Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азотистые ненасыщенных

    В конечном результате после ряда превращений из исходного животного материала получались насыщенные углеводороды метанового ряда, нафтены, олефины, терпены и другие ненасыщенные углеводороды, кислородные соединения (кислоты, кетоны, фенолы, асфальт и др.) и небольшое количество сернистых и азотистых соединений. Различия в условиях образования (изменение температуры, давления) приводили к изменению количественных соотношений составных частей, а это в свою очередь служило причиной возникновения различных нефтей. [c.313]


    Как видно из данных, приведенных в табл. 75, примерно 82— 96% всей серы остается в погонах, выкипающих выше 300 °С, и 69—81% в остатках, кипящих выше 400 °С. Содержание азотистых соединений в высококипящих фракциях нефтей также выше, чем в низкокипящих. Между тем в присутствии азотсодержащих соединений на всех обычных катализаторах гидроочистки скорости гидро-. генолиза сернистых соединений и гидрирования ненасыщенных связей уменьшается (см. стр. 295 сл.). [c.283]

    Так, увеличение степени сжатия в карбюраторных двигателях Вызвало ужесточение требований к детонационной стойкости бензинов (росту его октанового числа). Это стимулировало развитие процессов в нефтеперерабатывающей промышленности, целенаправленных на повышение октановых чисел авиационных и автомобильных бензинов — вначале термического, а затем и каталитического риформинга, полимеризации, алкилирования, изомеризации и др. Развитие и техническое совершенствование этих процессов органически связаны с ростом требований к октановой характеристике бензинов. Надежность и долговечность карбюраторных, дизельных и реактивных двигателей в значительной мере зависят от наличия в составе топлив сернистых, азотистых и других гетероатомных природных соединений. Для удаления этих соединений были разработаны и получили широкое распространение процессы гидроочистки топливных фракций — бензиновых, керосиновых, дизельных. В результате гидрооблагораживания снижается содержание гетероатомных соединений и ненасыщенных углеводородов, что повышает химическую и термическую стабильность топлив, надежность и ресурс работы двигателя. [c.42]

    В нефтяной промышленности давно очищают дистиллятные фракции методом сульфирования некоторых компонентов концентрированной серной кислотой (см. гл. IV). При этом получают неутилизируемый отход — кислый гудрон. Он состоит из не вступившей в реакцию серной кислоты, продуктов сульфирования, окисления, уплотнения ненасыщенных и значительной части ароматических углеводородов, сернистых, кислородных и азотистых соединений. В растворе кислого гудрона сохраняются без изменения химического строения лишь небольшие количества содержавшихся,во фракциях наиболее стабильных сернистых, кислородных и азотистых соединений. [c.130]

    Некоторые первичные амины ведут себя аномально по отношению к азотистой кислоте, образуя не спирты, а ненасыщенные углеводороды. Это, например, происходит [c.165]


    Бензол и ряд его гомологов, а затем и большая группа других соединений вскоре после их открытия были выделены в группу ароматических соединений, так как обладали особыми, ароматическими свойствами. Вопрос о причинах этих свойств почти со времени создания Бутлеровым теории химического строения — один из важнейших в теоретической органической химии. Главное затруднение было в том, что формула бензола указывает на высокую ненасыщенность, которая не обнаруживается в реакционной способности этого соединения. Бензол не обесцвечивает бромную воду, не окисляется раствором перманганата, не присоединяет серную кислоту. Лишь в особых и достаточно жестких условиях можно провести реакцию между бензолом и бромом, серной или азотной кислотой, причем в результате этих реакций происходит замещение атомов водорода, а не присоединение, характерное для олефинов. Другая особенность, отличающая ароматические соединения от олефинов,— их высокая устойчивость, способность образоваться даже в жестких пиролитических процессах и сравнительная трудность протекания реакций окисления. Наконец, весьма характерными являются свойства некоторых производных ароматических соединений. Так, ароматические амины менее основны, чем алифатические. При реакции с азотистой кислотой [c.12]

    Самоконденсация аниона идет лишь в малой степени. Реакция с карбонильной группой других альдегидов или кетоиов ведет к образованию азотистых аналогов альдолей. Перегонкой с водяным паром в присутствии щавелевой кислоты их можио превратить в а,Р-ненасыщенные альдегиды  [c.142]

    Взаимодействие циклических ненасыщенных соединений с азотисто- [c.309]

    Суммируя роль аминокислот как предшественников различных биомолекул, назовем следующие соединения, образующиеся из аминокислот белки, пептиды, биогенные амины, гормоны, антибиотики, кето-, гидрокси- и ненасыщенные кислоты, насыщенные карбоновые кислоты, азотистые основания, гетероциклические соединения. [c.16]

    При взаимодействии азотноватого ангидрида или азотистого ангидрида с ненасыщенными углеводородами обычно образуются соединения, аналогичные нитрозохлоридам. Азотноватый. ангидрид присоединяется к ненасыщенным соединениям с образованием нитрозатов (I), а азотистый ангидрид образует нитро-зиты (II) [c.39]

    Полученные фракции обезвоживают, промывая их 50%-ной серной кислотой, а затем с помощью 92%)-ной серной кислоты удаляют из них ненасыщенные углеводороды, сернистые, азотистые и кислородсодержащие соединения. [c.47]

    Г идрогенизация ненасыщенных жирных масел при 200— 400° Двойной хромат, содержащий азотистое соединение, например аммиак, анилин, метиламин или пиридин и гидрогенизующий металл, например железо, никель, кобальт, медь, олово 859 [c.300]

    Очистка серной кислотой применяется для удаления ряда ненасыщенных углеводородов, смолистых, азотистых и сернистых-создинений. Очистка щелочью используется для удаления кислородных соединений, сероводорода, меркаптанов, а также для удаления серной кислоты и продуктов ее взаимодействия с углеводорб-дa ш. [c.10]

    Иодшле числа выделенных концентратов азотистых соединений указывают на наличие в них небольшого количества молекул с ненасыщенными связями. Плотность, молекулярный вес, коэффициент рефракции у азотистых концентратов выше, чем у исходных фракций смол, из которых выделены азотистые концентраты, После разделения извлеченных азотистых соединений на более узкие фрактщи проводилось качественное определение различных азотистых соединений цветными реакциями по Вер-тетти [98, 99]. [c.70]

    Паивысшей активностью обладают сернистые, кислородсодержапще и азотистые примеси, так как они содержат активные элементы серу, кислород и азот. Затем идут асфальты и смолообразные продукты, которые всегда обладают ненасыщенным характером. Они содержат кислород, иногда серу и принадлежат к минеральным маслам с высоким) молекулярны м весом. [c.213]

    При Д. И. Менделееве вопрос получения углеводородов путем каталитического синтеза не был разработан в-достаточной степёди. С особой показательностью он выступает в вышеупомянутых опытах Сабатье, где роль катализаторов играет никель. В носдед-нее время исследования Бергиуса показали, что гидрогенизация непредельных соединений может происходить и без наличия катализаторов, но при высоком давлении и температуре в 200— 300° С. Опыты В.. Н. Ипатьева также показали, что в случае высокого давления и- присутствия окислов металлов возможны реакции полимеризации ацетилена и его ближайших гомологов и образование ароматических углеводородов, которые при последу-юш,ей. гидрогенизации дают нафтены. Другимп исследователями произведен ряд опытов по полимеризации и гидрогенизации разного рода ненасыщенных углеводородов, в результате которых получались углеводороды аро. штического и нафтенового рядов. Одним словом, при действии воды на карбиды и в результате последующих реакций полимеризации и гидрогенизации, при наличии катализатора, пли высокого давления и температуры могла возникнуть сложная смесь углеводородов, являющихся главнейшей составной частью современных нефтей. Допуская же существование в земных недрах не только карбидных, но и карбонильных соединений железа, никеля и других тяжелых металлов, а также нитридов металлов, п принимая во внимание наличие в земной коре сульфидов, можно вполне объяснить присутствие в нефти азотистых, сернистых соединений, водорода и окиси углерода, т. е. всех второстепенных компонентов современных нефтей и все разнообразие пх. [c.304]


    Каждый из найденных в нефти типов азотистых оснований включает несколько групп, различающихся по степени водородной ненасыщенности и принадлежащих к той или иной изобарной серии nHjn—zN. С помощью низковольтной масс-спектрометрии установлено присутствие в нефти серий с г = 5—27. Помимо алкилпиридинов (z = 5), алкилхинолипов (z = 11) и высших алкплбензологов, среди оснований распространены соединения, содержащие в молекуле, но крайней мере, одно нафтеновое кольцо [20—22, 306, 524]. Примеры таких анализов приведены в табл. 4.5. [c.127]

    Для удовлетворения возрастающей потребности в ДТ все большее внимание уделяется использованию дистиллятных фракций вторичных процессов в составе дизельных топлив. Только процесс гидрокрекинга вакуумного дистиллята позволяет получать продукты, стабильные при хранении и в условиях применения. Это связано с отсутствием в них ненасыщенных углеводородов, а также заметного количества гете-роатомных соединений. Дистилляты остальных процессов, прежде всего термических и особенно замедленного коксования, обогащены ненасыщенными углеводородами, включая диолефины и дициклоолефины, а также содержат значительное количество сернистых, азотистых и кислородсодержащих соединений (табл. 1.7). [c.24]

    Прп разделении газов крекинга и пиролиза нефтепродуктов, являюп.ихся основным сырьем для промышленности органического сштеза, значительную опасность представляет оксид азота. При высоких давлениях и низких температурах оксид азота превра1 ается в диоксид и азотистый ангидрид. Последний, реагируя ненасыщенными углеводородами и особенно с диолефи-нами, образует смолообразные нитросоедннения, которые могут бурно разлагаться в теплообмепной аппаратуре, вызывая возрастание давления и возможное разрушение аппаратуры. Кроме гого, азотистые соединения отравляют некоторые катализаторы, В связи с этим в ряде случаев газы очищают гидрированием азотистых примесей. [c.233]

    Химическая стабильность. Химическая стабильность дизельного топлива — способность противостоять окислительным процессам, протекающим при хранении. Эта проблема возникла с углублением переработки нефти и вовлечением в состав товарного дизельного топлива среднедистиллятных фракций вторичной переработки нефти, таких, как легкого газойля каталитического крекинга, висбрекинга, коксования. Последние обогащены ненасыщенными углеводородами, включая диолефины и дициклоолефины, а также содержат значительное количество сернистых, азотистых и смолистых соединений. Наличие гетероатомных соединений, особенно в сочетании с ненасыщенными углеводородами, способствует их окислительной полимеризации и поликонденсации, тем самым влияя на образование смол и осадков. Самыми сильными промоторами смоло- и осадкообразования являются азотистые и сернистые соединения. [c.93]

    Гидрокрекинг - каталитически процесс гидрирующего креюш-га, позволяющий превращать тяжелые нефтяные фракции в более легкие продукты с одновременной очисткой от сернистых, азотистых, кислородсодержащих, металлоорганических и ненасыщенных соединений. По сравнению с каталитическим крекшп ом гидрок-рекинг проводится при более высоких давлениях водорода (100...170 атм) и умеренной температуре (360...430 °С) в присутствии бифункциональных ката- [c.24]

    Изменение свойств коррозионной среды пригодно для случаев, когда защищаемое изделие эксплуатируется в ограниченном объеме жидкости. Метод состоит в удалении из раствора, в котором эксплуатируется защищаемая деталь, растворенного кислорода (деаэрация) или в добавлении к этому раствору веществ, замедляющих коррозию, — ингибиторов. В зависимости от вида коррозии, природы металла и раствора применяются различные ингибиторы. При атмосферной коррозии применяют хорошо адсорбирующиеся на металле вещества мо-ноэтаноламин, карбонат аммония, уротропин, нитрит натрия. Для нейтральной коррозионной среды и растворов солей в качестве ингибиторов используют неорганические соли хромовых кислот, фосфорной, кремниевой, азотной и азотистой кислот. В кислых средах используют органические ингибиторы, содержащие атомы азота, серы, фосфора, кислорода и группировки атомов с ненасыщенными связями. Защитное действие ингибиторов обусловлено тем, что их молекулы или ионы адсорбируются на поверхности металла и каталитически снижают скорость коррозии, а некоторые из них (например, хроматы и дихроматы) переводят металл в пассивное состояние. [c.693]

    Пиролиз ацилазидов с образованием изоцианатов называется перегруппировкой Курциуса [218]. Эта реакция дает высокие выходы изоцианатов, которые не гидролизуются в амины из-за отсутствия воды. Конечно, они могут быть гидролизованы, и действительно, если реакцию проводить в воде или спирте, образуются амины, карбаматы или ациломочевины, как в реакции 18-16 [219]. Реакция носит общий характер она применима к любым карбоновым кислотам алифатическим, ароматическим, алициклическим, гетероциклическим, ненасыщенным и содержащим функциональные группы. Ацилазиды можно получить по реакции 10-63 (т. 2) или обработкой ацилгидразинов (гидразидов) азотистой кислотой (аналогично реакции 12-49, т. 2). Перегруппировка Курциуса катализируется кислотами Льюиса и протонными кислотами, но хорошие результаты получены и в отсутствие катализа. [c.157]

    Хиноны способны присоединять ненасыщенные азотистые соединения типа диазоалкаиов и арилазидов. При реакции диазометана с а-нафтохиноном образуется производное гидрохинона (растворимое в щелочи), которое при перекристаллизации окисляется кислородО(М воздуха до соответствующего хинона (М. Физер, 1931)  [c.427]

    Ненасыщенные (неареновые) гетероциклы. Появление иесоиря кеи-пой двойной связи слабо влияет на га -> а поглощение азотистых гетероциклов (табл. 81 и соединение 1 в табл. 82). Однако гетероатом в подобных несопряженных ненасыщенных соединениях может оказывать более сильное влияние на я —я поглощение ненасыщенного хромофора, особенно полярного. [c.138]

    Весьма вероятной схемой превращения высших сернистых соединений па окисных катализаторах является деструкция связи С—8 с образованием сульфида металла и ненасыщенного бпрадпкала, который присоединяет водород и превращается в насыщенный углеводород [2, с. 40]. Если водорода недостаточно или если скорость гидрирования снижена присутствием азотистых либо других блокирующих веществ (в том числе металлов), такой высокореакциопно-сиособпый бирадикал сможет вступать в реакции конденсации, давая начало коксообразованию. [c.42]

    Ненасыщенные кислоты. Получение азидов кислот, содержащих двойные связи, по способу с азидом натрия ограничено, повидимому, только доступностью хлорангидрида кислоты. В качестве примеров азидов а, -непредельных кислот, полученных по этому способу, могут служить азиды кротоновой [18], коричной [18, 19] и метакриловой [20] кислот. Получение азидов через гидразиды часто осложняется побочными реакциями. Эфиры олеиновой и элаидиновой кислот при обычных условиях превращаются в гидразиды с хорошим выходом, но при более жестких условиях происходит восстановление ненасыщенного гидразида до гидразида стеариновой кислоты [21]. Превращение гидразидов а, -непредельных кислот в азиды часто оказывается невозможным вследствие циклизации прн обработке азотистой кислотой. Например, при взаимодействии гидразида коричной кислоты с азотистой кислотой образуется 1-нитрозо-5-фенил-3-пиразолидон [22]  [c.325]

    Ненасыщенные циклические лактамы, изоцианаты Насыщенные азотистые гетероциклические соединения, алкилнергидротриазины, алкилпиразолы, этиленимины Алканы [c.247]

    Реакции 2,3-дифенилтиирендиоксида-1,1 (15) определяются, главным образом, промежуточным образованием стабилизирован ного аниона (16), получающегося путем присоединения относитель но мягких нуклеофилов к а,р-ненасыщенной системе сульфона При действии на (16) жесткого электрофила (протона) образую щийся тиирандиоксид-1,1 отщепляет молекулу диоксида серы Атака азотистых нуклеофилов — гидроксиламина и диметилами на — направляется по атому углерода, причем образуются оксим [c.295]

    Сфингомиелины. Это наиболее распространенные сфинголипиды. В основном они находятся в мембранах животных и растительных клеток. Особенно богата ими нервная ткань. Сфингомиелины обнаружены также в ткани почек, печени и других органов. При гидролизе сфингомиелины образуют одну молекулу жирной кислоты, одну молекулу двухатомного ненасыщенного спирта сфингозина, одну молекулу азотистого основания (чаще это холин) и одну молекулу фосфорной кислоты. Общую формулу сфингомиелинов можно представить так  [c.198]

    Один из последних патентов для дегидратащга ненасыщенного спирта в изопрен пред.чагает применять соль ароматического азотистого основания и сильной кислоты, например соль анилина и бромистоводородной кислоты или.анилина и бензолсульфокислоты [18]. Другими веществами, дегидратирующими ненасыщенные спирты, являются безводный сульфат магния [19], оксалилсульфат или кислый сернокислый калий [20]. [c.114]

    Петерс и его сотрудники [1459] описали процесс, используемый для производства нитрила метакриловой кислоты. Он состоит в пропускании металлиламина, воздуха и водного пара над катализатором (окисью серебра) при 450 — 600°. Продукт реакции слабо подкисляют и собирают нитрил и другие летучие соединения. Отогнанный таким образом нитрил метакриловой кислоты достаточно чист (приблизительно 96%-ной чистоты) он содержит около 2% других нитрилов. Дальнейшая очистка может быть осуществлена фракционированной перегонкой. Подкисление продукта реакции имеет важное значение, поскольку в отсутствие кислоты, образующийся в качестве побочного продукта аммиак и не ВСТУПИВШИЙ в реакцию амин довольно быстро взаимодействуют с ненасыщенными нитрилами с образованием высококипя-щих азотистых оснований. [c.424]

    Среди азотистых соединений особняком стоит синильная кислота и ее группа. Сама синильная кислота является смесью двух таутомер-ных форм Н-С = Ы и Н-Ы = С, из которых вторая, более ненасыщенная, содержащая двухвалентный углерод, и проявляет себя в действии на организм. Действие синильной кислоты сходно поэтому с действием других соединений, содержащих двухвалентный углерод, и заключается в специфическом влиянии на дыхательный центр (аналогично галоидным ацетиленам) и в образовании циан-гемоглобина (аналогия с окисью углерода). Эти специфические свойства двухатомного углерода резко выражены и в изонитрилах, Н-Ы С, и в галоидных цианах СКС1, СЫВг и СШ. Последние, вследствие присутствия галоида, одновременно являются лакриматорами. Наоборот, нитрилы, формулы К-СГ , менее токсичны и действуют на организм по иному, вызывая кому (сноподобное состояние). К соединениям этого типа неприменимо правило Ричардсона, но увеличение ненасыщенности и здесь увеличивает токсичность. [c.26]

    Нормальная жизнедеятельность организма может нарушаться при избытке в крови самых разнообразных продуктов обмена азотистых и других шлаков (креати-нин, мочевая кислота, гуанидиновые основания, полиамины, фенол, индол, меркаптаны и др.), нейромедиаторов (адреналин, норадреналин, серотонин, ацетил-холин), аминокислот, полипептидов средней молекулярной массы, включая полипептидные гормоны, триглицериды, насыщенные и ненасыщенные жирные кислоты, кетокислоты, сахара и продукты их метаболизма, компоненты желчи и др. Сорбционное удаление избытка этих веществ из крови больных в большинстве случаев ведет к улучшению их состояния, а иногда и к полному выздоровлению. [c.564]

    Реактивные топлива, полученные из нефтяного сырья, являются чрезвычайно сложной смесью углеводородов. В их состав в том или ином количестве входят также кислородные, сернистые и азотистые соединения. Кроме этого в реактивных топливах содержатся твердые микрозагрязнения и растворимые элементор-гапические соединения. Химический состав реактивных топлив зависит от их фракционного состава, характера перерабатываемого сырья, способа получения и очистки [15]. На ряд важнейших эксплуатационных свойств реактивных топлив их химический состав оказывает решающее влияние. Поэтому химический состав реактивных топлив в настоящее время ограничивается нормами технических требований по содержанию ароматических и ненасыщенных углеводородов, количеству сернистых соединений, особенно меркаптанов, содержанию смол и кислот, а также соединений с зольными элементами. И все же современные реактивные топлива обычно отличаются по химическому составу. [c.12]

    Элементарный состав СМВ показывает, что основное количество серы, удаляемой из дистиллята при очистке, приходится на полициклоароматические углеводороды и смолы. Этим и подтверждается мнение Н. И. Черножукова [81, что обессеривающее действие серной кислоты следует отнести за счет ее селективных свойств. Действительно, в данном случае при невысокой температуре очистки химическое взаимодействие серной кислоты с групповыми компонентами масел, как уже упоминалось, небольшое. Значительное содержание кислорода и азота в СМВ объясняется наличием большого количества смол и некоторых количеств азотистых оснований. Эмпирическая формула СМВ показывает, что средняя молекула их состоит из 28 атомов углерода и является в высокой степени ненасыщенной, а это объясняется наличием ароматических структур. [c.38]

    По данным Ретайлиу [21] парофазный крекинг-бензин можно обрабатывать, во избежание чрезмерных потерь при очистке, вначале разбавленной серной кислотой. После промывки щелочью бензин очищается 30% серной кислотой в количестве около 4 кг на 1 м . Эта слабая кислота удаляет азотистые основания, содержащиеся в бензине. Во второй стадии крекинг-дестиллат очищается 8,5—45 кг серной кислоты концентрацией не выше 90%, предпочтительно 75%. В этой стадии очистки температура поддерживается между 50 и 80° С потому, что скорость реакции между разбавленной серной кислотой и ненасыщенными углеводородами очень мала при более низких температурах. По имеющимся данным конечный продукт удовлетворителен в отношении цвета и стабильности. [c.359]

    В данном, докладе обсуждаются результаты лабораторных исследований олигомеризационного облагораживания бензинов коксования, термического крекинга и термического риформинга в соответствии со способом по а.с.1174462 (СССР). В процессе облагораживания бензинов происходит удаление из них части ненасыщенных смолообразующих углеводородов,сернистых и азотистых соединений и,соответственно, повышается их химическая стабильность. Эксперименты проводились на фосфорнокизельгуровом катализаторе в проточном реакторе со стационарным слоем. Режим очистки давление [c.86]

    Тепловой эффект реакции при гидрогенизации уменьшается по мере снижения содержания в сырье кислородных, азотистых сернистых соединений и ненасыщенных соединений. Содержа ние пыли в исходной смоле не должно быть выше 0,1%. Повы шенное содержание пыли снижает активность катализатора а кроме того, повышает содержание твердых веществ в шламе Присутствие воды нарушает нормальный температурный режим блока. [c.238]

    В книге рассматриваются методы проведения каталитических, фотохимических и электролитических реакций органических сое-динеии11. Она состоит соответственно из трех глав. В гл. I дано описание аппаратуры для проведения каталитических реакции, путей ее применения, изложены методы приготовления катализаторов, а также методические особенности проведения каталитических реакций гидрирования, дегидрирования, изомеризации, полимеризации, конденсации, алкилироваиия и др. В гл. II рассматриваются фотссенсибнлизированные окисление и восстановление, реакции, протекающие с участием кетонов, альдегидов, азотистых соединений и соединений с ненасыщенными связями, а также молекулярные перегруппировки, цепные реакции и т. д. Описана применяемая в фотохимии аппаратура и, в частности, источники излучения. В гл. III даны сведения по электролитическим реакциям с большим числом примеров их осуществления в тщательно составленных таблицах систематизирован обширный материал с указанием выходов. [c.4]


Смотреть страницы где упоминается термин Азотистые ненасыщенных: [c.138]    [c.95]    [c.325]    [c.420]    [c.366]    [c.147]    [c.347]    [c.147]    [c.347]    [c.162]    [c.210]   
Органические синтезы через карбонилы металлов (1970) -- [ c.327 , c.330 ]




ПОИСК





Смотрите так же термины и статьи:

Азотистые соединения амидов и имидов ненасыщенных

Соединения азотистые ненасыщенные



© 2025 chem21.info Реклама на сайте