Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологические концентрированных

Рис. XII. 1. Технологическая схема установки для концентрирования растворов с применением обратного осмоса Рис. XII. 1. <a href="/info/1456642">Технологическая схема установки</a> для <a href="/info/15000">концентрирования растворов</a> с <a href="/info/1409273">применением обратного</a> осмоса

    Большая группа новых методов увеличения нефтеотдачи связана с применением различных химических реагентов поверхностно-активных веществ, полимеров, кислот, щелочей и т. д. Эти вещества могут подаваться в пластовую среду в виде как слабых, так и концентрированных растворов периодически или непрерывно совместно с другими химическими реагентами или по отдельности. При этом объем и номенклатура предложенных и применяемых для воздействия на нефтяной пласт химических реагентов неуклонно растут. Значительно расширяется в настоящее время и круг технических средств и технологических приемов п процессов, предназначенных для подачи в пласт химических веществ. [c.3]

    Способ разделения (концентрирования) веществ путем выпаривания широко применяется в технологии неорганических веществ, пищевой промышленности. Он заключается в отделении летучих компонентов (чаще всего воды) от высококипящих остатков в аппаратах барботажного типа. Выпаривание - достаточно энергоемкий процесс. Для снижения энергозатрат обычно организуются многоступенчатые технологические установки, работающие под различным давлением с целью использования вторичного парового потока. Математическое описание такого процесса должно содержать все элементы, свойственные массообменным процессам кинетику массопереноса, гидродинамику потоков, фазовое равновесие, а также алгоритмы решения системных вопросов, связанных с рациональным выбором давлений в отдельных аппаратах и перераспределением потоков продукта и вторичного пара. Ниже приведено сравнение различных способов разделения  [c.36]

    Ввиду специфического поведения БНК при переработке, особенно в условиях высоких температур, рекомендуются следующие режимы смешения для мягких смесей с пластичностью 0,50—0,70 и смесей средней жесткости с пластичностью 0,36—0,05 смешение в резиносмесителях вместимостью 45 и 140 л по одностадийному режиму при температуре не выше 130 °С. Серу вводят в начале смешения в виде маточной смеси с наполнителем, а мягчители — раздельно. В том случае, если температура не превышает 130°С, целесообразно проведение одностадийного смешения, выше 130°С — двухстадийного. В первой стадии вводят только часть сажи и на второй стадии в концентрированную относительно каучука маточную смесь добавляют необходимое количество сажи. При двухстадийном смешении можно снизить температуру смешения первой стадии со 140—150 °С до 105—110 °С. Проведение двухстадийного смешения позволяет уменьшить скорость структурирования, улучшить технологические свойства и уменьшить склонность к под-вулканизации. Смеси повышенной жесткости (с пластичностью [c.362]


    Ректификация в сочетании с термической димеризацией позволяет выделить концентрированный циклопентен из продуктов гидрирования циклопентадиена. Принципиальная технологическая схема разделения продуктов гидрирования циклопентадиена, состав продуктов разделения и основные технологические параметры приводятся в литературе [46]. [c.668]

    Вместе с тем весьма часто отмечается существенное изменение качества общего стока во времени, в основном вследствие сброса отработанных технологических концентрированных растворов. [c.7]

    Принципиальная технологическая схема процесса отличается от схемы с 60—65%-ной кислотой в основном отсутствием специального узла упарки кислоты. Регенерация изобутилена из сернокислотного экстракта проводится. без разбавления кислоты. Экстракция осуществляется в аппарате колонного типа, заполненном насадкой или другими контактирующими устройствами, куда центробежным насосом подают сырье, кислоту и эмульсию из реактора. Процесс имеет следующие преимущества высокую избирательность, отсутствие образования полимеров на стадии экстракции, исключение разбавления кислоты и ее концентрирования, возможность извлекать изобутилен из фракций, содержащих до 50% бутадиена. [c.726]

    Концентрированное выражение этих принципов в приложении к ГА-технике нашло отражение в концепции аппарат целевого технологического назначения , а в системном комплексе аппарат-процесс в парадигме — ГА-технология . [c.6]

    Для обеспечения эффективной работы окситенков требуется автоматическое управление технологическим процессом. Экспериментальные исследования и данные по эксплуатации опытных установок показывают, что применение чистого кислорода обеспечивает значительную экономию электроэнергии повышение скорости насыщения сточных вод кислородом до более высоких концентраций (около 10 мг/л) даже при атмосферном давлении гибкость и устойчивость работы установок при изменении нагрузки увеличение (примерно на 30%) скорости отстаивания сточных вод после биологической очистки сохранение и в ряде случаев даже сокращение (примерно на 10%) избытка активного ила при снижении вероятности его вспучивания облегчение обезвоживания осадков в результате снижения примерно на 20% расхода реагентов на концентрирование осадков и снижения их начального удельного сопротивления. Технико- [c.165]

    Критерий эффективности технологического использования акустической энергии (к = а /а ) определяет ширину частотно-амплитудного спектра колебаний и здесь назьшается критерием концентрированности (направленности) излучения. Чем ближе значение этого критерия к 3, тем более концентрировано излучение. [c.99]

    Диаметры трубопроводов концентрированных растворов селитры и плава, принятых на современных технологических установках, в основном находятся выше значений критических диаметров детонации аммиачной селитры для закрытых систем. Поэтому технологические трубопроводы взрывоопасных сред, способных распространять детонацию, следует оснащать антидетонационными вставками. Антидетонационными вставками должны оснащаться, как правило, трубопроводы, связывающие основные технологические аппараты (нейтрализаторы, донейтрализаторы, выпарные аппараты, центробежные насосы п др.). В необходимых случаях диаметры этих трубопроводов по возможности должны ограничиваться до минимальных значений, исключающих распространение детонации при локальных взрывах. [c.56]

    Исходя из технологических соображений, для гашения начавшегося взрывчатого разложения гидроперекиси изопропилбензола целесообразнее использовать не изопропилбензол, а реакционную массу, поступающую на концентрирование гидроперекиси. Это избавляет от необходимости устанавливать дополнительную емкость с изопропилбензолом, прокладывать трубопроводы и т.д. [c.137]

    Для предупреждения подобных аварий, связанных с разложением перекисных соединений, следует особое внимание уделять строгому соблюдению заданного технологического режима. Технологические процессы, Б которых участвуют концентрированные перекиси, должны быть максимально автоматизированы и оснащены надежными блокировками, обеспечивающими безопасную остановку производства при аварийных ситуациях или нарушениях нормального технологического режима. [c.140]

    Во многих процессах перекисные соединения, являясь промежуточными продуктами, не выделяются в концентрированном виде и быстро разлагаются. В ряде случаев нормальный технологический режим таких процессов соответствует условиям взрывчатого разложения перекиси, если она будет находиться в большом количестве. При этом большую опасность представляет возможность накопления промежуточных соединений сверх допустимых концентраций. [c.141]

    Позднее было обнаружено, что сульфид свинца обладает каталитическими свойствами он способ ен катализировать реакцию окисления меркаптанов в дисульфиды кислородом воздуха [112]. Это наблюдение привело к разработке технологического процесса, в котором сера, необходимая для окисления меркаптидов свинца, образуется в результате окисления сульфида свинца кислородом воздуха [113—116]. Кислый бензин, содержащий меркаптаны, контактируется с суспензией сульфида свинца в концентрированной щелочи, и смесь продувается воздухом. При этом протекают следующие реакции  [c.244]


    Технологическая схема хлорирования в газовой фазе состоит из тех же стадий, что и при жидкофазном хлорировании. Подготовка ))еагентов заключается в испарении жидкого хлора, предварительном нагревании газообразного хлора, осушке реагентов концентрированной серной кислотой или адсорбентами, смешении реагентов друг с другом и с рециркулятом. В случае синтеза аллил-и металлилхлорида исходные углеводороды испаряют и подогревают до нужной температуры. [c.121]

    Очистка разделяющего агента от полимеров производится путем дистилляции, которой подвергается 1 % от циркулирующего количества его. При этом концентрация полимеров в разделяющем агенте поддерживается. — 1%. При выборе технологической схемы процесса очистки разделяющего агента принималось во внимание, что с повышением температуры, имеющим место при концентрировании полимеров, возрастает скорость полимеризации и увеличивается опасность отложения полимеров на греющих поверхностях. В связи с этим для очистки разделяющего агента был принят метод перегонки с водяным паром. Схема установки для очистки изображена на рис. 104. [c.296]

    Высокая экономическая эффективность технологических установок получения серы прямым окислением сероводорода по сравнению с традиционной технологией, используемой в нефте- и газопереработке, обеспечивается за счет исключения стадии предварительного концентрирования сероводорода на блоках МЭА-очистки и, следовательно, соответствующих капитальных и эксплуатационных затрат блока МЭА-очистки и регенерации раствора МЭА (табл. 4.6). При существующей схеме очистки нефтезаводских газов от сероводорода на стадию предварительного концентрирования сероводорода приходится не менее 55% капитальных и 60% эксплуатационных затрат. В табл. 4.7. приведена структура затрат в производстве серы на примере Уфимского НПЗ. [c.113]

    Во многих производствах образуются технологические и отходящие газы с невысоким [0,5—2,0% (об.)] содержанием диоксида серы (производство серной кислоты, цветных металлов, газы нефтепереработки, агломерационных фабрик, топочные газы ТЭЦ и т. д.), которые недопустимо выбрасывать в атмосферу как из санитарных соображений, так и в связи с необходимостью извлечения ценного и остродефицитного сырья —серы. Непосредственно перерабатывать диоксид серы из сбросных газов в серную кислоту экономически невыгодно из-за низкого содержания в них 50г [122]. Большинство из существующих способов концентрирования диоксида серы (или очистки газов от ЗОг) основано на использовании различных химических процессов и имеют ряд недостатков высокую стоимость и большой расход реагентов, необратимое (в ряде случаев) поглощение диоксида серы, низкую экономическую эффективность [122, 123]. Это стимулирует поиск новых рациональных методов очистки. [c.329]

    На основе проведенных исследований были разработаны варианты технологических схем очистки и концентрирования сбросных вод с использованием обратноосмотических установок [206], которые позволяют сократить число стадий переработки и резко снизить расход химических реагентов (рис. 1-18). [c.307]

    Построим модель процесса массовой кристаллизации в кристаллизаторе Кристалл со взвешенным слоем. Рассмотрим технологические особенности работы кристаллизатора типа Кристалл . Схема аппарата типа Кристалл представлена на рис. 2.13 [1]. Кристаллизатор состоит из корпуса 1, циркуляционного насоса 3 и теплообменника 4, соединенных в замкнутый контур циркуляционными трубами 2, 5. Исходный раствор (горячий концентрированный) поступает через штуцер 6 и смешивается с циркулирующим маточным раствором, в отно- [c.211]

    В случае применения концентрированных растворов неорганических веществ сказывается влияние физических свойств жидкости на характеристики газожидкостного пенного слоя [234, 250, 280]. Например, происходит менее активное обновление межфазной поверхности вследствие увеличения вязкости и поверхностного натяжения жидкости и связанного с этим изменения гидродинамической обстановки в пенном слое (см. гл. I). Однако при скоростях газа, превышающих 2,5—3 м/с, высокая турбулентность фаз в значительной степени превалирует над влиянием физических свойств жидкости. При скоростях газа, меньших 2 м/с, влияние физических свойств становится ощутимым [234, 250, 280]. Значения кинетических показателей тепло- и массопередачи для слоя пены, образованного концентрированными растворами, меньше, чем для воды и разбавленных растворов (при тех же условиях технологического режима). В качестве примера можно привести результаты опытов по теплопередаче в слое пены для некоторых производственных растворов [232, 234] — для так называемой слабой жидкости производства соды и для концентрированных растворов поваренной соли. [c.110]

    Анализ работы адиабатных установок показал, что в одно-и двухконтурных установках не удается обеспечить работу без отложения сульфата кальция. В то же время каскадные адиабатные установки позволяют вести процесс в режиме предельного концентрирования раствора. Принципиальная технологическая схема такой установки приведена на рис. 16. Согласно схеме, газы направляются в теплообменник где нагревают раствор до соответствующей температуры. Вода поступает на испарение в первый каскад 2, образовавшийся пар конденсируется, нагревая исходную воду. Подогретая вода с первого каскада направляется во второй каскад 3, где процесс повторяется, и так до каскада N. Недостатком такой схемы являются дополнительные термодинамические потери, преимуществом можно считать то, что с газами контактирует меньшая часть воды (поступающая только в первый каскад), поэтому можно использовать загрязненные газы и продукты сгорания твердого и жидкого топлива. Во втором и третьем каскадах получается чистый дистиллят, а вода первого каскада может быть использована для технических нужд. В первом каскаде можно упаривать раствор до высоких концентраций. [c.38]

    Стоимость ликвидации 1 м стоков пока еще велика. Причем наибольший удельный вес в общей сумме затрат занимают пар, топливо и амортизация (соответственно 35,13 и 19%). Однако уже наметились пути ее снижения. Среди них следует отметить использование поверхностно-активных веществ как антинакипинов, применение комбинированных схем (например, контактная выпарка — обычная многокорпусная), использование на первой ступени концентрирования стоков обратного осмоса, получение удобрений, осуществление процесса кристаллизации в корпусе выпарного аппарата и т. д. Все это потребует создания новых технологических процессов, нового оборудования, а следовательно, и новых исследовательских работ. [c.117]

    Схема технологического процесса. Процесс составляют следующие основные операции приготовление и концентрирование раствора карбамида, образование комплекса (блок реакторов) фильтрация и промывка комплекса (блок фильтрации) разложение комплекса регенерация растворителя и получение готовых продуктов (жидкого парафина и дизельного топлива) очистка раствора карбамида. [c.131]

    Эффективны многоступенчатые технологические схемы при поступлет н в сооружения концентрированных сточных вод, содержащих трудноокисляемые загрязняющие вещест[ а. Например, для очистки смеси промышленных сточных вод и сточных вод только второй системы канализации на большинстве неф- [c.100]

    Удельный расход свежей воды может быть уменьшен, если применять рециркуляцию промывной жидкости [229, 232]. Это тем более целесообразно, что в производственных условиях таким образом можно получить концентрированную пульпу и использовать ее далее в технологическом процессе. [c.173]

    Представляет интерес очистка от взвешенных веществ технологических концентрированных растворов, применяемых для обработки поверхности металлов - растворов фоефатирования, гальванических, полировочных и т.д. [c.59]

    Для большинства технологических схем установок разделения газов пиролиза характерно двухстадийное извлечение метана — первичная деметанизация фракции Сг— Сз и вторичная деметаниза->ция этилен-этановой франции непосредственно перед колонной выделения этилена-концентрата в специальной отгонной колонне [31]. В работе [32] вторичную деметанизацию этилен-этановой фракции рекомендуется проводить одновременно с ее разделением в сложной ректификационной колонне с боковым отводам концентрированного этилена. [c.301]

    Методологические исследования проблем создания новой техники и технологии показали, что создание конкретной деятельностной концепции основьшается на нескольких фундаментальных положениях концентрированность действий, комплексность, выделение решающего звена, поэтапность развертывания, организационно-технологическая гибкость и мобильность. [c.6]

    В производстве азотной кислоты применяют, перерабатывают и получают взрывоопасные и токсичные вещества (аммиак, природный газ, оипслы азота, азотную кислоту, нитритные и нитратные соли). Поэтому нарущения технологического режима и правил техники безопасности могут привести к а) образованию взрывоопасной смеси аммиака с воздухом в контактных аппаратах, смесителях, коммуникациях и ее взрыву б) загазованности производственных помещений, территории предприятия аммиаком и окислами азота и интоксикации ими людей в) образованию взрывоопасной смеси природного газа с воздухом и взрыву ее в аппаратуре и производственных помещениях г) образованию и отложению нитрит-нитратных солей и их взрыву в нитрозных вентиляторах, турбокомпрессорах, в аппаратуре и коммуникациях узла розжига контактного аппарата и др. д) образованию взрывоопасной газо- или паровоздущной смеси в отделении концентрирования слабой азотной кислоты при подаче избыточного количества жидкого или газообразного топлива в топки концентраторов несвоевременное зажигание топлива может привести к взрыву в топке е) воспламенению замасленной поверхности и необезжиренной аппаратуры и коммуникаций при прорыве кислорода из системы получения кон-ценгрированной азотной кислоты прямым синтезом или при подаче его в загрязненную органическими веществами аппаратуру  [c.40]

    В период пуска оборудования, ири остановке его на ремонт и наладке технологического режима (ири продувках), а также ири срабатывании в аварийных случаях предохранительных клапанов, мембран и других устройств возникает необходимость залпового сброса больших объемов концентрированных горючих и горючетоксичных газов и паров для сжигания их на факеле. Такие сбросы называют периодическими. [c.199]

    Следующей стадией производства ацетилена (после пиролиза илн крекинга метана) является выделение и газовой смеси ацетилена-концентрата, содержащего не менее 99,2—99,6 объемн. % СоНг остальное — высшие ацетиленовые углеводороды, азот, кислород и, в тави-симости от способа концентрирования, 0,1—0,2% л у-окиси углерода или 0,09—0,1% этилена. Известно несколько технологических схем концентрирования ацетилена наибольшее распространение в промышленности получили схемы с применением селективных растворителей 2,3.6,10,12 [c.13]

    Существует несколько технологических схем кон- к грпроваиия ацетилена (стр. 13 сл.), для безопасной раосты которых необходимы различные условия и мероприятия. Наиболее распространена схема концентрирования селективными растворителями, которая и будет описана в первую очередь, причем детальнее, чем другие схемы концентрирования. [c.102]

    Получение синтетических латексов — многостадийный технологический процесс, включающий эмульсионную полимеризацию и отгонку незаполимеризовавшихся мономеров в качестве обязательных технологических операций, а также агломерацию и концентрирование— при получении латексов с высокой концентрацией сухих веществ. Кроме того, многие латексы подвергают загущению, дополнительной стабилизации, добавляют в латексы антиоксиданты. [c.590]

    Агломерация. Агломерация как самостоятельная (после полимеризации) технологическая стадия процесса получения концентрированных латексов заключается в принудительной астабилиза-ции латекса, приводящей к укрупнению частиц и уменьшению их суммарной поверхности. В результате агломерации стабильность латекса возрастает (поверхностное натяжение латекса понижается) .  [c.593]

    При получении фермеитных препаратов пз культу]) микроорганизмов неотъемлемой стадией технологического процесса является концентрирование ферментных растворов с применением таких методов, как вакуум-вьшарива ие, сублимационная сушка, сушка распылением, вымораживание, осаждение органическими растворителями или солями и ряд других. [c.286]

    С помощью мембранных аппаратов можно уменьшить также общее потребление свежей воды. Исходные стоки с содержанием 0,5% растворенных веществ могут быть сконцентрированы до 8—10% при давлении 4,2 МПа с получением чистой воды, пригодной для повторного использования без дополнительной обработки. Концентрат содержит 90—96% начальных БПК и ХПК- Очищенная вода практически не имеет цвета, запаха и пены, в ней остаются в основном ионы натрия и кальция, а также сульфат-, карбонат- и ацетат-ионы. Проницаемо сть мембран изменяется от 8,5 до 25 л/(м -ч) в зависимости от условий эксперимента и вида обрабатываемого раствора. На основании этих исследований па заводе нейтральной сульфитной целлюлозы Грин Бай Покаджинг (США) была разработана технологическая схема очистки сточных вод, которая позволяет уменьшить на 4150 м в сутки потребление свежей воды, а также получить гораздо меньше концентрированных стоков, которые в дальнейшем будут выпариваться и сжигаться на действующей установке Флиосолидс . В предложенной схеме запроектирована установка обратного осмоса производительностью 4500 м сут. [c.316]

    В данном разделе рассматривается установка для концентрирования растворов высокомолекулярных соединений (ВМС) с применением ультрафильтрации. Концентрирование растворов ВМС путем выпаривания обычно неэффективно вследствие разрушения ВМС (особенно биохимических препаратов). Применение ультрафильтрацпи позволяет довести концентрацию ВМС до уровня, при котором возможно непосредственное использование раствора в технологическом процессе или извлечение из него ВМС другими методами разделения. [c.201]

    При воздействии на технологические объекты предусматривают в ускорителях управление пучком электронов, обеспечивающее изменение напряжения пучка для вывода его в заданном направлении, и управление средней плотностью пучка, используя временную развертку, а также концентрирование или деконцентрирование пучка. Перед выпуском пучка электронов из окна пучок обычно рассеивают с помощью переменного магнитного поля, чтобы его ширина соответствовала ширине облучаемого материала. Наряду с односторонним используют двухстороннее облучение и сложные линзовые системы для воздействия на объекты сложной (цилиндрической) формы [17]. [c.104]

    Слож1Ные удобрения- получают химической переработкой сырья в едином технологическом процессе. По концентраци действующих веществ удобрения условно делят на низкоконцентрированные, содержащие до 20—25%, концентрированные— 30—40%, высококонцентрированные — свыше 60% и ультракон-центрированные —более 100% действующих веществ. [c.233]

    Опреснительные установки с применением воды в качествр хладагента. На рис. 3 [16] приведена принципиальная технологическая схема установки опреснения с использованием воды в качестве хладагента и применением турбокомпрессора. Соленая вода, проходя деаэратор 1 и теплообменники 2 и 3, переохлаждается обратными потоками пресной воды и удаляемого концентрированного раство- [c.8]

    Технологическая схема производства моющего средства на основе алкилсульфата изображена на рис. 94. В пленочный реактор 1 непрерывно подают спирт, воздух и пары 50з, разбавленные воздухом. Выходящие газы отделяют в сепараторе 2 от жидкости и направляют в абсорбер 3 для санитарной очистки от остатков 50з. Полученную алкилсерную кислоту нейтрализуют концентрированным раствором щелочи в аппарате 4, имеющем мешалку и выносной холодильник 5, через который жидкость прокачивается насосом. Температура при нейтрализации не должна превышать 60°С. После этого в аппарате 6 с мешалкой проводится более точная нейтрализация смеси (до pH 7 конотроль специальным рН-метром). Нейтрализованная масса, содержащая алкилсульфат и воду, поступает далее в смеситель 7, где к ней добавляют [c.326]

    Контактное производство серной кислоты — это крупномасштабное непрерывное, механизированное производство. В настоящее время проводится комплексная автоматизации контактных цехов. Расходные коэффициенты при производстве серной кислоты из колчедана на 1 т моногидрата N2804 составляют примерно условного (45%5) колчедана 0,82 т, электроэнергии 82 кВт-ч, воды 50 м . Себестоимость кислоты составляет 14—16 руб. за 1 т, в том числе стоимость колчедана составляет в среднем почти 50% от всей стоимости кислоты. Уровень механизации таков, что зарплата основных рабочих составляет лишь около 5% себестоимости кислоты. Важнейшие тенденции развития производства серной кислоты типичны для многих химических производств. 1. Увеличение мощности аппаратуры при одновременной комплексной автоматизации производства. 2. Интенсификация процессов путем применения реакторов кипящего слоя (печи и контактные аппараты КС) и активных катализаторов, а также производства и переработки концентрированного диоксида с использованием кислорода. 3. Разработка энерготехнологических систем с максимальным использованием теплоты экзотермических реакций, в том числе циклических и систем под давлением. 4. Увеличение степеней превращения на всех стадиях производства для снижения расходных коэффициентов по сырью н уменьшению вредных выбросов. 5. Использование сернистых соединений (5, 50о, 80з, НгЗ) из технологических и отходящих газов, а также жидких отходов других производств. 6. Обезвреживание отходящих газов и сточных вод. [c.138]

    Вредные примеси в газообразных промышленных выхлопах можно разделить на две группы а) взвешенные частицы (аэрозоли) пыли, дыма и тумана и б) газообразные и парообразные вещества. К первой группе относятся взвешенные твердые частицы неорганического или органического происхождения, а также взвешенные частицы жидкости, поступающие в атмосферу с технологическими газовыми выбросами (сдувками), хвостовыми газами и выбросами вентиляционных систем. Неорганическая пыль в промышленных выбросах образуется при переработке металлов и их руд, алюмосиликатов, различных минеральных солей и удобрений, карбидов, абразивов, цемента и многих других неорганических веществ. К промышленной пыли органического происхождения относится, например, угольная, древесная, торфяная, сланцевая, мучная, сажа и др. Туманы в промышленных выхлопах образуют главным образом кислЬтьг, в первую очередь серная и фосфорная при их концентрировании, Дисперсность пыли и туманов [c.227]


Смотреть страницы где упоминается термин Технологические концентрированных: [c.5]    [c.4]    [c.32]    [c.170]    [c.108]   
Технология серной кислоты (1971) -- [ c.2 , c.2 , c.321 , c.322 ]




ПОИСК





Смотрите так же термины и статьи:

Концентрирование серной кислот технологический режим

Концентрированная азотная кислота технологическая схема

Производство концентрирование технологические показатели

Технологическая концентрирования азотной кислоты

Технологическая схема капельного концентрирования серной кислоты

Технологическая схема концентрирования азотной кислоты

Технологическая схема концентрирования серной кислот

Технологическая схема концентрирования слабой азотной кислоты

Технологическая схема предварительного концентрирования

Технологическая схема производства концентрированной

Технологическая схема производства концентрированной азотной кислоты из нитрозных газов, полученных под давлением

Технологическая схема произвол выпаривания концентрирования

Технологические схемы концентрирования

Технологические схемы концентрирования водорода

Технологические схемы концентрирования пропилена

Технологические схемы производства концентрированной аммиачной воды

Технологический режим концентрирования HsS



© 2024 chem21.info Реклама на сайте