Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки размеры молекул

    Белки относятся к высокомолекулярным соединениям. Молекулярная масса их 20 000 и даже 15 000 000 у. е. Они растворяются в воде, образуя коллоидные растворы (вследствие огромных размеров молекул). Белки устойчивы лишь в определенных условиях. При повышении температуры происходит необратимая коагуляция белков, а под действием электролитов — обратимая. Первая характерная для белков реакция ксантопротеиновая—реакция с азотной кислотой. Под действием азотной кислоты белок свертывается, образуя сгусток оранжевого цвета. Вторая характерная реакция на белки — это биуретовая реакция — фиолетовое окрашивание белка при взаимодействии его с гидроксидом меди. [c.371]


    Почти все вещества в зависимости от внешних физических условий (температура и давление) могут существовать в трех состояниях — газообразном, жидком и твердом. Эти состояния называются агрегатными состояниями. Для некоторых веществ характерно только два или даже одно агрегатное состояние. Например, нафталин или иод при нагревании в обычных условиях переходят из твердого состояния в газообразное, минуя жидкое состояние. Такие вещества как белки, крахмал, каучуки, отличающиеся очень большим размером молекул, не могут быть получены в виде газа. Многие твердые химические соединения при нагревании разлагаются и не существуют при нормальном давлении ни в жидком, ни в газообразном состоянии. [c.12]

    Так как размеры молекул некоторых высокомолекулярных веществ превышают 1 нм, то растворы этих веществ, например белков, тоже коллоидные растворы. Из курса общей биологии вам известно, что частицы такого размера можно обнаружить при помощи ультрамикроскопа, в котором используется принцип рассеивания света. Благодаря этому коллоидная частица в нем кажется яркой точкой на темном фоне. [c.83]

    При разделении нуклеиновых кислот используют те же методы, что и при фракционировании белков, однако имеются ограничения, обусловленные большим диапазоном величин молекулярной массы (2-10 —Ы0 ° Да), отклонениями от глобулярной формы, различиями в четвертичной структуре (двухнитевые, однонитевые, кольцевые), значительным отрицательным зарядом в нейтральной области pH. Поэтому методы гель-фильтрации и ионообменной хроматографии не получили широкого распространения при фракционировании нуклеиновых кислот и значительно уступают ультрацентрифугированию и электрофоретическому разделению в геле агарозы, полиакриламидном геле или их смеси. Поскольку величина отрицательного заряда нуклеиновых кислот и продуктов их расщепления мало зависит от pH, а отношение заряда к молекулярной массе сохраняется практически неизменным, разделение нуклеиновых кислот при электрофорезе определяется не их зарядом, а размером молекул. При наличии маркеров с известной молекулярной массой возможно определение молекулярной массы препаратов нуклеиновых кислот и их фрагментов. [c.171]

    Белки, размеры молекул. Величину молекулы белка оценивают по значению его мол. массы. Как правило, она определяется величинами в десятки и сотни тысяч даль-тон и ов среднем для большинства белковых молекул находится в пределах 12 000— 36 ООО Дальтон, т. е. белок является полимером, состоящим из 100—300 аминокислотных остатков. Мол. масса некоторых белков такова миоглобин кашалота — 17 600 пепсин — 35 ООО яичный альбумин — 46 ООО гемоглобин лошади — 68 ООО угло-булин человека — 160 000 каталаза — 250000 уреаза —483 ООО тиреоглобулин свиньи — 630000 гемоцианин улитки — 660 0000. [c.15]


    Все растительные и животные организмы содержат белковые вещества. Это сложные высокомолекулярные соединения, которые обладают коллоидными свойствами. Независимо от разнообразного строения и различных размеров молекул отдельные белковые вещества имеют очень близкий элементный состав. Некоторые белки содержат фосфор, железо, иод и т. д. [c.25]

    Клеточные рецепторы избирательно взаимодействуют с самыми разнообразными по химическому строению веществами — от органических соединений с небольшой молекулярной массой до высокомолекулярных белков. Размеры молекул рецепторных белков, число образующих их полипептидных цепей варьируют (табл. 1). Вполне закономерно поэтому стремление выявить характерные для каждого рецептора особенности структуры участка, ответственного за распознавание лиганда. Вместе с тем анализ функциональных свойств различных по специфичности (т. е. распознающих различные лиганды) рецепторов выявляет определенные черты сходства между ними. Как было показано в гл. 2, прн взаимодействии рецепторов со своими лигандами происходит их активация, выражающаяся либо в усилении ферментативной активности рецепторов, либо в изменении их сродства к внутриклеточным белкам или ДНК. Этот процесс связан с глубокой конформационной перестройкой рецепторных белков, распространяющейся на участки, находящиеся на большом удалении от центров связывания лигандов (активные центры рецепторов). Последнее дает основание считать, что внеклеточные участки различных по специфичности рецепторов, в пределах которых находятся активные центры последних, должны использовать сходные принципы структурной организации, обеспечивающие при связывании любого по строению лиганда изменение конформации внутриклеточных участков молекул рецепторов. [c.43]

    Но то синтетические полимеры. Часть биополимеров синтезируется в клетке отнюдь не по закону случая. Наиболее известный пример — белки. Сборка их поли-пептидных цепей происходит на рибонуклеиновой матрице, вследствие чего положение каждой аминокислоты строго детерминировано. Иначе быть не может — ошибка в положении даже одной аминокислоты — уже ЧП, как правило, с тяжелыми и нередко летальными последствиями для клетки. Поэтому белки могут быть получены в истинно индивидуальном состоянии (в том смысле, в котором это понятие применяют для низкомолекулярных веществ). Биосинтез полисахаридов протекает по совершенно иной схеме здесь нет матрицирования, структура и размер молекул управляются иными механизмами. Хотя в большинстве случаев мы мало знаем об зтих механизмах, нам известен результат их функционирования. А он принципиально отличен от результата биосинтеза белков. [c.39]

    Рассматривая белковый состав человеческого организма (включая волосы, ногти, мышцы, соединительные ткани), мы вправе предположить, что молекулы, составляющие сложный организм, имеют сложную природу. В таком случае необходимо исследовать природу этих молекул жизни . При обработке белка раствором кислоты или основания вместо исходной молекулы белка возникает раствор, содержащий много более простых, гораздо меньших по размеру молекул — аминокислот. Молекула белка — высокомолекулярное соединение, или биополимер, в котором мономерные единицы — аминокислоты. Эти мономерные единицы содержат аминогруппу, карбоксильную группу и атом водорода, присоединенные к одному и тому же атому углерода. Однако в различных аминокислотах образующий четвертую связь с центральным атомом углерода атом (или группа атомов) не- [c.26]

    Модификацией рентгенографической методики Исследования является определение среднего размера частиц путем рассеяния рентгеновских лучей под малыми углами. Этим методом были получены ценные сведения о размерах молекул белка и о степени их гидратации. [c.50]

    Фибриллярные белки не растворимы в воде, а глобулярные растворяются в воде или водных растворах кислот, щелочей или солей. Из-за большого размера молекул эти растворы - коллоидные. [c.271]

    Пептиды и белки —группы соединений сходного строения, различающиеся только размером молекулы. И те и другие являются полиамидами, образованными а-аминокислотами, и имеют общую структурную формулу  [c.296]

    Еще сравнительно недавно к коллоидным растворам относили и растворы высокомолекулярных веществ (полимеров), например, растворы крахмала, белков и т. д. Однако исследования показали, что растворы полимеров представляют собой истинные растворы, хотя и обладают многими свойствами, сходными со свойствами коллоидных растворов. Молекулы полимеров, как и мицеллы, не проходят через полупроницаемые мембраны типа пергамента и целлофана. Такое сходство объясняется тем, что размеры молекул растворенных полимеров имеют тот же порядок величин, что и размеры коллоидных частиц они значительно превосходят размеры обычных молекул. Этим же объясняется явление рассеивания света (опалесценция) как коллоидными растворами, так и растворами высокомолекулярных веществ. И все же еще раз подчеркнем, что растворы полимеров — это истинные растворы, в которых отсутствует основной признак коллоидной системы — гетерогенность, т. е. наличие поверхности раздела между дисперсной фазой и дисперсионной средой. [c.223]


    Существует класс весьма важных веществ с очень большими молекулами, так называемые высокомолекулярные соединения, или полимеры. Сюда относятся белки, целлюлоза, каучук и ряд синтетических продуктов. Размеры молекул этих веществ в отдельных случаях могут даже превышать размер коллоидных частиц. Возникает вопрос, являются ли растворы этих веществ коллоидными системами. Казалось бы, на этот вопрос следует ответить положительно, так как эти растворы, содержащие гигантские молекулы, обладают многими свойствами, характерными для коллоидных растворов, например, способностью к диализу и малой диффузией. Однако, как показали исследования последних десятилетий, в достаточно разбавленных растворах высокомолекулярные соединения раздроблены до молекул и, следовательно, эти растворы представляют собою гомогенные системы. Поэтому их нельзя отнести к типичным коллоидным системам. Растворы белков, целлюлозы, каучука и других подобных веществ во избежание путаницы лучше называть не коллоидными растворами, как это было принято раньше, а растворами высокомолекулярных веществ. Это название указывает, что данные системы, во-первых, являются истинными растворами и, во-вторых, что в них содержатся гигантские молекулы. [c.14]

    Номера в маркировке сефадексов характеризуют их пористость. Выбор определенной марки сефадекса определяется молекулярной массой исследуемого белка (чем больше соответствие размеров молекул и величины пор, тем выше селективность), а степень зернения — поставленной задачей. Для обессоливания растворов белков и их концентри- [c.106]

    Ионообменники характеризуются степенью набухания и емкостью. Степенью набухания называют объем упакованного в колонну обменника (в мл), приходящийся на 1 г его в сухом виде, и имеет размерность мл/г. Максимальное количество ионов, которое может связать ионообменник, определяет его емкость, которая совпадает с концентрацией ионогенных групп. Ёмкость выражается числам ммоль эквивалентов обмениваемого иона на 1 г сухого обменника (ммоль экв/г) или на 1 мл упакованного в колонну набухшего ионообменника (ммоль экв/мл) при значениях pH, соответствующих его полной ионизации. Для высокомолекулярных ионов или амфолитов, например белков, вводят понятие эффективная емкость, которая зависит от размера молекулы амфолита, расстояния между ионогенными группами и степени доступности всего объема пористой матрицы обменника для этих молекул. Понятия емкости и эффективной емкости могут не совпадать. Иногда приходится снижать полезную емкость сорбента за счет изменения pH, увеличивая при этом его эффективную емкость. Катионообменные смолы имеют емкость около 4,4 ммоль экв/г, а анионообменные — 3,5-4 ммоль экв/г для гелеобразной структуры и 2,5 ммоль экв/г дпя пористой. Обменная емкость изменяется при изменении pH. При низких pH происходит нейтрализация катионита при добавлении протона  [c.34]

    Электрофорез в присутствии додецилсульфата натрия (ДДС-N3). В этой системе суммарный заряд белка маскируется добавлением ДДС-Ыа, который окутывает белки облаком отрицательных зарядов. Предполагается, что все комплексы ДДС-белков имеют заряды одинаковой плотности, процесс разделения происходит только по одному параметру — размеру молекулы. Эта система позволяет в то же время определять молекулярную массу изучаемых белков с помощью маркеров — набора белков с заранее известными значениями молекулярной массы. [c.40]

    Белки имеют тенденцию адсорбироваться на различных материалах, это свойство можно использовать для разделения. Целлюлоза, стекло и силикагель — все они нашли применение для адсорбции белков. Классический способ удаления растворенного вещества из раствора — использование измельченного древесного угля, но в случае белков адсорбция затрудняется из-за несоответствия между большим размером молекул белка и малыми порами угля. Древесный уголь модифицируют, покрывая его декстраном и 1 С, и в растворе сохраняется комплекс 1 С-антиген, тогда как антиген адсорбируется на древесном угле. В случае меченого антигена этим способом удаляют из раствора свободную метку, оставляя связанную метку для определения в растворе. [c.577]

    По размеру молекулы и своим свойствам пептиды стоят между высокомолекулярными белками и аминокислотами. Наиболее распространены линейные пептиды, однако известны также циклические пептиды, молекулы которых могут иметь различные размеры. Циклические пептиды образуются из линейных, когда пептидная связь связывает амино- и карбоксильную функцию К- и С-концевых аминокислот. [c.83]

    Метод измерения светорассеяния основан на том факте, что с увеличением размера частиц эффект Тиндаля в растворе белка сильно возрастает. С помощью фотометра для рассеянного света измеряется соотношение интенсивностей падающего и рассеянного под углом 45° или 90° света. В идеальных условиях разность светорассеяния чистого растворителя и раствора белка прямо пропорциональна числу н размеру молекул белка. [c.360]

    Принцип и ограничения метода. Техника электрофореза основана на принципе дифференциальной подвижности белковых молекул в поддерживающей среде, или носителе (крахмал, полиакриламид, ацетат целлюлозы и др.), под действием электрического тока. Подвижность есть функция суммарного электрического заряда молекулы, который зависит от ионизации аминокислот белка и отсюда — от pH, а также от размеров молекулы белка. [c.39]

    Электрофорез в градиенте концентрации. Здесь опять речь идет о методе, при котором определяющую роль играет размер молекулы белка. Носитель состоит из полиакриламидного геля возрастающей концентрации (например, от 2 до 16 или от 3 до 30 % акриламида). В этом градиенте пористости белковые молекулы тормозятся, т. е. останавливаются, по мере того как ячейки сетки становятся все более мелкими. [c.40]

    Она характеризует способность антигенов при их введении в организм животного вызывать образование антител. Иммуногенность очень неодинакова у разных белков. Похоже, что крупные размеры молекул благоприятствуют иммуногенности [108]. Слабая иммуногенность некоторых белков, как, например, желатины, может быть связана с отсутствием ригидности (прочности) структуры молекул. Если повысить ригидность этой структуры присоединением поли-Е-тирозина, то иммуногенность белка возрастает [101]. [c.90]

    Лиофильными принято называть такие коллоиды, частицы которых в большом количестве связывают молекулы дисперсионной среды, например некоторые мыла в водной среде. Сюда относили раньше и растворы высокомолекулярных органических соединений (белки, целлюлоза и ее эфиры, каучук, многие искусственно получаемые соединения). Однако, как показало изучение внутреннего строения и свойств таких систем, производившееся в недавнее время, и, в частности, работы В. А. Каргина, Добри и Флори, эти системы представляют собой истинные растворы, т. е. молекулярно-дисперсные, а не коллоидные системы. Они являются гомогенными системами. Характерные отличия их свойств от свойств других групп истинных растворов обусловливаются в основном сильным различием в величине частиц растворителя и растворенного вещества и строением этих частиц, представляющих собой очень длинные и гибкие молекулы (цепное строение). Переход их в раствор облегчается высокой степенью сольватации. Благодаря большому размеру молекул растворы этих веществ по многим свойствам являются близкими коллоидным растворам и образуют самостоятельную группу растворов — растворы высокомолекулярных соединений. Более детально свойства этих растворов будут рассмотрены в гл. XVII ( 244). [c.508]

    Раствор, содержащий смесь двух и более веществ, отличающихся по размеру молекул, а следовательно, и по молекулярной массе, вносят в колонку, заполненную гелем с сетчатой структурой и уравновешенную буферным раствором. Наибольшей скоростью продвижения по колонке обладают компоненты раствора, размеры молекул которых больше пор геля. Такие компоненты не проникают в гранулы гелевой фазы и выходят из колонки первыми. Более мелкие молекулы, способные проникать внутрь геля, непрерывно обмениваются между жидкими фазами внутри и вне геля и продвигаются по колонке значительно медленнее. Находящиеся в растворе самые маленькие частицы (например, неорганические соли) выходят из колонки последними. На этом принципе основаны методы фракционирования белков и других полимеров, их обессо-ливание, определение молекулярной массы, замена одних буферных растворов другими и др. [c.106]

    Крахмал представляет собой полимер, состоящий из молекул а-глюкоз—пираноз, образующих разветвленную структуру. Существуют предположения, что в крахмале полисахаридные цепочки свернуты в спирали аналогично а-спиралям белков. В молекулу крахмала входит до 2000 глюкозных остатков и молекулярный вес ее превышает 1 млн. Форма этой молекулы-полимера приближается к ромбовидной с размерами 10x7x8 А. [c.182]

    Белок, молекулы которого превышают размер пор, будет свободно проходить между гранулами и выходить первым из хроматографической колонки (рнс. 68). Вещества с меньшим молекулярным весом будут распределяться во внутреннем объеме гранул и растворителе, протекающем между ними, отставая при этом в движении. Путь, пройденный белком при определенных условиях, зависит от размеров молекулы, что позволяет использовать гель-хроматографпю (обычно в тонком слпе) для определения молекулярного веса по калибровочным кривым (рнс. 69). [c.172]

    При денатурации нарушаются форма и размеры молекул изменяется удельная оптическая активность белков увеличивается в>гЗкость растворов, так как глобулярная форма белков раскручивается с образованием ыитепидных молекул уменьшается растворимость белков и степень набухания происходит снятие с коллоидных частиц электрического заряда и др. [c.209]

    Наряду с разделением белков по величине электрофоретической подвижности ири использовании указанных носителей имеет значение молекулярно-ситовой эффект геля и размеры молекул Оелка ири прохождении их через ячеистую структуру геля. Так, если при электрофорезе иа бумаге белки сыворотки разделяются на 4—5 четких зон, то в полиакриламидном геле выявляется 13—16 полос, соответствующих отдельным белкам (рис. 98). [c.219]

    Такая методика исследования применялась для определения молекулярной массы белков и нуклеиновых кислот и для изучения их строения в адсорбционном слое этот метод позволяет получить ценные сведения о конформации молекул в поверхностном слое, поскольку эта последняя олределяет величину площади, занимаемую ими в двухмерной пленке. Чтобы преодолеть вазимное шритяжение молекул в адсорбционном слое, эти измерения проводят в той области значений pH, в которой молекулы заряжены вследствие ионизации. Электростатическое отталкивание несколько увеличивает эффективный размер молекул, но это влияние, как правило, невелико, и им пренебрегают. Более существенно заряд молекулы влияет на конформацию молекулы белка и площадь, занимаемую ею на поверхности. Соответственно конформация белка зависит от pH среды, так как величина pH определяет диссоциацию ионогенных групп и их гидратацию. При изменении pH изменяется и наклон прямых л5м(л) (см. рис. II—19), т. е. величина 51. [c.66]

    По данным Измайловой с сотр., значительной способностью к солюбилизации углеводородов обладают молекулы некоторых белков и ферментов, причем солюбилизированные молекулы способны в(праиваться в определенные участки этих макромолекул. Исследование солюбилизации, в частности солюбилизации углеводородов в водных растворах белков, позволяет сделать определенные выводы о строении этих молекул в растворе [10]. Так, изучение зависимости солюбилизации от размеров молекул углеводорода позволяет определить размер и количество гидрофобных областей в молекулах белка. [c.283]

    Транскрипцию генов рибосомных РНК, тРНК и большинства генов, кодирующих белки, обеспечивают молекулы РНК-полимеразы, содержащие главную а-субъединицу (молекулярная масса у Е. oli 70 кД, у Вас. subtilis— 43 кД). На несколько тысяч молекул РНК-полимеразы, имеющихся в бактериальной клетке, приходится примерно тысяча молекул главной а-субъединицы. В меньших количествах имеются минорные а-субъединицы, используемые для транскрипции ограниченного числа генов (см. раздел 3 этой главы). Набор минорных а-субъединиц у разных бактерий неодинаков. По размеру они меньше главной а-субъединицы. Сравнение нуклеотидных последовательностей генов разных а-субъединиц свидетельствует о том, что все они произошли от одного предкового гена. [c.135]

    Для обессоливанпя и рассортировки молекул скорость элюции может быть выбрана довольно большой — порядка 20 мл/см- ч (следует предварительно проверить сжимаемость геля ). Как было показано в гл. 1, с позиций достижения наилучшего разрешения пиков существует оптидгальная скорость хро.матографического фракционирования. Слишком медленная элюция приводит к резкому уширению пиков за счет продольной диффузии, слишком быстрая — к более ностененному их уширению за счет нарушения равновесия поперечной диффузии. Оптимальная скорость зависит от размеров молекул и гранул, увеличиваясь с уменьшением тех и других. Для ориентировки можно указать, что оптимальная скорость элюции для белков составляет примерно 2 мл/см -ч (для определения объемной скорости элюции это значение надо умножить на илощадь сечения колонки). Однако нередко имеет смысл в интересах оптимизации условий эксперимента в целом значительно отступить от оптимальной скорости элюции в сторону ее увеличения. [c.136]

    Для высокомолекулярных ионов или амфолитов, например белков, имеет смысл говорить об эффективной емкости обменника, которая зависит от соотношения размеров молекул амфолита и среднего расстояния между ионогенными группами, а также от степени доступности всего объема пористой матрицы обменника для этих молекул. Заметим, что большое значение полной (низкомолекулярной) емкости ионообменннка может оказаться невыгодным для хроматографии белков или нуклеиновых кпслот, поскольку в этом случае возможна многоточечная фиксация макромолекул. В такой ситуации может оказаться целесообразным снижение полной емкости обменника за счет выбора значения pH, отвечающего неполной его ионизации эффективная емкость для макромолекул при этом может остаться максимальной. [c.255]

    ПЕПСИН, фермент класса гидролаз, катализирующий гидролиз белков и пептидов. Мол. масса П, свиньи ок. 35 тыс. (фермент выделен в кристаллич. состоянии) молекула состоит из полипептидной цепи, содержащей 327 аминокислотных остатков, и одного остатка фосфорной к-ты, образующего фосфоJфиpнyю связь с гидроксильной группой остатка серина в положении 68 (отщепление фосфатной группы ие сказывается на ферментативных св-вах пепсина). Размеры молекулы 5,5-4,5-3,2 нм она состоит из двух частей (доменов), между к-рыми находится область активного центра фермента, включающая два каталитически важных остатка аспарагиновой к-ты (в положениях 32 и 215). [c.465]

    ХРОМАТЙН, нуклеопротевд клеточного ядра, составляющий основу хромосом. В состав X. входят ДНК (30-40% по массе), гистоны (30-50%), негистоновые белки (4-33%) и РНК. Кол-во негистоновых белков, РНК, а также размеры молекул ДНК колеблются в щироких пределах в зависимости от метода вьщеления X. и природы объекта. Взаимод. между ги-стонами и ДНК гл. обр. ионное. [c.314]

    Недавно описаны трехмерные структуры дрожжевой гексокиназы. (рис. 7-5,Л) [76], фосфоглицераткиназы, состоящей из 355 аминокислотных остатков (рис. 7-5,5) [77] и аденилаткиназы (дополнение 3-А) [78]. Последний фермент, мол. вес которого составляет 22ООО, имеет среди всех известных киназ наименьший размер молекулы. Во всех трех случаях молекула белка состоит из двух долей (или, иначе, доме- [c.126]

    Интересный метод определения коэффициента вращательной диффузии в и размеров молекул по поляризации флуоресценции разработан Вебером. Он получал химические соединения белков с флуоресцирующими красителями (например, с /-диметиламинонафталин-5-сульфонил-хлоридом) и измерял интенсивность флуоресценции по различным направлениям. Было показано, что степень поляризации флуоресценции наибольшая при малых 0, тогда как при больших 0 флуоресценция полностью деполяризована. Промежуточные значения степени поляризации флуоресценции отвечают определенным значениям 0, откуда по формуле (HI. 9), или по (П. 5.) вычисляются размеры молекул. Вебер исследовал этим методом размеры ряда белковых молекул и процессы их денатурации Гейнц применил этот метод к растворам полистиролов Валь — к растворам поливиниламинов и др. [c.67]

    Применение гелей в электрофорезе основано на том, что биополимеры с точки зрения зарядов являются полианионами или поликатионами с одинаковыми поверхностями, поэтому разделение в постоянном электрическом поле без дополнительных вспомогательных средств становится невозможным. Поскольку эти биополимеры в самом деле резко различаются по своим размерам, добавка некоторого геля может сильнее влиять на подвижность полимера с большими размерами молекул. Это приводит впоследствии к разделению молекул по размерам, т.е. по растущим ММ. Основной областью применения гелевого электрофореза является разделение молекул ДНК, а также разделение белков, которые подвергаются денатурированию в растворе ДДСН. Кроме того, гели в классическом электрофорезе применяются обычно в качестве стабилизаторов, хотя и не дающих вклад в разделение. [c.96]

    После экстракции белков из муки смесью УМЦ Хюбнер и Уолл [99] фракционировали невосстановленные глютенины гель-фильтрацией на сефарозе 4В и сефарозе 2В в среде 5,5М гуанидинхлорида модифицированным методом Мередита и Рена [135]. Глютенины разделялись в этих условиях на две большие группы, вероятно, весьма существенно различающиеся размерами молекул, поскольку одна из них исключена из обоих типов геля (приблизительная граница исключения носителя сефароза 2В составляет 20 млн.). [c.199]


Смотреть страницы где упоминается термин Белки размеры молекул: [c.176]    [c.108]    [c.238]    [c.172]    [c.237]    [c.14]    [c.66]    [c.132]   
Биохимический справочник (1979) -- [ c.15 ]




ПОИСК





Смотрите так же термины и статьи:

Молекула размеры

Молекулы белка



© 2025 chem21.info Реклама на сайте