Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетические исследования и определение скорости реакции

    Попытки обоснования и применения этих методов, которые позволяют довольно точно рассчитывать значения констант скорости (равновесий) реакций приобрели наиболее широкое распространение во второй половине рассматриваемого периода (конец 40 — начало 50-х годов). Однако не во всех областях органической химии изучение структурно-кинетических закономерностей превра-ш,ений в явном виде стало основной задачей кинетики органических реакций в этот период. Так, при исследовании очень сложных многостадийных реакций поликонденсации протекающих в средах, где невозможно применять обычные кинетические методы определения скоростей реакций, необходимо было выработать общий подход к изучению этих процессов. [c.111]


    Комплексообразование карбамида с углеводородами протекает с разной скоростью. Изучению скорости комплексообразования посвящено много работ. Изучалась скорость вступления в комплекс углеводородов в зависимости от длины цепи и природы исходного сырья [за] исследовалась скорость реакции комплексообразования с точки зрения диффузионных явлений внутри кристалла карбамида, т-е. проникновения н-алканов в зоны неотработанного кристалла карбамида [34]. В работе [35] были продолжены исследования по определению скорости реакции комплексообразования. Были изучены непрерывные кинетические кривые, полученные при образовании комплекса карбамида с н-алканами от до и с другими комплексообразующими углеводородами, находящимися в дизельных фракциях некоторых нефтей. Изучали последовательность вступления в комплекс и скорость реакции комплексообразования исследуемых продуктов, степень извлечения их от потенциала в зависимости от температуры и длительности реакции. Физико-хи ,ические свойства исследуемых дизельных фракций сун-женской, усть-балыкской и грозненской нефтей приведены в табл. 2.2. [c.41]

    Химическая кинетика. В задачи кинетики входят определение скорости реакции в гомогенной и гетерогенной среде, исследование зависимости скорости от концентрации реагирующих веществ, температуры, давления, а также влияния излучения и катализаторов. Особенно важную роль в жизнедеятельности организмов играют биологические катализаторы белковой природы (ферменты), присутствующие во всех без исключения живых клетках и обеспечивающие протекание почти всех биохимических реакций в любом организме. Конечной целью кинетических исследований является установление механизма изучаемой реакции. [c.6]

    Современное состояние квантовой химии и возможности вычислительной техники предопределили два подхода к теоретическому исследо ванию реакционной способности. Как видно из предыдущей главы, первый из их, связанный с расчетом потенциальных поверхностей и энергии активации, применим лишь к реакциям относительно небольших молекулярных систем преимущественно в газовой фазе. Однако повседневная химическая практика требует рассмотрения значительно более сложных реакций, причем проходящих, в основном, в растворах. Именно эта практическая необходимость и привела к появлению так называемого метода индексов реакционной способности. Существует определенная аналогия между расчетами потенциальных поверхностей и методом индексов реакционной способности, с одной стороны, и строгими кинетическими исследованиями простейших газофазных реакций с определением абсолютных констант скоростей отдельных элементарных стадий и относительными исследованиями реакционной способности, использующими различные корреляционные соотношения, принятые в органической химии — с другой стороны. Эта аналогия еще более углубляется, если учесть то обстоятельство, что в основе как метода индексов реакционной способности, так и корреляционных уравнений органической химии лежит чисто эмпирический принцип линейности свободных энергий. Этот принцип является отражением качественного правила, на котором с самого начала основывалась органическая химия подобные вещества реагируют сходно, а сходные изменения в строении приводят к сходным изменениям в реакционной способности. Он устанавливает линейную связь между изменениями свободных энергий активации л свободными энергиями, определяю- [c.206]


    Обычно опыты в микрореакторе проводят так же, как и в интегральном проточном реакторе. Температуру, давление и размер импульса поддерживают постоянными и, изменяя скорость подачи газа-посителя, получают зависимость степени превращения от времени. Для определения скорости реакции можпо использовать уравнения (9) и (10), если в них вместо скорости подачи реагента подставить скорость подачи газа-носителя. Изменения величины импульса изменяют амплитуду и протяженность концентрационного профиля, но не влияют на время каталитической реакции. Хроматографическая колонка должна быть прокалибрована для каждой из используемых скоростей газа-посителя. Часто падение давления в колонке бывает таким большим, что при изменении скорости потока происходит изменение давления. Этого можпо избежать, используя аналитическую колонку с небольшим перепадом давления или поставив регулятор давления перед колонкой и поддерживая в реакторе давление постоянное и немного большее, чем в колонке. Часто поток газа-носителя поддерживают постоянным и изменяют температуру катализатора. Этот метод прост и вполне приемлем для предварительных измерений, по его нельзя рекомендовать для серьезных кинетических исследований. [c.20]

    Относительная эффективность антиоксидантов. Для экспериментальной оценки эффективности ингибиторов окисления принципиально могут быть использованы следующие два метода кинетические измерения и определение продолжительности периода индукции. Цель кинетических исследований — определение в относительных единицах константы скорости элементарной реакции (19). Для этого измеряют скорость поглощения кислорода в неразветвленном окислительном процессе соответственно в присутствии Ra и в отсутствие антиоксиданта. Ra и связаны между собой следующей зависимостью, которая легко получается из сопоставления выражений для скоростей соответствующих процессов [уравнения (IV) и (XIV)]  [c.99]

    Б. Кинетические исследования и определение скорости реакции [c.516]

    Как показано в разделе 1.6, уравнения квазистационарности для промежуточных веществ могут быть представлены в виде некоторого многочлена (кинетического полинома) относительно скорости реакции. Корнями этого многочлена и будут стационарные значения скорости. Степень кинетического полинома однозначно соответствует степени исходной системы уравнений и определяется нелинейностью принятой схемы превращений. Ясно, что если кинетический полином имеет несколько корней, то некоторые из них будут отвечать стационарным состояниям (ст. с.), имеющим физический смысл. При этом знания значений стационарной скорости зачастую бывает достаточным, так как именно эта характеристика (а не концентрации промежуточных веществ) измеряема в реальном эксперименте. Поэтому с нахождением корней кинетического полинома в определенной степени может быть решена и проблема исследования множественности ст. с., рассмотренная выше в разделах 1.4, 1.5. [c.154]

    Дайте определение химической кинетики. 2. Перечислите основные факты из истории химической кинетики. 3. Каковы современные представления о механизмах химических реакций 4. Какие виды химических реакций вы знаете 5. Напишите уравнение Вант-Гоффа. 6. Приведите примеры простых и сложных реакций. 7. Дайте определение биокинетики. 8. Что общего и различного между биологической и химической кинетикой 9. Что такое кинетический эксперимент 10. Какие основные цели кинетического эксперимента 11. Дайте определение основных параметров кинетического эксперимента. 12. Какой наиважнейший параметр кинетического эксперимента вы знаете 13. От каких факторов зависит выбор метода исследования 14. Перечислите основные виды и участки кинетических кривых. 15. Для каких целей используются интегральные и дифференциальные кривые 16. Дайте определение скорости реакции. 17. Дайте определение константы скорости и порядка реакции. 18. Реакция образования сульфида кальция описывается уравнением Са + 5 -> Са5. Каков порядок данной реакции 19. Каковы размерности скорости, константы скорости и порядка реакции 20. Чем отличаются понятия скорость реакции , начальная скорость реакции 21. Скорость реакции Л + ВС- В следующим образом зависит от концентраций реагирующих веществ  [c.25]

    Наряду с изменением скорости реакции, необходимо исследовать характер изменений, которые вносит сама реакция в состояние системы. Такого рода исследование проводится в главе, посвященной интегрированию кинетических уравнений при постоянной температуре там же описываются способы определения кинетических констант. Характерная черта, вносящая принципиальное различие между прикладной и чистой химической кинетикой, — это исследование взаимодействия химических и физических процессов. Этому вопросу посвящена глава VI, в которой проводится анализ различных стадий гетерогенно-каталитического процесса. [c.8]


    Если экснериментальные исследования кинетики показывают, что скорость реакции в кинетической области выражается уравнением первого порядка по газовой компоненте, то задачу расчета при определенных условиях можно упростить. Рассмотрим этот случай на примере гидрирования углеводорода (гептана) аналогично тому, как это описано в работе [И]. [c.190]

    По данным более поздних работ [141 оказалось, что такой механизм не позволяет объяснить результаты ряда экспериментальных исследований. Например, при малых конверсиях олефинов Се селективность образования диенов близка к нулю, в то время как по Воеводскому она составляет 40%. Таким образом, скорость реакции Воеводского мала. Данные кинетических измерений [151 указывают на необходимость учета вероятностей образования различных алкенильных радикалов, отщепления и, главным образом, прилипания легких радикалов по л-связи. Эти концепции с определенными упрощениями [16, 17] позволяют обеспечить удовлетворительное совпадение расчета и эксперимента. Аналогичный подход развит и в наших работах [9] и будет проиллюстрирован ниже. [c.240]

    Одной из главных задач экспериментального исследования химического процесса с целью количественного анализа является определение кинетических величин скорости реакции w, предэкспоненциального множителя ко, энергии активации Е, порядка реакции г или вида кинетического уравнения  [c.160]

    Задача исследования кинетики процесса состоит в определении зависимости скоростей образования ключевых веществ Г (или скоростей реакции) от концентраций реагентов и температуры. Кинетика становится известной, когда найдены такие функции г,-, что интегральные кривые уравнения (Х.1) достаточно мало отличаются от кривых изменения концентраций реагентов во времени (или по длине реактора), найденных экспериментально. Подробнее вопросы расшифровки экспериментальных кинетических данных изложены в главе XI. [c.408]

    Кинетические исследования реакций пиролиза определенных органических веществ предоставили удобную модель. При постоянной температуре скорость реакции уменьшается с течением времени вследствие постепенного исчерпания исходного вещества. В простейшем случае мономолекулярной реакции скорость уменьшается экспоненциально в зависимости от времени, будучи в каждый момент пропорциональной количеству исходного вещества. В других случаях, когда пиролиз осуществляется, например, посредством бимолекулярной реакции, скорость реакции зависит от концентрации реагирующих веществ и уменьшается в зависимости от времени согласно более сложному закону. Таким образом, при постоянной температуре состояние системы в ходе реакций определяется в каждый момент концентрацией реагирующих веществ и скорость реакции является функцией этой концентрации. Очень часто это — степенная функция, показатель степени которой может быть целым или дробным, и называется порядком реакции. [c.83]

    Подробно процедура динамического изучения реакции столкновения атом-двухатомная молекула методом классических траекторий изложена в работе [299] на примере расчета реакции обмена Н- -Н2, характеризующейся отличной от нуля энергией активации. В работе детально описан выбор системы координат, в которой происходит расчет классических траекторий. Выбор начальных условий для расчета траекторий организован так, чтобы в максимальной степени воспроизвести квантовые состояния реагентов. Приведены уравнения, устанавливающие связь между начальными и конечными квантовыми состояниями системы и классическими переменными. При исследовании динамики отдельных траекторий получается кинетическая информация различной степени детальности. На первом этапе определяется вероятность реакции и через нее полное сечение реакции как функции начальных состояний реагентов и конечных состояний продуктов. Затем вычисляется константа скорости реакции как интеграл от полного сечения реакции при определенном распределении начальных состояний реагентов. Для вычисления термической константы скорости используется максвелловское распределение по скоростям молекул и больцмановское распределение по внутренним состояниям. Очевидно, что такой подход может быть применен для вычисления констант скорости в нетермических условиях, т.е. при различных температурах, соответствующих различным степеням свободы, и при отклонениях от максвелл-больцмановского распределения. Это позволяет, в частности, моделировать методами классических траекторий неравновесную кинетику процессов в плазмохимических системах, газовых лазерах и в верхних слоях атмосферы. [c.57]

    При кинетических исследованиях химических реакций обычно возникает три типа задач. К задачам первого типа относится феноменологическое изучение зависимости скорости от концентраций реагентов и определение последних во времени. Такие задачи решаются методами, разработанными в формальной кинетике. Если скорость реакции (1.1) равна [c.16]

    При исследовании процессов горения технику в конечном итоге интересует определение суммарных кинетических характеристик процессов. Экспериментальное определение суммарных кинетических характеристик основано на измерении действующих концентраций реагирующих веществ с помощью газовых проб, механически забираемых из зоны реакции, и определении времени реакции путем непосредственных изменений. Такой метод неприемлем для процессов, происходящих во фронте пламени. Значительные погрешности прямых измерений объясняются тем, что зона реакции (фронт пламени) весьма мала и не превышает при нормальных условиях десятых долей миллиметра, а скорости реакции во фронте пламени на несколько порядков превышают скорости реакции даже в тех зонах, которые непосредственно прилегают к зоне реакции. [c.132]

    Непрерывное проведение химического процесса осуществляется при прохождении потока вещества через реактор. При установившемся процессе количество прореагировавших веществ на участке между началом и концом реактора представляет собой величину постоянную. Количество молей вещества, проходящих в единицу времени через любое сечен>1е реактора, не зависит от продолжительности работы установки. Кинетическому исследованию должен предшествовать термодинамический расчет константы равновесия реакции при данных условиях. Этот расчет необходим для правильного определения степеней превращения. Кинетическое исследование реакции в потоке должно установить связь между выходом продукта реакции, степенью превращения исходных веществ и объемной скоростью подачи исходных веществ в реактор, в котором осуществляется реакция. [c.448]

    Общие уравнения скорости гетерогенной реакции, выведенные с учетом изотерм, применимы для всех катализаторов. Для учета специфики процесса на заданном катализаторе требуется делать ряд дополнительных предположений. Прямые экспериментальные методы определения адсорбционных коэффициентов трудно выполнимы и поэтому необходимо определение порядка реакции по реагирующим веществам. Таким образом, применимость выведенных теоретических уравнений становится очевидной только после сопоставления их с экспериментальными данными. Кроме того, в кинетические уравнения вводятся равновесные поверхностные концентрации реагирующих веществ, отвечающие изотермам адсорбции, в то время как реакция осуществляется при некоторых стационарных концентрациях, устанавливающихся в ходе реакции. Как показало применение электрохимических методов при исследовании жидкофазных процессов гидрирования, реакции гидрирования очень часто протекают в условиях значительного заполнения поверхности катализатора водородом. Следовательно, только часть сорбированного водорода участвует в реакции и обусловливает наблюдаемую скорость реакции. [c.63]

    Для кинетических исследований радикалов и высокоэнергетических частиц фотохимическое инициирование реакции является часто наилучшим, поскольку позволяет не только надежно измерять скорость инициирования, но и проводить эксперименты при достаточно низкой температуре, избегая появления множества побочных реакций, что характерно при тепловом инициировании. Покажем на простом примере, как измерения квантового выхода можно использовать для определения механизма реакций и оценки констант скоростей. Для фотолиза смеси озона с кислородом излучением красной области спектра предполагается следующий механизм  [c.21]

    Инфракрасная спектрометрия может быть с успехом использована для исследования скоростей реакций. Важную роль, как и при всех кинетических измерениях, играет в этом случае скорость химического превращения. Скорость реакции должна быть мала в сравнении со скоростью записи определенного участка спектра. [c.50]

    Представления об энергетической неоднородности поверхности катализатора были использованы М. И. Темкиным при изучении кинетики многих каталитических реакций и особенно синтеза аммиака. Разработанная им теория объясняет наблюдаемые на опыте дробные порядки реакций. Для процесса синтеза аммиака М. И. Темкин вывел общепринятое в настоящее время кинетическое уравнение, при помощи которого можно объяснить результаты более ранних исследований, а также и поздних исследований, не получивших до этого определенного истолкования. М. И. Темкин установил, что при синтезе аммиака на железном катализаторе единственным адсорбирующимся газом является азот и скорость реакции определяется скоростью его адсорбции. При выводе уравнения было учтено, что активные центры отличаются своими энергетическими характеристиками и на разных активных центрах адсорбция идет с различной скоростью. Упомянутое выше уравнение для скорости синтеза аммиака, находящееся в прекрасном согласии с опытом, имеет вид  [c.278]

    Кинетика циклического процесса каталитического дегидрирования в стационарном слое катализатора исключительно сложна. Температура, а следовательно, и скорости реакции и равновесные степени превращения изменяются не только по высоте слоя катализатора, но и с увеличением продолжительности его работы. Дополнительно положение осложняется постепенным образованием кокса и периодической регенерацией катализатора. До сего времени еще не было опубликовано сколько-нибудь удовлетворительного исследования кинетики дегидрирования, хотя и проводятся исследования методов расчетного определения основных кинетических показателей [6]. [c.283]

    Объектом исследования химической кинетики является химический процесс превращения реагентов в продукты. Можно возразить, что химическая реакция является предметом исследования и ряда других химических дисциплин, таких как синтетическая и аналитическая химия, химическая термодинамика и технология. Следует отметить, что каждая из этих дисциплин изучает химическую реакцию в своем определенном ракурсе. В синтетической химии реакция рассматривается как способ получения разнообразных химических соединений. Аналитическая химия использует реакции для идентификации химических соединений. Химическая термодинамика изучает химическое равновесие как источник работы и тепла и т. д. Свой специфический подход к химической реакции имеет и кинетика. Она изучает химическое превращение как процесс, протекающий во времени по определенному механизму с характерными для него закономерностями. Это определение нуждается в расшифровке. Что именно в химическом процессе изучает кинетика Во-первых, реакцию как процесс, протекающий во времени, ее скорость, изменение скорости по мере развития процесса, взаимосвязь скорости реакции с концентрациями реагентов - все это характеризуется кинетическими параметрами. Во-вторых, влияние на скорость и другие кинетические параметры реакции условий ее проведения, таких как температура, фазовое состояние реагентов, давление, среда (растворитель), присутствие нейтральных ионов и т. д. Конечный результат таких исследований - количественные эмпирические соотношения между кинетическими характеристиками и условиями проведения реакции. В-третьих, в кинетике изучают способы управления химическим процессом с помощью катализаторов, инициаторов, промоторов, ингибиторов. В-четвертых, кинетика стремится раскрыть механизм хи- [c.15]

    Данная зависимость кинетической характеристики процесса от способа записи стехиометрического уравнения делает некорректным такое определение скорости реакции. Однако в химической технологии это оправдано. Во-первых, в задачу технологических расчетов входит определение изменения количества каждого компонента химической реакции. Соответственно, определяюшими параметрами являются н .. Во-вторых, в экспериментальных исследованиях кинетики реакции скорость преврашения контролируют по скорости преврашения одного из вешеств, т.е. опять по величине н .. Поэтому использовать строгое определение скорости реакции, которое приведено в учебниках о кинетике химических преврашений, в технологических расчетах неудобно. На практике, определяя величину скорости реакции, сначала записывают ее уравнение, а затем используют уравнение (3.55) или (3.56) для расчета скорости преврашения любого компонента. [c.75]

    Определение этих величин как функции, например концентрации мономера и скорости инициирования, и установление связи полученных результатов с теоретическими выражениями является основой для выяснения детального механизма полимеризации. Конечная цель кинетического исследования — определение абсолютных значений констант скоростей различных индивидуальных реакций и выражение их в виде уравнения Аррениуса, что позволяет рассчитать энергии активации и предъэкспоненциальные множители и связать эти величины с химической структурой реагирующих соединений. В настоящей главе рассмотрены принципы и экспериментальные особенности различных методов определения констант скоростей индивидуальных реакций. Численные результаты рассматриваются в гл. 3, в которой подробно обсуждается кинетика полимеризации отдельных мономеров. [c.45]

    На основании этих фактов большинство авторов упомянутых выше кинетических исследований считает, что реакция окисления SOj на ванадиевых контактах осуществляется по окислительно-восстановительному механизму. Однако даже наличие корреляции между скоростью реакции и подвижностью поверхностного кислорода катализатора еще вовсе не означает, что данный процесс идет по окислительно-восстановительному стадийному механизму. Это заключение было обосновано Ройтером [5021 и экспериментально подтверждено Боресковым с сотрудниками [12] при изучении реакции окисления СО на окислах. Значительный интерес представляла проверка справедливости этих представлений и в случае окисления SO2. С этой целью Боресков с сотрудниками [4911 сопоставили скорость восстановления сложного ванадиевого катализатора, скорость окисления восстановленной его формы и скорость катализа окисления SO2 на этом контакте, определенную проточно-циркуляционным методом [4921. При этом было экспериментально показано, что в области температур выше 420° С скорость окисления SO2 значительно превышает скорость восстановления катализатора. Поэтому авторы предположили, что в ходе окисления SO2 образующийся при взаимодействии VaOg с SO2 комплекс V2O5 SOg реагирует с SO2 и Og, давая SO3 и регенерируя активный компонент  [c.265]

    Катализ является кинетическим процессом. Большая часть каталитических исследований включает изучение кинетики процесса, т. е. количественное определение скорости реакции и факторов. влияюш,их па скорость. Катализатор увеличивает скорость реакции и (или) направляет реакцию по пути получения желаемого продукта. Ценность любого катализатора зависит от его поведения в изучаемой химической реакции, поэтому кинетические опыты важны и должны проводиться достаточно точно. Конечная цель кинетического исследования состоит в том, чтобы найти истинное кинетическое уравнение, описываюш ее опытные данные и согласующееся с имеющимися данными о механизме реакции. Бервел 231 определил механизм каталитической реакции как остающийся после устранения на основе любого вида информации других возмол ных механизмов . Тот же критерий можно применить и к основным кинетическим уравнениям. Однако, чтобы понять и использовать какой-либо каталитический процесс, часто достаточно найти подходящее эмпирическое кинетитеское уравнение. Как правило, одпи кинетические измерения для полного описания каталитического процесса недостаточны, так как при изучении кинетики реакции в первую очередь исследуются медленные стадии реакции. [c.7]

    Первые кинетические исследования некоторых каталитических реакций, таких, как гидролиз эфиров и инверсия сахара (Аррениус Оствальд, после 1890 г.), указали на существование соотношения между скоростью реакции и силой кислоты, примененной в качестве катализатора. В.соответствии с теорией электролитической диссоциации каталитическое действие кислот приписывалось исключительно водородным ионам, а в случае основного катализа — гидроксильным ионам раствора. Анионам кислот, соответственно катионам оснований, применяемым в качестве катализаторов, не приписывали никакого каталитического действия. Концентрацию водородных и гидроксильных ионов измеряли, как правило, методом электропроводности. Однако вскоре было замечено, что только в некоторых случаях и в определенных условиях скорость реакции является линейной функцией концентрации гидроксильных или водородных (т.е. гидроксониевых) ионов, измеренной кондуктометрическим путем. Главным образом в случае сильных кислот рост стехиометрической концентрации кислоты всегда обусловливает значительно большее увеличение скорости реакции, чем степени диссоциации , вычисленной из электропроводности раствора. Было также замечено, что прибавление нейтральных солей, т.е. солей, не являющихся кислыми илн основными и не обладающих общим с кислотами ионом, иногда значительно изменяет скорость реакции (солевые эффекты). [c.221]

    Определение чистоты веществ. Чистота исходных реагентов для кинетических исследований имеет большое значение. Особенно это относится к гетерогенно-каталитическим, радикальным и цепным реакциям, когда небольшие количества примесей могут резко изменить скорость процесса как путем инициирующего действия, так и путем ппгпбировапия реакции. [c.210]

    А. Определение зависимости скорости реакции от pH. С помощью спектротитрографа можно в ходе одного зксперимента получить зависимость скорости реакции от pH среды. Кинетика реакции при этом регистрируется по изменению оптической плотности, а с помощью титратора время от времени быстро меняется значение pH раствора. Комбинируя несколько блоков, можно одновременно поддержи1вать постоянными и pH, <я оптическую плотность, а также изучать зависимость pH от скорости реакции при постоянной оптической плотности. Простота конструкции и техники работы позволяет комбинированный метод спектрофотометрического и потенциометрического титрования широко использовать в кинетических исследованиях химических и биохимических реакций. [c.285]

    Метод отбора проб широко используется в кинетических исследованиях для измерения констант скоростей и их отношений. В первом случае определяются абсолютные значения эффективных констант скоростей расходования исходных реагентов и (или) накопления продуктов реакции. Применение хроматографии имеет здесь ряд преимуществ перед другими аналитическими методами. На базе хроматографии удается достичь иь1-сокой чувствительности, что позволяет работать на малых глубинах пpeвpaщ tlия. Относительно небольшой размер пробы дает возможность проводить реакции с микроколичествами реагентов. Существенным достоинством хроматографии является возможность одновременного определения больнюго количества компонентов реакционной смеси. Рассмотрим в качестве примера глубокое хлорирование этана. В этой реакции происходит следующая последовательность превращений  [c.371]

    Главное преимущество газовой хроматографип при исследовании кипе-тики заключается, песомненпо, в том, что появляется возможность дать кинетическую оценку на основе проведения полного анализа состава сложных реагирующих смесей. При этом особая ценность метода состоит в том, что при известных обстоятельствах можно проследить за изменением во времени концентраций всех участвующих реагентов, промежуточных и конечных продуктов. В данном случае значительно облегчается поиск сложных временных закономерностей и определение констант скоростей реакции. [c.469]

    Цвл в любых кинетических исследований, как известно, является установление количествеиной взаимосвязи между скоростями и аа-раметрами химического процесса (концентрациями реагентов, температурой, давлением в т.д.) в виде кинетических уравнений скоростей реакций, наилучшим образом (адекватно) описыващих процесс химического реагирования в широком диапазоне варьирования его параметров, а также экспериментальное определение численных значений кинетических констант (истинных или кажущихся) реакций с минимальной погрешностью. [c.18]

    Поставленные задачи решаются на основе современных методов исследования ферментов. Практическая направленность занятий связана с освоением различных методов регистрации скоростей ферментативных реакций, включающих использование сопряженных ферментных систем и метода радиоактивного анализа. С целью определения активности мембранных ферментов осваиваются техника получения различных субклеточных структур и приемы работы с различными типами детергентов. Проблемы структурного анализа ферментов решаются с привлечением методов избирательной химической модификации белков, флуоресцентных методов, а также методов ковалентной и адсорбционной иммобилизации на различных носителях, включая искусственные фосфолипидные мембраны (липосомы). Кроме того, осуществляется практическое знакомство с различными аспектами кинетического исследования ферментов осваиваются различные способы оценки кинетических параметров, ингибиторный анализ, проводится исслс- [c.329]

    Поэтому установление предельной толщины слоя, меньше которой реакция проходит в кинетической области, т. е. скорость ее определяется только скоростью реакции поликонденсации, имеет очень важное зачение. Было высказано предположение [49], что при толщине слоя расплава 0,5 мм исключается влияние диффузии на общую кинетику процесса, тогда как при использовании более толстых слоев наблюдается переход в диффузионную область. Эти выводы малочубедительны из-за недостаточно надежного определения порядка реакции и отсутствия данных для более тонких слоев. Процесс поликонденсации в гонких слоях полиэтилентерефталата был исследован Стевенсоном [50], Кэмпбеллом [51] и описан в ряде патентов [52]. Чефелин [53] использовал методику Маркеса поликонденсации в вакууме в запаянных вращающихся ампулах и динамометрический метод с применением весов Мак-Бена с кварцевой спиралью и показал, что только в пленке расплава толщиной 0,005—0,02 мм исключено влияние диффузии на скорость реакции и константа скорости возрастает при повышении степени полимеризации исходного полимера, концентрации катализатора и температуры. Он же привел данные [53] о том, что в области конверсии 95—98% при 280 °С и остаточном давлении 0,16 кПа (1,25 мм рт, ст.) выделение этиленгликоля протекает как реакция второго порядка с константой скорости К-= 1,30-10 г-мoль с" при концентрации ацетата сурьмы 0,092% (масс.). [c.69]

    Обратную реакцию — восстановление растворенного молекулярного кислорода — исследовали в работах [182, 183]. Скорость реакции очень низка, по всей вероятности, из-за слабой адсорбции на электроде промежуточных продуктов реактши. Предполагается, что реакция протекает на активных -местах (sp -углерод был в основном удален предварительной анодной поляризацией). В щелочной среде кинетические параметры реакции таковы а = 0,24, = 1 10 см с . Существештым моментом является то, что из-за высокого перенапряжения этой реакции растворенный кислород не может являться помехой при исследовании других катодных реакций на алмазных электродах даже в не продутых инертным газом растворах. Этим можно воспользоваться при некоторых аналитических определениях. Электрокатадиз кислородной реакции на дисперсном алмазе, промотированном порфирином Со и его пирополимером, исследовал в работе [184]. [c.62]

    Изящным примером завершенного кинетического исследования является работа Жуве и Чью [20] по метано-лизу диэтилацеталя. Концентрации диэтил ацеталя, ди-метилацеталя и промежуточного метилэтилацеталя можно определить методом газовой хроматографии. На рис. 4.4 показано, как изменяются со временем высоты пиков на хроматограмме при некоторых условиях опыта. Зная наклон двух любых кривых при данном времени, независимо определенные константы равновесия и калибровку хроматографа, можно вычислить все четыре удельные скорости в двухстадийной обратимой реакции. [c.92]


Смотреть страницы где упоминается термин Кинетические исследования и определение скорости реакции: [c.41]    [c.470]    [c.402]    [c.404]    [c.60]    [c.87]    [c.286]    [c.370]    [c.76]    [c.34]   
Смотреть главы в:

Фотохимия -> Кинетические исследования и определение скорости реакции




ПОИСК





Смотрите так же термины и статьи:

Кинетическое исследование реакци

Реакции кинетическая

Реакция исследование

Реакция определение



© 2025 chem21.info Реклама на сайте