Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комбинационного рассеяния спектры, метод количественный

    Как выше было отмечено, к настоящему времени разработаны два спектральных аналитических метода — метод спектров комбинационного рассеяния и метод инфракрасной спектроскопии, позволяющих вести количественный анализ индивидуального, состава нафтено-парафиновой части до тем- [c.433]

    В этой главе рассматривается не столько сам метод, сколько его применение к решению проблем химии нефти. Это относится к применению инфракрасной спектроскопии и спектров комбинационного рассеяния для изучения химического строения углеводородов и углеводородных смесей. Несмотря на то значение, которое имеет качественный и количественный анализы индивидуальных соединений, основное внимание уделяется характеристическим частотам, наблюдаемым в спектрах веществ с определенной молекулярной структурой. Оценивается возможность количественного определения содержания углеводородов данного типа или данных структурных групп. В главе обсуждаются лишь основные вопросы спектроскопии комбинационного рассеяния света и инфракрасной спектроскопии, а вопросы, относящиеся к рассмотрению природы колебательных спектров или интерпретации колебательных частот, рассматриваются лишь частично. [c.313]


    Фракцию А с температурой кипения 50—150° разделяют методом хроматографической адсорбции на силикагеле на две части ароматическую Б и парафино-нафтеновую В. Ароматическую часть разгоняют на колонке, причем бензол и толуол выделяются в индивидуальном состоянии, а ксилолы и этилбензол — в виде смеси, количественный состав которой определяют при помощи спектров комбинационного рассеяния света. [c.504]

    Для расшифровки состава природных органических соединений нефти и нефтепродуктов и характеристики их свойств применяются оптические методы. Сюда относятся инфракрасная и ультрафиолетовая спектрометрия, метод комбинационного рассеяния света, определения показателя преломления и оптической активности. Вещество, через которое проходит излучение, поглощает лучи только определенной длины волны (частоты), и по закону Кирхгофа само вещество излучает только те лучи, которые оно в данных условиях поглощает. Каждый ион, атом, молекула дают характерные частоты в спектре поглощения, спектре испускания и спектре комбинационного рассеяния. Задачей спектрального анализа является определение этих характеристических частот, зная которые, можно определить качественный состав углеводородной смеси. Для этого существуют таблицы характеристических частот индивидуальных углеводородов. Для количественного анализа еще необходима оценка интенсивности излучения. [c.228]

    В некоторых случаях другие методы могут оказаться более экспрессными или более чувствительными. Например, ядерный магнитный резонанс (ЯМР) зачастую дает больше информации о строении молекул некоторых классов растворимых органических веществ без спектров сравнения или стандартов. Стандарты менее важны также в масс-спектрометрии, где объем исследуемого образца может быть и меньше, но вещество должно быть летучим, однако область применения метода порой уже, чем в случае ИК-спектроскопии. Газовая хроматография, масс-спектрометрия и ультрафиолетовая (УФ) спектроскопия имеют превосходную чувствительность к следовым количествам (естественно, в пределах их чувствительности). Кроме того, для некоторых веществ эти три метода способны давать и превосходные количественные результаты. Спектроскопия комбинационного рассеяния (КР) света может быть использована в аналитических целях аналогично ИК-спектроскопии, но чаще как дополняющий, а не конкурирующий метод [6]. Таким образом, ясно, что аналитик должен сознавать возможности и ограничения всех доступных методов. [c.13]


    В дополнение к определениям температуры пара и показателя преломления, которые обычно применяются для того, чтобы следить за течением разгонки и как средство интерпретации результатов разгонки, применяются также исследования других физических свойств, которые позволяют получить более полную картину исследуемой смеси. Так, иногда определяются плотности, вязкости, вращение плоскости поляризации света и температуры плавления. Обычно эти методы применяются лишь тогда, когда показатель преломления или точки кипения или обе величины вместе не дают точного ответа. Исследование вращения поляризованного света применяется к таким природным продуктам, как терпены и их производные. Температуры плавления и застывания имеют более широкое применение, в частности как критерий чистоты. Применение температур плавления получило значительное распространение в недавних исследованиях углеводородов, плавящихся при низких температурах [157]. Методы таких физических измерений могут быть найдены в книгах, посвященных физико-химическим методам [130], или в оригинальной литературе. Более широко применяются анализы с помощью ультрафиолетовых, инфракрасных спектров, спектров комбинационного рассеяния и масс-спектрального метода как для качественных, так и для количественных определений. [c.264]

    Выше мы рассматривали СКР и ИК-спектрометрию в плане их применения для качественного и количественного анализа. Однако эти методы являются также мощными инструментами для выяснения структуры молекулы и типа связей. Поскольку характеристики спектров комбинационного рассеяния и ИК-спектров часто можно связать с колебаниями определенных групп атомов, присутствие или отсутствие тех или иных полос в этих спектрах можно использовать для идентификации заместителей в молекуле. В целом спектры комбинационного рассеяния и ИК-спектры служат как бы отпечатками пальцев молекулы и уникальны для каждой конкретной частицы. [c.750]

    Вплоть до последнего времени основным препятствием для использования СКР была большая стоимость оборудования. Спектрометры комбинационного рассеяния обычно стоят в несколько раз больше, чем ИК-приборы, равноценные по качеству получаемой информации. Однако в последние годы удалось сконструировать недорогие приборы комбинационного рассеяния, предназначенные для серийных анализов, которые смогут найти широкое применение. Относительная простота спектров комбинационного рассеяния и большая чувствительность СКР как метода количественного анализа уже сейчас делает его конкурирующим с методом ИК-спектрометрии. Следует отметить также, что последние достижения СКР как метода дистанционного детектирования являются весьма перспективными. Среди интересных применений СКР можно назвать изучение короткоживущих или нестабильных частиц (переходных комплексов). [c.754]

    Широкое применение получил метод спектров комбинационного рассеяния для определения состава бензинов. Здесь следует указать на работу, совместно проведенную сотрудниками Комиссии по спектроскопии, Физического института им. Лебедева и сотрудниками Института органической химии АН СССР. Ими разработан метод количественного анализа углеводородов [1]. [c.53]

    Аналитическое применение метода комбинационного рассеяния света ограничивается недостаточной изученностью спектров рассеяния для многих индивидуальных углеводородов и отсутствием сводных данных об интенсивности линий спектра, необходимых для количественных анализов. Накопленные до настоящего времени данные о спектрах индивидуальных углеводородов позволяют довольно полно охарактеризовать состав низкокипящих бензинов, и расширение пределов применения этого метода зависит от дальнейшего систематического накопления материала и разработки методов устранения флуоресценции. [c.21]

    В настоящее время инфракрасная спектроскопия стала одним из основных физических методов исследования в химии, с помощью которого можно решать задачи качественного и количественного анализа вещества и судить о строении молекул. Особенно широко используется инфракрасная спектроскопия в органической химии для структурно-группового анализа и идентификации самых различных соединений. При совместном рассмотрении инфракрасных спектров со спектрами комбинационного рассеяния, ультрафиолетовыми спектрами, спектрами ядерного магнитного резонанса и масс-спектрами можно определять строение и состав большинства органических соединений. Благодаря простоте и автоматизации получения спектров метод инфракрасной спектроскопии нашел широкое применение в научных лабораториях и служит надежным методом контроля на химическом производстве. [c.5]

    Изомерный состав ксилольных фракций (количественный) определен методом КРС. Для получения спектров КР использован спектрометр ДФС-12. Источником возбуждения комбинационного рассеяния служила ртутная лампа ДРС-600 (> =4358 А). [c.5]


    Таким образом, исследование частот спектров комбинационного рассеяния света служит важным критерием для суждения о строении молекул. В последнее время этот метод получил широкое применение для качественного и количественного анализа смесей углеводородов. [c.23]

    Каковы же пути дальнейшего развития инфракрасной-спектроскопии применительно к аналитическим задачам, связанным с изучением углеводородного состава нефтяных фракций Имеющийся экспериментальный материал показывает, что с точки зрения задачи количественного определения индивидуального состава этот метод в основном разработан и применен пока только для бензиновых фракций т. кип. не выше 200°, для которых имеется, например, хорошо разработанный метод анализа по спектрам комбинационного рассеяния. [c.444]

    Спектральный анализ — физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров [1—4]. Физическая основа спектрального анализа — спектроскопия атомов и молекул, его классифицируют по целям анализа и типам спектров [7, 8,10—13]. Атомный спектральный анализ определяет элементный состав образца по атомным (ионным) спектрам испускания и поглощения, молекулярный спектральный анализ — молекулярный состав вещества по молекулярным спектрам поглощения, люминесценции и комбинационного рассеяния света [1, 3, 4, 7]. [c.213]

    На чем основаны методы количественного анализа по спектрам комбинационного рассеяния  [c.162]

    Благодаря усовершенствованию конструкции спектрографов и количественному измерению спектров, роль оптических методов (инфракрасные лучи, поглощение в ультрафиолетовом свете и комбинационное рассеяние света) за последнее время значительно возросла. Инфракрасные спе <тры были недавно широко использованы для анализов углеводородов нефти. Характерной особенностью оптических методов является то обстоятельство, что удлинение углеродной цепи молекулы сказывается на спектре очень мало, в то время как разветвление цепи или появление двойной связи оказывает значительное влияние. Поэтому можно утверждать, что оптические методы применимы главным образом к изучению [c.141]

    Г. С. Ландсберг и Б. А. Казанский с сотрудниками предложили комбинированный метод определения индивидуального углеводородного состава бензинов прямой гонки. Этот метод включает адсорбционное разделение метано-нафтеновых и ароматических углеводородов, дегидрогенизационный катализ циклогексановых углеводородов и последующее адсорбционное выделение полученных ароматических углеводородов. Выделенные группы углеводородов, а также метановые и циклопентановые углеводороды разгоняются на колонках четкой ректификации на узкие (1—2° С) фракции, которые затем исследуются с помощью спектра комбинационного рассеяния. Определение индивидуального углеводородного состава фракции бензина прямой гонки, выкипающей до 150° С, комбинированным методом представляет трудоемкую и сложную задачу. Кроме того, применяемый в этом случае оптический анализ не всегда дает возможность точного определения не только количественного, но и качественного содержания индивидуальных углеводородов. Однако этот метод нашел широкое применение и с его помощью получено немало ценных сведений об индивидуальном углеводородном составе бензинов прямой гонки [27, 78, 79]. [c.74]

    По чувствительности и точности количественных определений метод комбинационного рассеяния света значительно уступает методам спектров поглощения. [c.347]

    Нужно заметить, что вначале, когда из-за недостаточной разработанности экспериментальных методов исследования колебательных спектров в них измерялся только один параметр — частоты, возможности сравнительного метода в спектроскопии комбинационного рассеяния света использовались далеко не полностью. После того, как были разработаны строгие методы измерения интенсивности, степени деполяризации и ширины линий и стало возможным сопоставлять значения этих параметров в спектрах количественно, сравнительный метод изучения спектров получил дальнейшее развитие. [c.223]

    Ароматические углеводороды. Для количественного анализа типов ароматических углеводородов или структурных групп колебательные спектры применялись лишь в ограниченном числе случаев. Метод определения общего содержания ароматических соединений был описан Хейглем н др. [21], использовавшими линию комбинационного рассеяния в области 1600 см— , относящуюся к колебаниям сопряженной С=С связи ароматического кольца. Метод измерений аналогичен методу, предложенному этими авторами для определения общей непредельности. Для снижения влияния изменения положения линии в спектре для различных индивидуальных ароматических соединений бралось произведение коэффициента рассеяния на ширину линии у основания. Эта величина линейно связана с площадью под регистрируемым пиком. Среднее отклонение этой величины для 22 алкилбензолов составляло приблизительно 10%. [c.333]

    Наиболее распространены методики количественного анализа, в основу которых положено добавление к исследуемой жидкости небольших количеств четыреххлористого углерода или бензола (метод внутреннего стаЕщарта). Эти жидкости обладают интенсивным спектром комбинационного рассеяния и интенсивностью аналитических линий но отношению к какой-нибудь стандартной линии. [c.555]

    М. Сущипский [3551, используя литературные данные по спектрам комбинационного рассеяния, полученные для углеводородов различных классов, разработал метод количественного анализа (промежуточного эталона — флюоресцирующего вещества). [c.555]

    Спектральный анализ — физический метод качественного и количественного анализа веществ, основанный на изучении их спектров, подразделяющихся на спектры испускания (э.миссионный), поглощения (абсорбционный), комбинационного рассеяния света, люминесценции, рентгеновские. [c.43]

    Методы колебательной спектроскопии — инфракрасной (ИК) и спектроскопии комбинационного рассеяния (КР) света широко применяются в качественном и количественном анализе жидких, твердых п газообразных фаз. Каждое соединение имеет свой собственный, индивидуальный, специфичный ИК-спектр гюглощения, отличающийся от ИК-спектра поглощения любого другого соединения. Нет двух таких различных веществ, которые имели бы одинаковые ИК-спектры поглощения во всем спектральном Ж-диапазоне. Если ИК-спектры поглощения двух или нескольких изучаемых объектов полностью совпадают, то это означает, что данные объекты представляют собой одно и то же вещество (одну и ту же форму соединения). Если же ИК-спектры поглощения двух [c.528]

    Анализ углеводородов топлив спектральными методами. Спектральные методы применяют для определения углеводородов той или иной группы, индивидуальных углеводородов, наличия отдельных структурных элементов молекулы и функциональных групп, а также для качественного и количественного установления неорганических элементов в топливах или продуктах их окисления. Наибольшее распространение для анализа топлив имеют методы определения их спектров поглоп] ения в ультрафиолетовой и инфракрасной областях, метод комбинационного рассеяния света, масс-спектрометрия и эмиссионный спектральный анализ [1, 7, 83-88]. [c.219]

    Таким образом, в спектре рассеянного света, помимо линии, частота которой совпадает с частотой источника света, появятся по обе стороны от нее дополнительные линии слабой интенсивности, расположенные симметрично от центральной линии. Частоты и интенсивности этих дополнительных линий характерны для данного рассеивающего вещества. Изучение спектров комбинационного рассеяния света индивидуальных углеводородов дало возможность применять теперь этот метод для качественного и количественного анализа углеводородных смесег .  [c.82]

    На рис. 55 видно, насколько различаются инфракрасные спектры веществ при сравнительно небольшом изменении их строения. В инфракрасных спектрах, как и в спектрах комбинационного рассеяния, отдельным радикалам и связям отвечают определенные характеристические частоты, что часто позволяет выбрать для впервые иолученного соединения наиболее правдо-подобное строение. Кроме того, для получения инфракрасных спектров требуется меньше вещества и времени, чем для снятия спектров комбинационного рассеяния. Поэтому некоторые задачи установления строения веществ и качественного анализа часто дроще решать методом инфракрасных спектров. Зато количественный а-нализ в большинстве случаев легче и тоньше производится при помощи -спектров комбинационного рассея-. ния. Кроме того, многие характерные линии отдельных группировок и связей проявляются либо только в инфракрасных спект- [c.754]

    Изучение химического состава бензинов и частично лигроинов в настоящее время ведется в основном по спектрам комбинационного рассеяния света [4]. Сравнительно малая точность метода (порядка 5—10%) и трудности, связанные с анализом нафтено-парафиновых фракций, привели к попыткам анализа бензинов и лигроинов при помощи метода инфракрасной спектроскопии. С этой целью были получены спектры поглощения парафиновых, нафтено-парафиновых и ароматических углеводородов, температура кипения которых лежит в пределах выкипания бензино-лигроиновых фракций. Первоначально метод количественного анализа был разработан для нафтено-парафиновых фракций, кипящих до 140°. Применение его для изучения состава нафтено-парафиновой части бензинов из месторождения Виргиния (Восточный Тексас) с т. кип. -< 132° (состав ароматической части определялся по спектрам поглощения в ультрафиолетовой области) показало возможность анализа с точностью 1,4%, если число компонент во фракции не превышает восьми. Определение изомеров циклопентанов проведено с большей ошибкой, доходящей для транс-1, 2- и 1, 3-диметилцикло-пентанов до 5%, что является результатом отсутствия сильных полос поглощения у нафтено-парафиновых углеводородов, перекрытием полос поглощения нафтено-парафиновых и изопара-финовых углеводородов и, по-видимому, недостаточной чистотой эталонных циклопарафиновых веществ [42]. Анализ количественного состава многих искусственных смесей, составленных из парафинов нормального и изостроения, с т. кип. не выше 124°, и бензиновых фракций алкилата дает большую точность, порядка 1 % [43, 44]. [c.425]

    Другим важным преимуществом инфракрасного метода является относительная его быстрота, связанная со всей совокупностью времени, затрачиваемого на подготовку образца, регистрацию спектра, его обработку и получение конечного результата так как регистрация обычно производится в сравЕИтельно узком спектральном интервале, этот процесс занимает время порядка 10—15 мин. при наличии двухлучевого спектрографа отпадает время на обработку спектра, так как приборы такого типа сразу дают спектры в процентах пропускания время, необходимое на расчет линейной системы уравнений, может быть доведено до 10 мин. и менее путем применения упрощенного метода расчета [80] или, что еще быстрее, при помощи сравнительно простых счетных машин [2]. Таким образом, при наличии современного оборудования полный количественный анализ одной фракции может быть совершен за время не более одного часа, тогда как аналогичный анализ по спектрам комбинационного рассеяния с применением фоторегистрации и последующим фотометрированием и расчетом (принятый метод анализа бензино-лигроиновых фракций в СССР), а также с присущей методу процедурой подготовки образца для анализа занимает на ту же фракцию время порядка нескольких дней. При этом точность инфракрасного метода по крайней мере раза в три выше точности комбинационного метода ввиду значительно большей интенсивности инфракрасного излучения. [c.445]

    Шомин Б. И. Определение витамина С в готовой пище в полевых условиях. Военная медицина в Великую Отечественную войну, 1945, вып. 2, с. 390. 8435 Шорыгин П. П. и Волькенштейн М. В. Анализ бензинов методом спектров комбинационного рассеяния. Изв. АН СССР. Серия физ., 1941, 5, № 2-3, с. 174—181. Резюме на англ. яз. Библ. 5 назв. 8436 Шостаковский М. Ф., Прилежаева Е. Н. и Уварова Н. И. О некоторых методах количественного определения простых виниловых эфиров. ЖАХ, 1951, 6, вып. 6, с. 348—352. Библ. 5 назв. 8437 Шостенко Ю. В. и Штандель А. Е. Спектрографический анализ смеси изомерных ксилолов. ЖПХ, 1948, 21, Л Ь 4, с. 408—413. Библ. с. 413. 8438 Шостенко Ю. В. и Уралова И. Я- Количественное определепие сердечных глюкозидов полярографическим методом. Мед. [c.317]

    Индивидуальность и количественный состав углеводородов в выделенных из катализата узких фракциях были установлены химическими и физикохимическими методами. Контроль при исследовании превращений всех трех алканов производился снятием спектров комбинационного рассеяния света. Эта часть работы выполнена М. И. Батуёвым. [c.173]

    Таким образом, исследование частот спектров комбинационного рассеяния света служит важным критерием для суждения о строении молекул. В последнее время этот метод получил применение для качественного и количественного анализа смесей углеводородов, в частности нефтепродуктов (Б. А. Казанский, Г. С. Ландс-берг), где другие методы не дают удовлетворительных результатов. [c.96]

    Я. С. Бобович , Я- И. Рыскин и М. Г. Воронков , В. В. Базилевич, А. А. Гундырев, Н. С. Наметкин, Г. М. Панченков, А. В. Топчиев , Я. М. Слободин, Я- Е. Шмуляковский, К. А. Ржендзинская и другие также исследовали спектры комбинационного рассеяния кремнийорганических соединений. К. К. Попков использовал спектральный метод для количественного определения алкилхлорсиланов. Н. Н. Соколов, К. А. Андрианов и С. М. Акимова применили масс-спектрометрический анализ для исследования кремнийорганических соединений. Н. Н. Соколов разработал метод исследования структуры полисилоксановых пленок с помощью электронного микроскопа и т. д. [c.38]

    В настоящее время разработан метод количественного определения иона нитрония, основанный- на измерении спектра комбинационного рассеяния [59]. Найдено, что линия 1400 см-, отвечающая иону N0 , полностью исчезает в азотной кислоте при содержании в ней воды 5—б%, а в ее смеси с серной кислотой— при значительно большем содержании воды [46, 60]. Уменьшение содержания N02 с добавлением воды к серно-азотной кислотной смеси объясняется образованием при этом гидроксоний- и бисульфат-ионов (1),-сдвигающих влево равновесную реакцию образования нитроний-катиона (2). [c.50]

    Обнаружение функциональных групп, которое рассматривалось в предыдущей главе, известно под названием анализа органических соединений по функциональным группировкам—название исключительно меткое . Наряду с этим методом давно известен элементарный органический анализ, т. е. качественное и количественное определение элементов, из которых состоит исследуемое вещество. Кроме того, существуют еще и методы идентификации индивидуальных органических соединений, в которых используются свойства всей молекулы. Эти методы основаны на определении физических свойств, связанных со структурой и размерами молекулы органических соединений. К таким свойствам относятся температуры плавления, температуры кипения, удельный вес, а также оптические свойства различных соединений. Определяют температуру плавления или кипения исследуемого вещества или готовят его смеси с заранее известными веществами и наблюдают за температурами, присущими, например, эвтектическим смесям. В последнее время этот метод стал применяться для исследования микроколичеств органических веществ и их смесей, что является определенным шагом вперед. Полезность такого метода со временем, несомненно, станет еще более очевидной. Для эбулиоскопи-ческого или криосконического методов определения молекулярного веса используют расплавы или растворы исследуемых веществ в различных растворителях. Для подобных определений можно использовать производные исследуемых веществ, которые в некоторых случаях обладают более характерными свойствами. Оптическими методами определяют коэффициенты преломления, оптическую активность, спектры поглощения в ультрафиолетовой и инфракрасной области спектра, спектры комбинационного рассеяния, форму и оптические свойства кристаллов и др. [c.426]

    Н. Е. Подклетновым был предложен метод ускоренного микроанализа нефти [107]. Согласно этому методу анализ бензино-лигроиновой фракции осуществляется с применением газо-жидкостной хроматографии. Во фракции, выкипающей в интервале температур 50—200° С, Н. Е. Подклетнову с сотрудниками удалось определить 170 индивидуальных углеводородов и количественно охарактеризовать около 60 групп с узким углеводородным составом. Температурные пределы узких фракций (50—100°, 100—150°, 150—175°, 175—200° С) были выбраны в результате специального исследования, проведенного с контролем состава выделенных фракций с помощью спектра комбинационного рассеяния. Для ректификации малых количеств исходной пробы нефти использовалась микроректификационная колонка. Количественное разделение 1—2 мл анализированной фракции на метано-нафтеновую и ароматическую части проводилось методом адсорбционной жидкостной хроматографии. Разделение на индивидуальные компоненты полученных групп углеводородов проводилось на колонках (/=16 м, с1 = 4 мм), заполненных огнеупорным кирпичом, на который в качестве неподвижной жидкой фазы нанесен (20% вес.) полиметилфенилсилоксан (ПФМС-4). Отработка оптимальных режимов разделения была проведена на модельных смесях. На рис. 23 приведена хроматограмма разделения нефти месторождения Восточное Эхаби. [c.79]

    Так как время жизни состояния может быть сокращено также и другими факторами, особенно в результате межмо-лекулярного и внутримолекулярного переноса энергии, то информацию о химических реакциях получают из рассмотрения влияния на форму линий таких параметров, как температура, концентрации реагентов или pH. Редко бывают удобны для этой цели оптические спектры, поскольку они будут уширяться только от очень быстрых реакций. Однако ушире-ние линий в спектре комбинационного рассеяния иона три-фторацетата в присутствии трифторуксусной кислоты было приписано протонному обмену в ионных парах [21]. Существуют трудности в количественной интерпретации результатов [22]. Поэтому данный метод не нашел широкого применения. [c.146]

    Колебательные спектры молекул, наблюдаемые как ИК спектры и спектры комбинационного рассеяния света, являются такой же специфической харак теристикой вещества, как отпечатки пальцев человека. По этим спектрам вещество может быть идентифицировано, если его колебательный спектр уже известен, По ИК и КР спектрам определяют симметрию и структуру неизученных молекул. Частоты основных колебаний, находимые из спектров, необходимьв для расчетов термодинамических свойств веществ. Измерение интенсивности полос в спектрах позволяет проводить количественный анализ, изучать химические равновесия и кинетику химических реакций, контролировать ход техноло гических процессов. Дальнейшее развитие методов колебательной спектроскопии и расширение их применения в науке, технике и производстве — непр.елвжное требование ускорения научно-технического прогресса. [c.169]

    Наиболее совершенным при исследовании химического состава сырья следует считать комплексный метод, основанный на сочетании известных методов анализа (установление йодного числа, молекулярного веса, сульфирование, определение анилиновой точки) с разгонкой на колонках четкой ректификации и изучением спектров комбинационного рассеяния света узких фракций исходного продукта . В ИНХП АН Азерб. ССР исследовался химический состав исходного для полимеризации сырья путем комплексного использования хроматографической адсорбции, четкой ректификации, газожидкостной хроматографии и спектрального анализа. Сочетание этих способов дает качественное, а также в определенных случаях и количественное представление о составе исходного сырья и, следовательно, о целесообразности применения его для полимеризации. [c.43]


Смотреть страницы где упоминается термин Комбинационного рассеяния спектры, метод количественный: [c.77]    [c.62]    [c.97]    [c.30]    [c.31]    [c.387]    [c.194]    [c.403]    [c.139]   
Основы аналитической химии Кн 3 Издание 2 (1977) -- [ c.279 ]




ПОИСК





Смотрите так же термины и статьи:

Количественный методы

Комбинационное рассеяние

Спектры комбинационного рассеяния



© 2025 chem21.info Реклама на сайте