Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Положительные ионы, теплоты образования

    Нормальные потенциалы, определяющие положение элементов в ряду напряжений, установлены еще не для всех металлов главной подгруппы II группы при помощи непосредственных измерений. В табл. 46, кроме измеренных нормальных потенциалов, приведены значения, вычисленные Макишима ХМак1зЫта, ср. стр. 182). Из данных таблицы видно, что элементы главной подгруппы II группы по силе своего электроположительного характера значительно приближаются к щелочным металлам. Последовательность нормальных потенциалов здесь та же, что и последовательность потенциалов ионизации. Эффект гидратации ионов, оказывающий в ряду щелочных металлов сильное влияние на величины их нормальных потенциалов, в ряду щелочноземельных металлов отступает на второй план. Это связано с тем, то разности между теплотами гидратации и энергиями ионизации (см. табл. 46) в группе щелочноземельных металлов значительно больше, чем в группе щелочных металлов. В обеих группах теплоты гидратации ионов меньше, чем энергии ионизации, и значительно меньше, чем сумма последних и теплот сублимации. Металлы обеих групп вытесняют водород из воды и кислот и в соответствии с этим обнаруживают отрицательный потенциал по отнощению к водородному электроду. Причина этого заключается не в стремлении указанных металлов перейти в раствор в виде положительных ионов , как это часто полагают, а в стремлении ионов водорода к разрядке с образованием молекулы Нг, т. е. свободная энергия реакции (1) [c.265]


    Некоторые атомы не обладают положительным сродством к электрону в том смысле, что соответствующие отрицательные ионы нестабильны. Ясно, что благородные газы ведут себя таким образом потому, что дополнительный электрон должен был бы занять орбиталь вне заполненной оболочки. В таких случаях на основе эмпирической экстраполяции можно найти отрицательные значения сродства к электрону значения, установленные таким образом, находят применение при анализе энергетики образования ионных соединений. Так, ион О - в свободном виде нестабилен, и поэтому для него невозможно измерить сродство к электрону. Тем пе менее соединения типа СаО существуют в виде ионных кристаллов. Зная измеренные теплоты образования таких кристаллов и рассчитанные энергии электростатических взаимодействий в решетке, можно для процесса [c.57]

    Спектроскопия электронного удара. В табл. 9 сопоставлены результаты измерения 21] потенциалов выхода и относительное содержание основных положительных ионов в масс-спектре этиленимина с расчетными теплотами образования и наиболее вероятными ионизационными и диссоциационными процессами, приводящими к их образованию. [c.49]

    Если известны теплоты образования радикала и соответствующего положительного иона, можно легко вычислить потенциал ионизации этого радикала. При этом необходимо предположить, что радикал и ион имеют одинаковые структуры. Поскольку многие положительные осколочные ионы претерпевают значительные перегруппировки в процессе своего образования, часто вопрос об их структуре остается неясным. [c.449]

    На основании уравнения (11-8) можно заключить, что комплексообразованию благоприятствуют отрицательные изменения энтальпии и положительные изменения энтропии, но имеется много примеров, где предпочтительной является только одна из этих величин. Найдено, что относительный вклад каждого из этих факторов зависит как от лигандов, так и от того, каков центральный ион металла. Из ступенчатых констант образования можно определить ступенчатые изменения энтальпии. В одних растворах для ассоциации с ионными лигандами эти величины лежат обычно в пределах от +5 до —5 ккал/моль, а для нейтральных монодентатных лигандов — в пределах от О до —5 ккал/моль, но эти величины для полидентатных лигандов могут быть больше —20 ккал/моль. На обш,ую теплоту образования комплекса оказывают заметное влияние различные свойства как лиганда, так и иона металла. Рассмотрим кратко эти свойства. [c.452]


    Фтор наиболее электроотрицателен из всех элементов. Его потенциал ионизации (401 ккал/г-атом) вместе с энергией диссоциации дают стандартную теплоту образования положительного иона фтора в газовой фазе, равную 420 ккал г-атом (ср. С1 327, Вг+ 301, + 268). Таким образом, образование даже сольватированного катиона очень маловероятно, и нет никаких данных, подтверждающих существование положительных степеней окисления фтора. [c.220]

    Во втором примере образование координативной связи также можно трактовать как нейтрализацию зарядов (протона и отрицательного полюса молекулы воды) с образованием полярного комплексного положительного иона. В результате этой гидратации протона выделяется значительная энергия связи теплота гидратации), равная Лз 280 ккал/г-ион. [c.281]

    Известно, что теплота растворения соли зависит от концентрации ионов водорода в растворе. Так, теплота растворения Li l и Na l в растворах НС1 зависит от ее концентрации. Самойлов объясняет это обстоятельство тем, что, благодаря наличию положительного заряда, на молекулах воды происходит их некоторое дополнительное отталкивание от положительных ионов и притяжение к отрицательным так как размеры анионов больше, заряды в основном сказываются на взаимодействии воды с катионами. Это дополнительное отталкивание уменьшает положительные тепловые эффекты и увеличивает отрицательные. Основываясь на этом изменении теплового эффекта, Самойлов разработал термохимический метод определения координационных чисел. Эти числа для катионов щелочных металлов оказались равными около 4, а анионов от 4 до 5. Автор считает, что координационное число четыре соответствует наименьшему нарушению структуры воды при образовании раствора ионов. [c.283]

    Термохимические расчеты для реакций, протекающих в растворах, целесообразно проводить исходя не из теплот образования молекул, а из теплот образования ионов. Однако измерить теплоты образования отдельных ионов невозможно, так как ионам одного знака всегда сопутствуют ионы противоположного знака. Поэтому при определении теплот образования ионов условились ввести начало отсчета, приняв АН одного из ионов за нуль. Нулевой считают стандартную теплоту образования иона Н"(р). Используя эту величину и зная суммы АН для положительных и отрицательных ионов, находят АН отдельных ионов в растворе. Для некоторых ионов значения стандартной теплоты образования приведены в табл. 2.4. [c.183]

    Хемосорбция цезия и других щелочных металлов на вольфраме, приводящая к образованию ионов (раздел V, 11), определяется главным образом работой выхода. Поскольку при этом образуются положительные ионы, то можно ожидать, что теплота хемосорбции будет тем больше, чем выше работа выхода. [c.124]

    Во всех указанных случаях, по нашему мнению, скорость обмена Нг — Г>2 увеличивается с ростом концентрации электронов в окисных катализаторах (табл. 7). Это означает, что во всех этих системах предварительная обработка, способствующая повышению концентрации электронов, будет приводить к увеличению скорости обменной реакций и наоборот. Бик [31] наблюдал на металлических пленках увеличение гидрогенизационной активности с уменьшением прочности связи металл—водород, используя в качестве меры прочности связи теплоту адсорбции водорода. Он предположил, что, коль скоро адсорбция водорода на окислах металлов связана с образованием положительных ионов или ковалентных связей, избыток электронов, по-видимому, будет приводить к уменьшению прочности связи. Таким образом, на основании данных Бика, можно объяснить наблюдаемое увеличение активности. Никакой прямой связи между каталитической активностью и электропроводностью ожидать нельзя, так как с увеличением концентрации электронов в катализаторе проводимость электронных полупроводников будет увеличиваться, но дырочных — уменьшаться. [c.48]

    Как следует из табл. IV. 2, большая часть прироста энтропии, связанного с образованием катионных вакансий и диссоциацией вакансия — положительная дырка, обусловлена переходом кислорода в газовую фазу и релаксацией ближайших соседних катионов вокруг вакансии. Энтропия активации диффузии катионов имеет небольшую положительную величину, как того и требует теория Зенера [96]. Небольшая величина энтропии ионизации вакантных положительных дырок свидетельствует о незначительном изменении колебательной энтропии для ионизации первой положительной дырки из катионной вакансии в гипотетическом нормальном состоянии, когда половина положительных дырок подвергалась однократной ионизации. Чем больше теплота образования вакансий, тем больше свобода для релаксации вокруг образовавшейся вакансии. Не исключено, что уход ионов Fe +, Со + и Ni + с радиусами 0,83 0,82 и 0,78 А, соответственно, оставляет вакансии [c.86]

    Нейтрализация слабых кислот сильными основаниями или сильных кислот слабыми основаниями сопровождается одновременной диссоциацией слабого электролита. При этом выделяется или поглощается теплота диссоциации АЯдисс, которая зависит от теплоты, поглощаемой при распаде молекулы на ионы, и теплоты гидратации ионов молекулами растворителя. Теплота диссоциации может быть как положительной, так и отрицательной. Таким образом, теплота нейтрализации слабых кислот и оснований складывается из двух величин теплоты образования воды из ионов и теплоты диссоциации слабого электролита  [c.95]


    Для положительно и отрицательно заряженных газообразных ионов в таблицах даны значения их энтальпий образования. Эти величины вычислены на основании значений потенциалов ионизации, сродства к электрону и теплот образования соответствующих нейтральных атомов и молекул. Значения потенциалов ионизации и сродства к электрону, принятые на основании анализа литературных данных и использованные при вычислении энтальпий образования, приводятся в приложениях к выпускам. [c.12]

    ТЕПЛОТЫ ОБРАЗОВАНИЯ ПОЛОЖИТЕЛЬНЫХ МОЛЕКУЛЯРНЫХ ИОНОВ. [c.43]

    Наиболее современная и полная сводка теплот образования положительных ионов имеется в монографии Потенциалы ионизации, потенциалы появления и теплоты образования положительных ионов в газовой фазе , составленной Франклином и др. [1]. Весьма полезна также монография Веденеева и др. [2], [c.43]

    Теплоты образования положительных молекулярных ионов в их основном состоянии можно рассчитать, складывая теплоту образования исходной молекулы с первым потенциалом ионизации  [c.44]

    Современные данные, полученные при исследованиях ЯМР и инфракрасных спектров, кинетических исследованиях скоростей реакций и определении констант равновесия для распределения положительных ионов между различными фазами, а также выводы, основанные на изучении поведения других ионов и водородсодержащих ионов в других фазах (например, в кристаллах), приводят к выводу, что ионы Н+ в растворах обычно связаны с несколькими другими молекулами. Эти молекулы группируются вокруг находящегося в центре иона Н+, и его положительный заряд распределяется между ними. Механизм этого явления, по-видимому, заключается в том, что протон деформирует электронные облака на орбиталях окружающих молекул, притягивая их к себе, однако при этом электроны не покидают молекул растворителя. В результате эти молекулы поляризуются, так что со стороны, прилегающей к иону Н+, они становятся более отрицательными, а с противоположной стороны — более положительными, и, таким образом, положительный заряд протона распределяется по большему объему, что снижает плотность заряда (рис. 12.10). Природа таких гидратированных протонов в точности неизвестна и не исключено, что ее никогда так и не удастся достаточно хорошо описать. Возможно, гидратированные протоны постоянно образуются и распадаются, причем каждый раз вокруг протона группируется неодинаковое число молекул растворителя. По этой причине мы будем в дальнейшем условно записывать гидратированный протон как НзО+ или как Н+(водн). Каждый из этих символов указывает, что речь идет не об изолированном протоне, а о продукте его взаимодействия с водой. Запись Н3О+ вовсе не означает, что протон связан только с одной молекулой воды, хотя он действительно может быть прочнее связан с одной молекулой воды, чем с остальными окружающими молекулами. Принято, что [Н3О+] = [Н+] и означает концентрацию акватированных конов водорода в молях на литр. Принято также считать, что теплота образования, свободная энергия образования и энтропия образования Н+(водн) равны нулю, как это н указано в табл. 12.1. [c.368]

    Исследования Штерна и Мартеля [10], Кюрри и Джилькерсона [11] и других показали, что теплота ассоциации ионов разных солей различна и в ряде случаев отрицательна, в то время как кулоновское взаимодействие может привести только к положительному эффекту. Очевидно, образование ионных пар сопровождается частичной десольватацией ионов, кулоновское взаимодействие дополняется некулоновским и процесс диссоциации сильных электролитов в принципе не отличается от любого процесса диссоциации. [c.106]

    Бомбардировка газа-мишени различными положительными ионами с различной энергией рекомбинации П248, 1250] в ряде случаев обеспечивает возможность определения более высоких потенциалов ионизации. Когда энергия рекомбинации увеличивается, превышая значение первого потенциала ионизации, сечение проходит через максимум, затем при дальнейшем увеличении энергия рекомбинации падает, так как становится менее вероятным процесс выделения избыточной энергии в виде колебательной. Однако последующее увеличение энергии рекомбинации часто приводит к новому возрастанию сечения, соответствующему возбуждению высших уровней ионизации. Так, сечение реакции образования СО2 при бомбардировке молекул двуокиси углерода ионами фтора весьма велико 11250]. Энергия рекомбинации составляет 17,4 да, а второй потенциал ионизации СОг—17,3 эб. Значения сечений не всегда могут быть объяснены в частности, при бомбардировке окиси углерода скрытая теплота сублимации углерода была определена равной 136 ккал/моль 11249], что не согласуется с более надежной величиной 170 ккал1моль [см. стр. 489). [c.456]

    Из кислородных соединений Алюминия кристаллическая окись замечательна своей твердостью и значительной теплотой образования, а гидроокись — своим амфотерным характером. Соли алюминия кристаллизуются большей частью с большим содержанием кристаллизационной воды. В формулах приведенной таблицы кристаллизационная вода не указана, так как ее количество является переменным и зависит от температуры и давления. Соли алюминия бесцветны. Из них соли сильных кислот легко растворимы в воде. Из солей кислот средней силы и слабых труд-порастворимы фосфат, борат и силикат. Легко растворим ацетат алюминия. Водные растворы солей алюминия содержат бесцветные ионы АГ", в значительной степени гидратированные. По Бринтзингеру (Brintzin-дег, 1935), в разбавленных растворах каждый ион А1 связан с 18 молекулами Н2О. В связи с этим безводные соли алюминия, несмотря на рост растворимости с температурой, обладают сильной положительной теплотой растворения. [c.387]

    При появлении тока положительное электричество течет от хлорного электрода по внешнему проводнику к водородному электроду. У этого электрода водород переходит в раствор в виде положительного иона, в то время как у хлорного электрода хлор переходит в раствор в качестве отрицательного иона. Выделяемое таким путем при образовании разбавленной соляной кислоты количество энергии составляет в соответствии с уравнением (3) (стр. 166) 31,3 ккал/моль НС1. Это количество равно сумме свободной энергии образования НС1 и свободной энергии растворения H I в воде. Вычитая последнее (8,6 ккал/моль), получают значение свободной энергии образования НС1, равное 22,7 ккал, в то время как спектроскопически было найдено значение 22,76. Значения нормальных потенциалов, приведенные в таблице, были измерены непосредственно. Однако они могут быть рассчитаны также посредством кругового процесса, приведенного на стр. 174 и сл., иа спектроскопически определенных значений энергий диссоциации и сродства к электрону. Учитывая температурную зависимость значений энергии, получают, как показал Макишима (Makishima, 1935), хорошее совпадение рассчитанных таким образом величин с наблюдаемыми. При этом оказывается, что, как и в случаях, указанных в гл. 6 и 8, для значений нормальных потенциалов опре-деляюпщми являются по существу теплоты гидратации. [c.827]

    То, что хлор, бром и иод в противоположность водороду не образуют в водном растворе в значительном количестве положительные ионы, объясняется, возможно, сравнительно небольшой теплотой гидратации для положительных ионов галогенов. Вероятно, их теплоты гидратации лишь немного отличаются от теплот гидратации отрицательных ионов галогенов (см. табл. ИЗ), в то время как ион водорода обладает очень высокой теплотой гидратации. Когда образование соединений происходит в водном растворе, она покрывает большую часть энергии, необходимой для расщепления молекул Щ и ионизации атома Н. У галогенов соответствзгющая энергия может быть получена благодаря добавлению других веществ, молекулы которых присоединяются к положительному иону с большим выигрышем энергии, чем молекулы воды. [c.828]

    Подавляющая доля в падении яркости вызвана разло кением материа ла. Процессы разложения могут быть как обратимыми (утомление), так и необратимыми (выгорание). Эти явления частично изучены при бом бардировке тонких пленок различных материалов медленными электро нами. Разложение материала обусловлено обыкновенно освобождением электроотрицательного компонента соединения с выделением его в сво бодном состоянии. Как показывает опыт, энергия разложения обычн( меньше соответствующей теплоты образования. Восстановление совершается в поверхностном слое, вблизи дефектов решетки оно соответствует переходу электрона от иона галоида в окрестность положительного иона. Разложение пропорционально числу поступаюв],их в материал электронов и мало зависит от их энергии. [c.156]

    Медь имеет один х-электрон сверх заполненной -оболочки, и поэтому ее иногда помещают в I группу периодической системы элементов. Это не 1 ыеет особого смысла, так как у меди мало общего со щелочными металлами, за исключением, конечно, формального состояния окисления —I. Заполненная -оболочка значительно менее эффективно экранирует 5-электрон от ядра по сравнению с оболочкой инертного газа, в результате чего первый потенциал ионизации Си существенно выше, чем у щелочных металлов. Так как в образовании металлической связи принимают участие и электроны -оболочки, то теплота испарения и температура плавления у меди значительно выше, чем у щелочных металлов. Все это обусловливает более благородный характер меди, в результате чего соединения меди имеют более ковалентный характер и повышенную энергию решетки, которые не компенсируются даже несколько меньшим радиусом однозарядного положительного иона Си+ по сравнению с ионами щелочных металлов в том же пер1зоде Си+0,93 На+0,95 н К+ 1,33 А. [c.311]

    Образование поверхностных ионов можно представить себе аналогичным образованию ионной решетки Na l. При соединении натрия с хлором происходит переход электрона с Na на С1, в результате чего Na становится положительным, а С1 — отрицательным ионом. Подобно этому, если атом после адсорбции на металлической поверхности продолжает связывать такое же число электронов, как и до адсорбции, он определяется как адсорбированный атом. Если же один из его электронов перестает вращаться вокруг ядра и связывается с металлической поверхностью, то в результате получается адсорбированный положительный ион. Если же электрон перестает быть связанным с металлической поверхностью и начинает вращаться вокруг адсорбированного атома, то последний становится отрицательным ионом. Наконец, если электрон вращается попеременно то вокруг ядра металла, то вокруг ядра адсорбированного атома, то адсорбированная частица является попеременно или адсорбированным ионом или адсорбированным атомом. Беккер показал существование всех этих видов адсорбции, определяя 9—работу выхода или теплоту испарения электрона для различных покрытых адсорбированным газом поверхностей. Из данных по адсорбции ионов можно было вычислить, что вблизи поверхности существуют очень сильные электрические поля. Эти поля, обязанные своим существованием адсорбированным ионам, оказывают действие на адсорбированные атомы даже на расстоянии 10 й более атомных диаметров, вследствие чего возможность испарения адсорбированного атома или адсорбированного иона зависит от присутствия других атомов по соседству с ним. [c.67]

    Здесь необходимо подробнее остановиться на одном обстоятельстве. При расчете теплот образования углеводородов или ионов углеводородов не обязательно знать потенциал ионизации валентного состояния углерода, так как он исключается (см. разд. б.З). Однако при расчете потенциалов ионизации или сродства к электрону положение меняется при этом сравниваются две системы с различным числом электронов, так что необходимо знать абсолютные энергии связи входящих в них электронов. Если принять то значение которое используется в методе Паризера — Парра [разд. 5.3 и выражение (5.13)], значения потенциалов ионизации и сродства к электрону будут завыщены. Приведенные в табл. 7.5 и 7.6 значения были найдены исходя из значительно меньшей величины (9,59 эВ). Существует два возможных объяснения такого кажущегося расхождения. Во-первых, может оказаться, что эффективный потенциал ионизации для 2/ -электрона в атоме углерода, входящем в молекулу, будет меньше, чем в изолированном атоме углерода в методе Паризера — Парра используются, разумеется, величины для атома в соответствующем валентном состоянии. Эта точка зрения энергично пропагандировалась Джал-гом [7]. Другая возможность состоит в том, что значение 1 (. может меняться с изменением формального заряда молекулы. Конечно, следует ожидать, что орбитали в положительном ионе будут стремиться сжаться из-за наличия избыточного положительного заряда остова. Если это так, то энергия иона должна быть меньше величины, полученной в наших расчетах в предположении, что МО как у ионов, так и у нейтральных молекул строятся из АО одного и того же размера. Это в свою очередь приводило бы к завышенным значениям расчетных потенциалов ионизации. Если для различных ионов эти разности будут приблизительно одинаковыми (что является достаточно, разумным предположением), то они могли бы компенсироваться соответствующим изменением величины, которую мы принимаем для Wa. Точно так же МО отрицательных ионов должны быть более диффузными, чем в соответствующей нейтральной молекуле в таком случае наша методика переоценивала бы энергию связи в анионе, а значит, и сродство к электрону исходного углеводорода. Здесь это также можно было бы скомпенсировать, принимая для W несколько меньшее значение. [c.350]


Смотреть страницы где упоминается термин Положительные ионы, теплоты образования: [c.171]    [c.487]    [c.69]    [c.55]    [c.174]    [c.119]    [c.132]    [c.220]    [c.306]    [c.171]    [c.326]    [c.70]    [c.196]    [c.513]   
Ионы и ионные пары в органических реакциях (1975) -- [ c.44 , c.45 , c.57 ]




ПОИСК





Смотрите так же термины и статьи:

Ионные образование

Ионов образование

Ионы образование

Ионы положительные

Теплота ионов

Теплота образования

Теплота образования ионных пар

Ток положительных ионов



© 2024 chem21.info Реклама на сайте