Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

присоединение, структур

    В последнее время для связывания ионов металлов стали применять полистирол с присоединенными структурами типа 69. Различные [c.34]

    Олефиновые и диолефиновые углеводороды цепной структуры имеют одну (олефиновые) или две (диолефиновые) двойные связи. Общая формула олефинов — С Нг , диолефинов — С Н2 2. Ввиду наличия двойных связей углеводороды этих групп более реакционно способны и менее химически стабильны, чем парафиновые, нафтеновые и ароматические углеводороды. Олефиновые и диолефиновые углеводороды способны к реакциям присоединения, в том числе и окисления. Поэтому присутствие углеводородов этих групп в авиационных топливах не допускается. [c.8]


    Таким образом, несмотря на значительное количество работ, в которых обсуждался вопрос о силе, связанной в воздействием присоединенных масс, как структура записи выражения для этой силы, так и величина коэффициента присоединенной массы в дисперсном потоке остаются в значительной мере неопределенными. Окончательно ответить на вопрос о применимости той или иной модели можно будет только после решения ряда конкретных задач, в которых эта сила значительна, и сравнения полученных результатов с экспериментальными данными. [c.85]

    Не рассматривая пока эти исключения, а также помещенные внизу таблицы 1,2-дизамещенные этилены, мы видим, что порядок расположения хорошо согласуется с тем порядком, которого можно было бы ожидать на осповании хорошо установленного представления о том, что наиболее легко идет реакция присоединения радикала, ведущая к образованию в качестве продукта реакции наиболее устойчивого радикала [100, 157]. Так, например, наиболее реакционноспособными являются мономеры, имеющие фенильные или винильные группы, которые, как установлено, повышают стабильность радикалов на 25 ккал [142], в результате резонанса структур [c.147]

    Бирадикальный механизм находится в соответствии с общей нечувствительностью реакции к растворителям и катализаторам. Он также правильно предсказывает течение реакции в случаях возможного образования двух изомеров, основываясь на двух факторах, которые более детально обсуждаются в разделе, посвященном сополимеризации. Одним из них является ожидаемая тенденция, что такая реакция идет через образование наиболее резонансно стабильного радикала [например, один непарный электрон, конъюгированный с карбонильной группой в реакции 15)]. Другим фактором является способность полярных резонансных структур повышать стабильность переходного состояния радикалов, это ведет к образованию того же изомера, что и предсказанный на основе полярного механизма. Отмечалась также близкая аналогия между радикальным механизмом и термическим инициированием процесса, наблюдающихся в некоторых случаях реакции полимеризации [36]. В качестве аргумента против такого механизма было выставлено то, что инициаторы радикалов, подобные перекиси бензоила, не ускоряют реакцию Дильса-Альдера. Однако это фактически не относится к обсуждаемому вопросу, так как реакция включает стадию (15), являющуюся процессом термического образования бирадикала, который в большей степени, чем любой другой процесс, мог бы быть инициирован присоединением посторонних радикалов по двойной связи. [c.181]


    С другой стороны, при помощи озона много узнали о структуре природного и синтетического каучуков, так как он атакует двойную связь, а образовавшиеся озониды могут гидролизоваться с образованием альдегидов или кетонов в зависимости от групп, присоединенных к атомам углерода, соединенным двойной связью. [c.216]

    Присоединение галоидоводородных кислот к олефинам является весьма общей реакцией, хотя имеется очень большая разница в скорости реакции олефинов разной структуры с HJ, НВг, НС1 и HF. В ряду галоидоводородных кислот иодистый водород реагирует наиболее легко, бромистый водород болео реакционноснособен, чем хлористый водород, а фтористый водород наименее реакционноснособен. Фтористый водород, является эффективным катализатором при алкилировании и применяется в промышленности для алкилирования, при этом образование алкил-фторидов идет в очень малой степени. [c.366]

    Б полимерах, состоящих из цис- или транс-1,4-звеньев, вероятно присоединение молекул изопрена по принципу голова к хвосту ( j—С4), голова к голове ( i— i) или хвост к хвосту ( 4—С4) 3,4- или 1,2-полиизопрены могут иметь изо-, синдио- или атактическое расположение боковых заместителей. В нерегулярно построенных полимерах наблюдается статистическое или блочное соединение звеньев различной структуры. [c.201]

    Превращение ланостерина в холестерин представляет собой сложный процесс, состоящий по крайней мере из 25 этапов. Многие из участвующих в процессе ферментов связаны с мембранами эндоплазматического ретикулума [95]. В процессе участвует также по крайней мере один растворенный в цитоплазме белок. Этот белок, транспортирующий стерин, функционирует как переносчик стерина от одного фермента к другому в ходе процесса превращения и, кроме того, влияет на реактивность присоединенной структуры [96, 97]. [c.580]

    Из табл. 6-9 видно, что с линейными (реакции 1, 4—9) или циклическими олефинами (реакции 2 и 3) реакция не идет. Более реакционноспособны олефины, содержащие фенил у двойной связи. Стирол, по-видимому, полимеризуется, но 1,1-дифенил-этилен, гранс-стильбен и трифенилэтилен реагируют с трифенилсилиллитием или трифенилсилилкалием, давая продукты присоединения. Структура продукта, образующегося из трифе-нилэтилена, была доказана специальным синтезом. [c.374]

    Присоединение структур, содержа1цих активированный атом углерода. Приведенные ниже примеры показывают, что в присутствии радикальных инициаторов карбонильнне производные (кетоны) и карбоксильные производные (малоновые эфиры) могут присоединяться к двойным связям. [c.432]

    В продукте присоединения, структура которого" " может быть р,1 1ражена двояко  [c.273]

    Уайт и Робертсон [2] придерживаются первого механизма [уравнение (7-4)]. Механизм, изображенный схемой 29, следует дополнить промежуточными структурами III или IV [9]. Роль второй молекулы брома может в принципе состоять в удалении из промежуточного соединения иона брома. Тогда переходное состояние на стадии, определяющей скорость реакции, можно представить структурой V (или аналогичной структурой, имеющей лищь отчасти бромониевый характер). Другое предположение состоит в том, что вторая молекула брома является нуклеофилом, завершающим присоединение (структура VI). Первое предположение кажется более вероятным как на основании общих химических соображений, так и потому, что точно такая же кинетика наблюдается и в случае ароматического замещения [12], где вторая молекула брома не может играть ту же роль, что в структуре VI. [c.147]

    Для продукта двукратного присоединения структура с двумя атомами алюминия при том же атоме углерода вероятна, хотя точно не доказана. К двузамещенным ацетиленам присоединяется только одна молекула ди- [c.329]

    О применении физических эффектов и явлений мы поговорим особо. Сейчас отметим лишь, что все главные линии развития систем (см. рис. 12) ведут к структурам, охотно присоединяющим физические эффекты и явления. Даже простой переход к бисистеме сразу открывает возможности такого присоединения . Вот любопытный пример. Допустим, надо измерить, на какое расстояние воднолыжник прыгнул с трамплина. Ести для этот используют один микрофон, определить место шлепка о воду можно только приблизительно. Перейдем к бисистеме со сдвинутыми характеристиками пусть один микрофон будет установлен на надводной части трамплина, а другой — в подводной. Тогда длину прыжка можно определить по разности времен поступления звукового сигнала от шлепка (а. с. 256570). [c.113]

    Вследствие координационной ненасыщенности молекул тетрагалиды молекулярной структуры химически активны. Подобно другим ковалентным соединениям этого типа (см. с. 414), их гидролиз протекает последовательно через сталии присоединения воды и отщепления молекул галидоводородов, вплоть до образования гидроксидов [c.428]

    Тетрагалиды молекулярной структуры летучи, химически активны. Например, они склонны к присоединению донорных молекул, легко гидролизуются. Из них наиболее широко используется Ti l4, в основном Для получения металлического титана. Иодиды Э (IV) при высоких температурах (1000—1400° С) распадаются на иод и металл, что используется, как указывалось, для получения особо чистых Ti, Zr и Hf. [c.534]


    Обычно в состав простетических групп в растительных и животных системах входят порфириновые ядра, представляющие собой хелатные структуры с включением ионов металлов (Ре , Со ", и т. д.). Так, гемоглобин животных содержит такую группу с Ре " , присоединенную к белковой половине (глобин). Эта группа аналогична по структуре простетической группе, содержащей в хлорофилле растений и одноклеточных животных. Молекулярный вес белков обычно лежит в пределах от 30 ООО до 80 ООО. Однако молекулярный вес может быть и меньше и значительно больше этих величин. Ферменты являются очень специфичными катализаторами. Зачастую их активность может проявляться только в какой-либо одной реакции. Так, например, фумараза катализирует только обратимую реакцию превращения малеиновой кислоты в фумаровую [98]  [c.561]

    Для присоединения концевых патрубков из углеродистой стали к гибкому элементу применяют автоматическую сварку плавящимся электродом в среде углекислого газа. В качестве электрода применяют проволоку Св-07Х25Н13 диаметром 1 мм. Это позволяет получить металл шва высокого качества. Перед сваркой конец гибкого элемента прихватывают к патрубку. При этом гибкий элемент цилиндрическими концами надевают на наружную, предварительно обработанную резцом, поверхность патрубков. Характер соединения — встык с зазором до 1,5 мм. Сварка производится аппаратом АДСП-401. В процессе сварки компенсатор закреплен концами в патронах. Скорость сварки 20—25 м/ч. При сварке образуется аустенитная структура металла сварного шва с небольшим (1 —1,5%) содержанием феррита. Прочность и герметичность сварных швов проверяют гидроиспытанием на специальном стенде. [c.114]

    Величина константы К зависит от химической структуры парафина. Наименьшие значения К наблюдаются для к-алканов. С повышением молекулярного веса к-алкаиа величина К уменьшается. Появленпе разветвлений в алкильной цепи, а также присоединение к ней колец повышает значение К. Значения К для к-алканов от С, до С е можно найти в работе Редлиха с соавторами [33]. Величина константы К для углеводородов нри изменении температуры не остается постоянной и возрастает с повы-шенпем температуры. Поэтому повышение температуры сказы- [c.140]

    При изучении роли кристаллов платины с различной структурой в механизме процесса дегидроциклизации н-геисана на алюмоплатиновых катализаторах был сделан вывод [179], что в реальных условиях дегидроциклизации, когда процесс сопровождается крекингом и энергичным коксообразованием, скорость и направление циклизации н-гексана зависят от размера кристаллов Pt на носителе. Наиболее благоприятными для осуществления реакции на изученном образце -АЬОз являются кристаллы Pt размером 1,1 —1,4 нм и степенью дисперсности H/Pt 0,6—0,8. При сравнении результатов ароматизации н-гексана и гексена-1 на изученных алюмоплатиновых катализаторах предположили, что электронодефицитные частицы Pt прежде всего могут играть роль центров закоксовывания алюмоплатиновых катализаторов, на которых происходит крекинг ненасыщенных углеводородов, склонных к реакциям присоединения и расщепления. Вместе с тем полагают, что ароматизация н-гексана осуществляется путем непосредственного замыкания шестичленного цикла с одновремен- [c.253]

    Для дисперсной среды с хаотическим расположением частиц в работах [142] получено К Р) = /г (1 + 2,78уз). Расчет присоединенной массы сферических частиц в дисперсной среде с хаотической структурой проводился также в работе [143]. Учет эффектов взаимодействия частщ более высокого порядка, чем в работе [142], позволил получить соотношение вида Ку ) = /г (1 + 0,0921/5). Следует отметить, что в литературе имеются работы [98, 144], в которьрс рекомендуется выражение ( />) = = /г (1 -Ф), т. е. предполагается, что коэффициент присоединенной массы уменьшается с увеличением концентрации. [c.85]

    Как было указано выше, для образования ионов карбония требуется либо отщепление атома водорода посредством разрыва углерод-водородной связи, либо присоединение атома водорода с образованием новой углерод-водородной связи. В связи с этим для теории таких механизмов приобретают большое значение накопленные экспериментальные данные, показывающие большую реакционную способность третичных углерод-водородных связей сравнительно со вторичными связями С —Н и последних сравнительно с первичными при диссоциациях ионного типа (крекинге) и реакциях присоединения. Относительная реакционная способность третичных, вторичных и первичных углерод-водородных связей в термических реакциях через свободные радикалы соответственно меньше. Далее будет показано, что в силу вышесказанного третичные и вторичные структуры играют доминирующую роль в механизме ионных реакций. Приведенное отношение между реакционными способностями связей С —Н основано на данных, полученных нри масс-снектрометрическом измерении потенциалов образования различных алкил-ионов. Потенциалы образования алкил-ионов вместе с соответствующими термодинамическими данными и данными по энергиям диссоциации связи для углеводородов дают величину энергии, необходимую для получения алкил-ионов из родственных им углеводородов эта величина энергии может быть качественно коррелирована с относительной реакционной способностью первичных, вторичных и третичных углеводородных структур как в случае низкотемпературных реакций присоединения, так и при высокотемпературной диссоциации (ионных процессах). Аналогично определяемая энергия сво-бодноради1 альной диссоциации связи С — Н [37, 39] отражает гораздо меньшее различие в реакционной способности разных типов С — Н связей в случае термических свободиораднкальных реакций таким образом, существует явный нараллелизм между экспериментальными данными каталитического и термического крекинга и энергетикой предложенных механизмов. [c.115]

    Так как указанное различие в анергиях меиее выражено для свободно-радикальЕШх реакций, то можно сделать вывод, что обычно при каталитическом крекинге влияние структуры молекулы на скорость и характер начального разложения больше, чем при термическом. Однако для более глубокого рассмотрения обоих видов крекинга следует принимать во внимание значительные вторичные реакции олефинов в ионных системах, что будет рассмотрено ния е. При каталитическом крекинге вследствие многочисленных перегруппировок в образовавшихся первоначально олефинах, конечный продукт является результатом наложения равновесной смеси вторичных продуктов реакций олефинов на первичные продукты крекинга. В силу этого конечная смесь углеводородов до известной степени не зависит от структуры исходной молекулы. Таким образом, присутствие большого количества олефинов, получаемых, как было сказано выше, при крекинге любого из основных классов углеводородов, может являться и действительно является причиной таких реакций, которые затемняют, по крайней мере частично, влияние структуры на начальные стадии разложения. Вторичные реакции олефинов менее выражены в свободнорадикальных системах и поэтому наблюдается кажущийся парадокс, — конечные продукты каталитического крекинга, особенно полученные при крекинге нефтяных фракций, на первый взгляд, меньше зависят от характера структур в исходном веществе, чем при термическом крекинге. По аналогии с механизмом присоединения протона к олефинам может произойти соединение иона карбония с олефином, что приведет к образованию нового большего иона карбония  [c.120]

    В другом исследовании по изомеризации пентена-1 результаты значительно изменялись при различных способах приготовления окиси алюминия [541. Равновесная смесь при условиях, не вызывающих изменения структуры, и температуре 260° состояла из 14,8% пентена-1 и 85,2% пентена-2. Другая окись алюминия при этой же температуре и низкой объемной скорости жидкости дала смесь пентенов, содержащую 30,4% пентенов с разветвленной цепью. Применение в качестве катализаторов окиси алюминия, обработанной кислотой, при 360° дало 30% продуктов крекинга, отмечено образование до 28% полимеров. При обсуждении результатов авторы пишут Авторы считают, что механизм изомеризации и-олефинов при контакте с катализаторами аналогичен таковому алкили-ровапия, изомеризации и подобных им реакций — и что необходимые для этого ионы карбония легко образуются при условиях, существующих на поверхности различных образцов применявшейся окиси алюминия.. . В условиях, преобладавших на поверхности нейтральной или обработанной кислотой окиси алюминия, ионы карбония образуются путем присоединения протона по двойной связи олефина (см. гл. XXXI). [c.105]

    Перенос цепи мономером (т. е. отделение галоида или водорода до присоединения по двойной связи) обнаруживается при реакции стирола и метилметакрилата еще легче протекает он с винилацетатом, где, по-видимому, он является главным фактором, определяющим молекулярный вес полимера, при различных условиях [94].,Особое значение приобретает этот фактор у сравнительно нереакционноспособных а-метилолефинов (сравни аллилацетат), где разрыв С—Н связей облегчен тем, что они находятся в аллильной структуре. В этом случае обрываются как физические, так и кинетические цепи (этот процесс рассматривается дальше при ингибитировании цепей). [c.127]

    Полимеризация диенов образование поперечных связей. При полимеризации или сополимеризации мономера, содержащего две олефиновые связи, внедрение каждой новой молекулы диена сопровождается введением в полимер одной двойной связи. Последующие реакции растущей полимерной цепи могут поэтому приводить не только к присоединению молекулы мономера, но также к реакции, которую можно рассматривать как сонолимеризацию мономера и полимера, т. е. присоединение предварительно образовавшейся молекулы полимера к растущей полимерной цепи. Следовательно, конечным продуктом такой реакции может быть не набор линейных молекул, а очень сложная сеть полимерных цепей, соединенных между собой поперечными связями в одну гигантскую молекулу. Такое изменение структуры по сравнению со структурой простого винилового полимера приводит и к соответствующему изменению физических свойств. Полимер, содержащий большое количество поперечных связей, нерастворим и уже нетермопластичен. [c.155]

    Согласно Мэкстеду [106], который приписывает адсорбционной блокировке активных центров механизм отравления катализатора, у яда имеется свободная электронная пара, при помощи которой он и присоединяется к поверхности катализатора. Мэкстед показал, что отравленный катализатор можно регенерировать путем окисления некоторыми перкислотами (перванадиевая, пероловянная, пермолибденовая) в присутствии перекиси водорода. При этом яд превращается в нетоксическое соединение с экранированной структурой , которая уже не обладает необходимой для присоединения к катализатору свободной электронной парой. [c.268]

    Присоединением одного электрона к карбоний-иону метил превращает этот осколок в свободный метил-радикал. Предпо.иагается, что вхождение единичного электрона на свободную орбиту р не вносит значительного изменения в основную структуру СНд-группы. Таким образом, структура свободного метйл-радикала представляется в следующехм виде углерод и соединенные с ним три водородных атома расположены три-гональпо в плоскости ст-связи, а неспаренный электрон занимает / -орбиту над и под этой плоскостью. Схема X представляет боковой вид предполагаемой структуры. [c.394]

    Прежде Чем обсуждать механизм реакции, необходимо рассмотреть структуру комплекса с соотношением 1 1, который, по-видимому, является одним из основных компонентов реакции. Были предложены две формулы простейшего продукта присоединения НССЮ А1С1з и ионизированного продукта КСО АЮ [115, 218]. [c.454]

    В большинстве случаев у парафиновых молекул с длинными цепочками, в состав которых входит большое число вторичных углеродных атомов, в основном окисляется. Р-углерод, т. е. углерод, смежный с последней метильной группой соответственно меньшее воздействие оказывается на V и 6-углероды и так далее к центру молекулы [27—32]. Таким образом, по этому правилу в нормальном декане все метиленовые группы допускают вероятность реакции окисления [33]. В сильно разветвленных структурах, таких как 2,2-диметилбутан и 2,2,3-триметилнентап, некоторые продукты окисления можно объяснить, только предположив, что первоначально кислород воздействует на водород, присоединенный к первичному углеродному атому [34]. [c.71]

    Разветвленность молекулярных цепей и сшитые структуры в полимерах. В процессе полимеризации наряду с линейными молекулярными цепями могут образоваться разветвленные цепи различного строения [2, 17, 18]. В зависимости от характера присоединения ветвей макромолекулы можно разделить на статисти-ческг , (рис. 1,6), звездообразные (рис. 1,в) и гребневидные, в ко.лрых ветви различной длины присоединены к основной цепи (рис. 1,а). Число ветвей, выходящих из каждого узла разветвления, называют функциональностью разветвлений /. [c.24]

    Спектр протонного магнитного резонанса аддукта 1 1 трет-С409Ы с бутадиеном в бензоле (рис. 10, а) свидетельствует о том, что в растворе присутствуют исключительно 1,4-продукты присоединения в цис- и гране-форме [88]. Сигналы при химическом сдвиге около т 5,4, относящиеся к уводородному атому, позволяют приписать этим соединениям а-аллильную структуру  [c.128]

    При присоединении второй и последующих молекул бутадиена к комплексам XV и XVI на каждой стадии вновь воспроизводится первоначальная структура концевого звена. Одновременно с этим в спектрах появляются сигналы отошедших от металла мономерных фрагментов, представляющих собой в основном 1,4-звенья. Образование 1,4-полимеров бутадиена можно представить как результат присоединения молекулы бутадиена по связи литий—юс-углеродные атомы комплексов XV и XVI. Однако образование заметных количеств 1,2-звеньев, особенно на более ранних стадиях присоединения, не согласуется со структурой этих литийаллильных аддуктов. [c.128]

    Одновременное экранирование а- и -углеродных атомов концевого аллильного звена атомом лития в структурах XVII и XVIII делает возможным присоединение мономера не только к а-, но и к -углеродным атомам. В присутствии электронодоноров увеличиваются каталитическая активность литийорганического инициатора и содержание 1,2-звеньев в образующихся полибутадиенах. Присоединение мономера к у Углеродному атому формирует [c.129]

    Для количественного исследования микроструктуры полиизо--пренов в настоящее время используются главным образом ИК- и ЯМР-спектры полимеров (рис. 1, 2). Метод ИКС особенно удобен для определения 1,2- и 3,4-присоединений. В этом случае анализ ведется по интенсивным и хорошо разрешенным характеристическим полосам поглощения в области деформационных колебаний винильной и изопропенильной групп при 909 и 887 см". Раздельное определение цис- и транс-1,4-звеньев из-за специфики ИК-спектров полиизопренов проводят по нехарактеристическим полосам поглощения при частотах 595—570, 730—750, 840, ИЗО— 1150 или 1300—1330 см [3]. В области валентных колебаний группы С—Н для этой цели пригодна полоса асимметричных колебаний СНз-групп при 2965 см . Точность известных методов анализа 1,4-полиизопренов по ИК-спектрам из-за малой интенсивности указанных полос, значительного наложения их друг на друга и сдвига частот максимумов поглощения в результате внутримолекулярных взаимодействий цис- и транс-1,4-структур невысока и, как правило, не превышает 2—5%- [c.201]


Смотреть страницы где упоминается термин присоединение, структур: [c.304]    [c.196]    [c.121]    [c.618]    [c.282]    [c.324]    [c.329]    [c.332]    [c.215]    [c.294]    [c.344]    [c.103]    [c.120]    [c.126]   
Действующие ионизирующих излучений на природные и синтетические полимеры (1959) -- [ c.171 , c.175 ]




ПОИСК







© 2024 chem21.info Реклама на сайте