторожности и очистки поверхности во время работы. Характер этих мероприятий различен в зависимости от вида работы, производственных и иных условий. Исходная шероховатость поверхности благоприятствует осадке примесей и образованию инкрустации. Поверхность полированной трубки, в особенности хромированной, эмалированной или лакированной, обладает значительно более благоприятными свойствами. [c.158]

    Технология первичной перегонки нефти имеет целый ряд принципиальных особенностей, обусловленных природой сырья и требованиями к получаемым продуктам. Нефть как сырье для перегонки обладает следующими характерными свойствами имеет непрерывный характер выкипания, невысокую термическую стабильность тяжелых фракций и содержит в остатке значительное количество сложных гетерогенных органических малолетучнх соединений и практически нелетучих смолисто-асфальтеновых и металл-органических соединений, резко ухудшающих экоплуата цнонные характеристики нефтепродуктов к затрудняющих пo л дy eщyю их очистку. [c.151]

    Термическая деструкция полисилоксанов связана главным образом с отщеплением боковых органических радикалов, причем основная полимерная силоксановая цепь не разрушается. К. А. Андрианов доказал, что окисление органического радикала влечет эа собой образование кислородных мостиков между молекулами полимеров, которые затрудняют доступ кислорода к другим органическим радикалам, что замедляет дальнейшее окисление полимера. [c.150]


    Свойства полисилоксанов в значительной степени определяются свойствами силоксановой группировки. Связь кремния с кислородом отличается большей термической стабильностью, чем органических полимеров, что определяется большей энергией образования связи. Так, энергия связи 81—О равна 89 ккал моль, а энергия [c.150]

    Кроме двух аллотропных форм углерода (алмаз и графит), при термическом разложении органических соединений образуются и другие формы, имеющие кристаллические решетки, аналогичные графиту (параллельные, расположенные в одной плоскости шестиугольные слои). Однако расположение плоских шестиугольников нерегулярное, симметрия сохраняется в двух, а не трех, как у графита, измерениях. [c.126]

    Отходы органических веществ перед подачей в топочную камеру смешивают в определенной пропорции с воздухом. Поэтому рабочая температура в топочной камере должна быть на 150—250 °С выше температуры самовоспламенения наиболее термически стабильного компонента. Присутствие в отходах неорганических примесей также влияет на рабочую температуру топки. Высокие температуры в топочных камерах повышают стоимость огнеупорной футеровки печи. В то же время снижение температуры путем подачи избытка воздуха приводит к росту объема дымовых газов, что влечет за собой увеличение размеров печи. [c.135]

    Десорбция (отдувка) примесей [5.28, 5.37, 5.55, 5.58]. Метод основан на удалении органических и неорганических соединений через открытую водную поверхность с использованием инертного газа или воздуха. Десорбция обусловлена более высоким парциальным давлением газа над раствором, чем давление в окружающей атмосфере. Степень удаления соединений из сточных вод зависит от их природы и повышается с ростом температуры раствора и концентрации растворенных солей и с увеличением поверхности контакта фаз. Десорбированное соединение направляется на дополнительную регенерацию путем адсорбции или обезвреживания термическими или химическими методами. [c.485]

    Это обстоятельство, по нашему мнению, и определяет исключительную стабильность полимерных кремнийорганических соединений (полиорганосилоксанов) по сравнению с органическими. Термические и окислительные процессы, затрагивающие связь 51—С, приводят лишь к перестройке, но не разрушению цепи полиорганосилоксанов, в то время как термическая деструкция и окислительные процессы в органических полимерах сопровождаются разрывом связей С—С в цепях молекул и боковых группах и образованием газообразных продуктов. [c.18]

    Большую опасность представляют собой твердые осадки (например, продукты полимеризации, осмоления), самовоспламеняющиеся на воздухе или разлагающиеся со взрывом в определенных условиях в закрытой аппаратуре. Отмечены случаи взрывов в аппаратуре производства дихлорамина, вызванные термическим разложением осадка и воспламенением при контакте с кислородом воздуха, в производстве этиленпропиленового каучука и в других производствах. Опасность взрывчатого разложения осадков и твердых отложений органических продуктов значительно увеличивается, если в их составе содержатся нестабильные кислородсодержащие веществ , такие, как соли азотной и азотистой кислот, перекисные соединения, хлораты и перхлораты и другие активные-окислители, усиливающие взрывчатое разложение в аппаратуре. [c.294]

    В настоящее время оценка стабильности топлив производится по следующим показателям по количеству фактических смол, величине индукционного периода, показателям термической стабильности. Косвенными показателями стабильности являются количество в топливе непредельных углеводородов, органических кислот, серы и сернистых соединений. Эти примеси значительно ускоряют окислительные, полимеризацион-ные и уплотнительные процессы в топливе. [c.27]

    Одни перекисные соединения вспыхивают с сильным звуковым эффектом и пламенем, а другие разлагаются без пламени. При подогреве распад перекисных соединений происходит по связи О—О на радикалы по цепному механизму. В то же время под воздействием тепла реакции распада температура повышается, реакция ускоряется н переходит во взрыв, если скорость выделения тепла реакции превышает скорость теплоотвода в окружающую среду энергия активации термического распада органических перекисей по связи О—О ниже энергин активации распада обычных взрывчатых веществ и находится в пределах 80— 160 кДж/моль (20—40 ккал/моль). Это обусловливает более низкую температуру их самовоспламенения. [c.135]

    Карбонилы d-элементов (табл. 49) — жидкости или кристаллические вещества, хорошо растворимые в органических растворителях. Как и СО, они чрезвычайно токсичны. Термическим разложением карбонилов получают чистейшие металлы. Кроме того, их используют в химическом синтезе. Карбонилы металлов синтезируют различными способами. Никель, железо и кобальт Н посредственно реагируют с оксидом углерода (II), давая карбонилы. Обычно же их получают восстановлением соответствующих солей или комплексов металлов в присутствии СО. [c.552]


    Термическая нестабильность органических перекисей приводит к возникновению холодных пламен и воспламенению углеводородов при температурах около 300°, причем разложение перекисей эквивалентно цепному разветвлению  [c.413]

    Термическое взаимодействие метана с водяным паром происходит при 1200—1300°. В присутствии никелевого катализатора взаимодействие становится возможным при 700—800°. Каталитический спозоб, в котором природный газ (в целях предотвращения отравления никелевого катализатора) должен предварительно освобождаться от сернистых соединений, в промышленности уже давно разработан [20].. Грубая очистка предусматривает удаление неорганической серы, главным образом в виде сероводорода. Она происходит над так называемой люкс-массой (окись железа— красный шлам бокситиых отходов) или над бурым железняком при обычной температуре. Тонкая очистка, имеющая целью удаление органической серы в виде сероуглерода или сернистого карбонила, осуществляется над щелочной люкс-массой при температуре 250—300°. [c.28]

    Для увеличения эффективности концентрированной азотной кислоты как окислителя, а также повышения термической стабильности ее часто применяют в смеси с четырехокисью азота (около 20%). Кислоту, содержащую до 20% окислов азота, называют красной дымящей азотной кислотой . Это тяжелая жидкость оранжевобурого цвета, которая сильно дымит на воздухе вследствие выделения бурых паров двуокиси азота. К основным недостаткам азотной кислоты следует отнести коррозионную агрессивность по отношению к большинству металлов, способность разрушать многие материалы органического происхождения, ядовитость. [c.127]

    Свободные радикалы можно получить различными способами 1) путем термического разложения металлоорганических или органических соединений 2) путем фотохимического разложения альдегидов и кетонов 3) в результате реакции в электрическом разряде 4) действием металлов на органические галогенопроизводные 5) бомбардировкой молекул а-, р-, у-пуча-ми и нейтронами. [c.84]

    Состав крекинг-бензинов зависит от характера исходного тяжелого сырья. С ужесточением режима термического крекинга или же в тех случаях, когда для получения бензинов использованы каталитические процессы, эта зависимость ослабевает. В составе бензинов содержатся углеводороды с числом углеродных атомов от 4 до 12, но в силу того, что в природе существует большое количество органических соединений с таким количеством атомов углерода, точно определить состав бензинов затруднительно. Возможно существование 661 парафина и 3639 олефинов с указанным выше числом углеродных атомов (1, 2). Кроме того, следует учитывать присутствие всевозможных ароматических и нафтеновых углеводородов количество первых невелико —10—15, но нафтенов с 4—12 углеродными атомами может быть гораздо больше — свыше 800. [c.386]

    Сажа — это порошок (пыль), состоящий из частиц угля размером от 10 —10 см и меньше, которые осаждаются из газов, полученных при термическом разложении органических соединений (неполное сгорание). [c.119]

    По комплексу свойств силоксановые вулканизаты существенно отличаются от всех других резин, а по отдельным из них значительно превосходят вулканизаты на основе большинства органических каучуков. Для них характерны 1) более высокая термическая стабильность на воздухе и в вакууме 2) лучшая морозостойкость 3) повышенная стойкость к озону и к атмосферным воздействиям 4) лучшие физико-механические свойства при высоких температурах 5) значительно более высокая и селективная газо- и паропроницаемость 6) более высокая стойкость к коронному разряду 7) прекрасные диэлектрические характеристики, [c.490]

    Комплексные соли, как правило, слабополярны (по диэлектрической проницаемости их бензольные растворы незначительно отличаются от чистого бензола), они легко взаимодействуют с водой, отличаются низкой стабильностью. Дифференциальнотермическим анализом было показано, что соли аминов и органических (жирных) кислот разлагаются при температурах примерно 125°С. Сравнительно низкая термическая стабильность соединений этого класса, зависящая от типа связи анионной и катионной частей ингибиторов, определяет такие важные их свойства, как объемные (изоляционные) и поверх- [c.294]

    Ранее уже указывалось, что можно совместно получать этилен и ацетилен путем термического и окислительного пиролиза углеводородов. Использование углеводородов природных и попутных газов для получения ацетилена позволит значительно расширить производство этого весьма важного для органического синтеза полупродукта. [c.58]

    Перегонка и ректификация нефтяных смесей, как известно, должны проводиться без заметного изменения химического состава сырья. В то же время большинство органических и металлоргани-ческих соединений нефти являются термически нестойкими и подвергаются при определенной температуре реакциям крекинга, полимеризации, циклизации и другим превращениям с образованием [c.51]

    Получаемый при термическом разложении органических соединений черный графит, или уголь, представляет собой тонкоизмельчен-11ЫЙ графит. Технически наиболее важными сортами черного графита являются кокс, древесный уголь, животный уголь и сажа. Все разновидности углерода тугоплавки. [c.394]

    Кремннйорганическиесоединения — представители более широкого класса так называемых элементорганических соединений. Полимерные элементорганические соединения сочетают термическую стойкость, присущую неорганическим материалам, с рядом свойств полимерных органических веществ. В настоящее время разработаны методы синтеза полимерных фосфор-, мышьяк-, сурьма-, титан-, олово-, свинец-органических, бор-, алюминий- и других элементорганических соеди-нени1. Большинство из этих соединений в природе не встречается. усил( 1шо исследуются теплостойкие полимеры, в основе которых лежат ьепн  [c.421]

    На некоторые трудности в этом вопросе указывает изучение ингибироваипого подом термического и фотохимического распада азо-бис-изобутиропитрила ( N) (СНз)2 С— —N—1 —С (СНз)2СК [92]. Это соединение формально подобно перекиси, так как при распаде оно предположительно дает два радикала [ ( Hз)2 N] и N2- При использовании хлорбензола в качестве растворителя при 80° и соотношении реагентЛг в интервале от 7 до 1 было найдено, что образуется постоянное количество (60%) органического иодида [c.466]

    Поэтому мы здесь не будем останавливаться на всем многообразии расчетов производственных процессов в химической промышленности. Рассмотрим лишь типовые и наиболее распространенные в промышленной практике материальные и тепловые расчеты производственных процессов, как то а) термическую обработку некоторых видов органического и минерального сырья (газификация и коксование угля, газификация торфа, обжиг железного колчедана, электротермическое получение карбида кальция, ферросилиция и окиси азота), б) каталитические процессы синтеза и окисления аммиака, конверсии окиси углерода и окисления сернистого газа, в) электрохимические производства, г) один из наиболее слолсных физико-химических методов промышленной переработки сырья —сжижение и ректификацию газовых смесей в( частности воздуха). Приведенные расчеты производственных процессов охватывают собой значительную и наиболее сложную и важную часть процессов химической технологии. Освоение этих расчетов дает возможность технологу методически правильно подойти к расчету материального и теплового баланса почти любого химического производства. [c.265]

    Сланцевое масло в противополон<ность нефти не яиляется природным продуктом. Оно образуется при пиролизе органической части горючих сланцев его состав в значительной степони зависит от условий производства. Горючие сланцы состоят из различных неорганических компонентов, в которых обычно преобладает глина, связанная с органическими компонентами. Органическая часть горючих сланцев ограниченно растворима в обычных растворителях в ее состав входят углерод, водород, сера, кислород и азот. При нагревании горючие сланцы разлагаются и выделяют газ, сланцевое масло и углеродистый остаток (кокс), который остается в отработанном сланце. Получающееся сланцевое масло иапоминает нефть, так как состоит из углеводородов и их производных, содержащих серу, азот и кислород. Неуглеводородных компонентов в сланцевом масле значительно больше, чем в нефти, углеводородная ше часть содержит менее насыщенные соединения, чем углеводородная часть нефти по составу она напоминает, как и можно было ожидать, продукты термического крекинга. [c.60]

    При термическом разложении метана можно получить такие ценные продукты, как водород, необходимый для ряда органических производств (гидрирование жиров, деструктивная гидрогенизация углеводородов, гидрпроваппе угля — см. ниже, главу XI) и сажу, широко применяемую в каучуковой нромышленностн в качестве наполнителя, а также для многих других целей. [c.245]

    Теория термического крекинга с участием свободных радикалов быда выдвинута Райсом и сотрудниками [26, 31, 32, 33]. Ее применимость к высшим парафинам была подтверждена Воджем и Гудом [40], а распространение ее на другие классы углеводородов обсуждалось Гринсфельдером, Воджем и Гудом [19]. Литература но этому вопросу в настоящее время содержит очевидные доказательства свободнорадикального механизма для многих органических реакций. По-видимому, теория Райса-Косякова хотя и требует некоторого улучшения в деталях, является все же наиболее удовлетворительным объяснением термического крекинга углеводородов. [c.117]

    В настояш,ее время кислотный характер алюмосиликатных катализаторов крекинга не вызывает сомнения. Например, такие катализаторы можно титровать едким калием или такими органическими основаниями, как хинолин. Кислотные свойства катализаторов обусловлены, вероятно, присутствием протонов на их поверхности, активной частью которой может быть либо кислота трша (НА13104)ж [62], либо атомы алюминия с дефицитом электронов [37, 61]. Обсуждение теорий, предложенных для объяснения кислотности алюмосиликатных катализаторов не является целью, настоящей главы. Для данного изложения необходимо только указать, что ион карбония Д" ", инициирующий ценную реакцию, может образоваться либо [1] в результате реакции кислотного катализатора с олефином, который образуется при начальном термическом крекинге, либо путем дегидрирования парафинового углеводорода,. либо в результате отщепления гидридного иона от молекулы парафинового углеводорода атомом алюминия с дефицитом электронов [2]. [c.236]

    В результате реакции было получено 5 г газа, конденсировавшегося при —78°, состоявшего из 70% бутанов и бутиленов, 25% пропана и пропилепа и 5% более высокомолекулярных углеводородов. Было получено также 75 л газа, ие сконденсировавшегося нри —78°, состоявшего из 92% этилена, 6,5% парафинов и 1,5% водорода. Полимеры выкипали в пределах 36—390° и выше и наноминали полимеры, полученные Ипатьевым [23]. Продукт термической полимеризации этилена содержал 8% парафинов, 68% олефинов и 24% циклопарафинов. Соверщенно отсутствовали ароматические углеводороды. В продукте реакции содержались очень большие количества высококиняш,их фракций, только 24% его выкипало до 225°. Отсутствие ароматических углеводородов подтверждают цифровые данные, полученные при органическом анализе, а также то, что после обработки фракций 96 %-ной серной кислотой был получен продукт, не реагирующий с нитрующей смесью. Для дальнейшего доказательства фракции 11, 16 и 19 были Прогидрированы при 220° в присутствии окиси никеля. Анализ гидрогенизатов дал следующие данные. [c.188]

    Процесс термической этерификации в этом случае осуществляется в двух последовательно работающих четырехсекциопных реакторах, снабженных обогревающими змеевиками в каждой секции. Реагирующие компоненты подаются в реактор нагретыми до температуры реакции. Нагрев осуществляется в специальных подогревателях парами органических теплоносителей. Для предотвращения испарения в первом реакторе поддерживается давление 8,5 ат, а во втором реакторе 6,5 ат. Температура процесса этерификации поддерживается на уровне 200° С. Отгонка эфира от избыточного бутанола, рафинация и промывка эфира и ряд других вспомогательных операций осуществляются в непрерывно действующих аппаратах. Условия рафинации эфира температура процесса - 90° С, время контактирования щелочи с эфиром 30 мин. Условия разложения натровых солей кислот (рафинационной щелочи) температура разложения +60° С, время контактирования 30 мин. [c.98]

    Для сопоставления с приводимыми в качестве примера каталитическими реакциями перечислим некоторые важные органические соединения, которые получаются без применения катализаторов уксусная и другие кислоты, синтезируемые окислением углеводородов ацетилен, этилен и другие олефины, получаемые термическим крекингом хлоропарафины, этаноламины, нитропарафины окись этилена и пропилена, синтезируемые хлоргидри-новым методом фенол, получаемый сульфированием и из монохлорбензола мочевина.  [c.324]

    Термическая стабильность на в о з д у х е у силоксановых вулканизатов значительно выше, чем у органических резин. Старение первых (рис. 1) [72] идет при 200—300 °С со скоростью, характерной для вторых при 100—150 °С. После 4—6 недель старения при 125°С органические резины уступают силоксановым по сопротивлению разрыву при этой температуре. В течение первых 2 недель старения при 210 °С механические свойства силоксановых резин изменяются в допустимых пределах, а затем остаются постоянными в течение 8 недель [20, с. 48—54]. Повышенной термической стабильностью при свободном старении отличаются вулканизаты гетеросилоксанов [3, с. 156] и особенно карборансилоксанов [16]. У последних сопротивление разрыву равно 1,8 МПа и относительное удлинение 87% после 24 ч старения при 427 °С. При старении в напряженном состоянии преимущества силоксановых резин перед органическими проявляются уже при 100°С в меньших величинах остаточной деформации сжатия (рис. 2) [72]. По данным [62], силоксановые резины служат при [c.492]

    Известен и другой путь получения устойчивых к терлшокисж нию эластомеров атомы водорода в алифатической углеводородной цепи, с отрыва которых начинается цепной процесс термоокис-ления, могут быть заменены на атомы фтора. Высокая термическая и химическая стабильность полифторированных органических соединений определяется как особенностями углерод-углеродных связей в них, так и характером связей между атомами углерода и фтора. [c.501]

    Благодаря наличию у радикалов свободных валентностей энергия активации процессов, протекающих с их участием, имеет порядок величины энергии активации атомных реакций, и, следовательно, они идут с такой же большой скоростью, как и реакции, в которых участвуют атомы. Особенно интересны радикалы, имеющие две свободные валентности. К таким радикалам относятся двухвалентные атомы О, 8, 8е и радикал метилен СНг , получающиеся в результате термического или фотохимического разложения диазометана (СНгМг- СНз- + N2) или фотохимического разложения кетена (СН2 = С0— СНз +С0). Устойчивые органические бирадикалы могут быть получены путем отрыва двух атомов водорода от молекул углеводородов. Активные бирадикалы имеют большое значение в химических процессах, так как способствуют возникновению так называемых разветвленных цепных реакций. [c.85]

    Метан требует особо детального рассмотрения и вот по каким причинам во-первых, он представляет начальный член всего ряда во-BfrapiHx, он встречается в газах всякого нирогенетического разложения органических соединений наконец потому, что из всех углеводо-родо В парафинового ряда он является веществом с наибольшим содержанием водорода С — 75%, Н — 25 %, и потому обладает большей термической устойчивостью и реакционной способностью особенного xJapaiKrrepa. [c.24]

    По современным данным, нефтеобразование рисуется как длительная, нередко многомиллионнолетняя термическая и (или) термокаталитическая деструкция (дистилляция в мягких условиях) органического вещества, содержащего большую или меньшую долю органики сапропелевого типа (обогащенного водородом). В нефть превращается только эта часть органического вещества, панлипоидпновая. Оставшееся вещество постепенно становится все более тощим (подобно каменным углям соответствующих марок), а затем углефицируется еще сильней. [c.327]

    Прокаливание микросфер. Если обезвоживание суспензии в процессе сушки осуш ествляется непрерывным методом, то процесс прокаливания микросферического катализатора в прокалочной колонне протекает периодически в кипяш,ем слое, создаваемом дымовыми газами, подаваемыми под слой катализатбра. Количество дымовых газов регулируют таким образом, чтобы в колонне было достаточное шевеление прокаливаемого катализатора и в то же время не было уноса не только основной массы, но и наиболее легких частиц. Разность температур катализатора и дымовых газов должна быть максн-мальЕюп, но в то же время такой, чтобы при быстром парообразовании и затруднительности его диффузии через поры катализатора она не могла привести к деформации частиц. При резком повышении температуры в прокалочной колонне катализатор вследствие оседания на его поверхности большого количества органических веществ может загореться и в результате произойдет спекание микросфер и все поры закроются. Каталитическая активность такого катализатора сильно снижается. Путем прокаливания исправляются некоторые нарушения в структуре катализатора, появившиеся в процессе сушки. После прокаливания катализатор приобретает высокую механическую прочность и термическую стабильность. Кроме того, при температуре прокаливания 600 — 750° С входящий в состав алюмосиликатного катализатора глинозем ЛиОд переходит в каталитически активную форму. [c.68]


Смотреть страницы где упоминается термин Органические термическое: [c.75]    [c.385]    [c.445]    [c.90]    [c.139]    [c.34]    [c.243]    [c.198]    [c.157]    [c.281]   
Методы разложения в аналитической химии (1984) -- [ c.45 , c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Аранович Ю. В. К определению органической массы и теплотворной способности полукокса термической переработки сланцевой мелочи методом твердого теплоносителя

Влияние минеральной части прибалтийских сланцев на превращение их органического вещества при термическом растворении и последующей переработке шламов процесса перегонкой до кокса. А. Б. Воль-Эпштейн

Володин. О механизме термического превращения органической массы каменных углей

Дружков, А. Н. Артемов, Ларин. Пиролиз органических лигандов при термическом разложении бис-этилбензольных комплексов хрома

Исследование термической устойчивости ионитов в различных органических средах

Определение термических характеристик органических веществ

Органические высокотермостойкие полиме ры ОВП термическая деструкция

Очистка абгазного хлористого водорода от органических примесей термическим методом

Перекиси органические термический распад

Получение ацетилена при термическом разложении органических соединений

Получение свободных радикалов разложением термическим разложением органических соединений

Получение свободных радикалов с малой продолжительностью существования термическим разложением органических соединений

Получение свободных радикалов термическим разложением органических соединений

Попова, Д. М. Яновский (СССР). Изучение влияния некоторых органических и элементоорганических соединений на термическую деструкцию поливинилхлорида

Предварительные пробы, идентификация органических соединений с помощью чувствительных проб, простых физических и химических методов и по продуктам термического разложения

Реакции, катализируемые кислотами и основаниями Термическая изомеризация. Взаимодействие с реактивами Гриньяра Органические перекиси (пероксиды)

Самойлова, д. И. Иванов, А. Г. Немченко. Регенерация активированных углей органическими растворителями при очистке фенольных вод термической переработки сланцев методом адсорбции

Термическая деструкция органических высокотермостойких полимеров

Термическая переработка органических отходов

Термические реакции органических веществ в твердом состоянии Моравец Некоторые характеристики реакций неорганических веществ в твердом состоянии

Термический анализ органических молекулярных соединений Основные принципы и область применения, термического анализа

Термический распад органических соединений

Термическое разложение органических веществ

Термическое разложение органических соединений

Термопластификация, термическое растворение и экстрактивные методы переработки ТГИ органическими растворителями

Эфиры органических кислот, термический



© 2025 chem21.info Реклама на сайте