Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция физико-химические характеристики

    Однако применение ингибиторов коррозии для защиты оборудования в системе подготовки нефти имеет свои специфические особенности и недостатки. Введение ингибитора в жидкость не обеспечивает защиты поверхности оборудования в газопаровой фазе на эффективность защитного действия ингибиторов существенное влияние может оказать изменение физико-химических характеристик сред. При наличии в двухфазной среде одновременно неионогенного поверхностно-активного вещества и ингибитора происходит их совместная адсорбция на межфазной поверхности капель углеводорода. При этом адсорбционно-активные полярные группы ингибитора блокируются более активными в водной среде [c.151]


    В основу определения физико-химических характеристик с помощью газовой хроматографии положена известная функциональная связь этих характеристик с параметрами хроматографического опыта величинами удерживания и шириной хроматографического пика. Первые представляют собой функцию коэффициента распределения или величины адсорбции, что позволяет определять коэффициенты активности, термодинамические функции адсорбции или растворения, структуру изучаемых соединений и другие характеристики газообразных, жидких и твердых веществ. [c.160]

    Удельный удерживаемый объем У/ не является абсолютной величиной и не представляет физико-химическую константу он зависит от удельной поверхности адсорбента, а Уз —абсолютная величина. Следует однако помнить, что при постоянных условиях опыта н для линейной изотермы адсорбции величина У/—вполне определенная физико-химическая характеристика системы газ (лар) — твердое вещество. [c.115]

    В процессе развития хроматографии как метода качественного и количественного анализа выявились не менее существенные ее возможности для измерения различных физико-химических характеристик изотерм адсорбции и распределения, теплот сорбции и энтропийного фактора сорбции (адсорбции и растворения), удельной поверхности адсорбентов, коэффициента активности, коэффициента диффузии и др. [c.187]

    Для изучения физико-химических характеристик водных сред разработана методика определения адсорбции из водных растворов [88, 89], позволяющая измерять величину адсорбции на сплошной поверхности металла. Методика состоит в следующем. Поверхность стали вводится в соприкосновение с водным раствором ПАВ известной концентрации и выдерживается при постоянной температуре до наступления равновесной адсорбции. Затем определяется концентрация ПАВ в объеме жидкости после адсорбции и рассчитывается количество адсорбировавшегося вещества на единице поверхности металла. Разница концентраций раствора до и после адсорбции определяется по оптической плотности раствора в ультрафиолетовой области спектра при помощи кварцевого спектрофотометра СФ-4. Величина этой разницы, достаточная для измерения адсорбции с относительной ошибкой не более 10—15%, обеспечивается выбором формы и размеров металлического сосуда, стенки которого являются адсорбирующей поверхностью. На рис. 8 [c.26]


    Существует ряд физико-химических характеристик маслорастворимых ПАВ, которые, во-первых, являются универсальными и в равной мере могут быть отнесены как к маслорастворимым, так и к водорастворимым веществам, а во-вторых, объясняют их полезное действие в большинстве случаев применения ПАВ. Это их адсорбционная способность, критическая концентрация мицеллообразования (ККМ), стабилизирующее действие на взвеси, солюбилизирующее действие, величина ГЛБ, влияние на смачиваемость поверхности твердых веществ водой. Разумеется, что названные характеристики взаимосвязаны, причем связующей величиной является адсорбция. Поскольку она различна при разных концентрациях ПАВ, то в качестве более универсальной характеристики следует давать константы уравнения изотермы адсорбции, например константы [c.795]

    Для расчета энергии активации процесса проникания адсорбируемых молекул в микропоры нами проводились исследования адсорбции вещества с относительно большими молекулами ( кр 0>9 нм) — 1,3,5-триэтиЛ бензола (ТЭБ) на цеолитах КаХ и СаХ. Структурные характеристики исследуемых адсорбентов и основные физико-химические характеристики адсорбируемого вещества приведены в работе [7]. [c.238]

    Теплоты адсорбции на кремнеземе (при в = 0,5) и некоторые физико-химические характеристики адсорбатов [c.137]

    К числу основных физико-химических характеристик относятся пористость и удельная поверхность. Оценка роли пористости проведена на стр. 19. Удельная поверхность существенно определяет протекание таких поверхностных процессов, как адсорбция или меж-фазовое химическое взаимодействие, которые иногда сопутствуют экстрагированию. [c.32]

    Определение физико-химических величин. Газо-хроматографические методы широко используются для определения таких физико-химических характеристик, как коэффициенты распределения, коэффициенты активности, теплоты растворения, теплоты адсорбции, поверхность адсорбента, коэффициенты диффузии в газовой и жидкой фазах, константы скоростей гетерогенных и гомогенных реакций и т. п. [c.15]

    Березкин с сотр. [27] использовали капиллярные колонки с насадкой для определения физико-химических характеристик (теплот адсорбции, констант скоростей химических реакций). [c.135]

    ИССЛЕДОВАНИЕ ФИЗИКО-ХИМИЧЕСКИХ ХАРАКТЕРИСТИК АДСОРБЦИИ МЕТОДАМИ ГАЗОВОЙ ХРОМАТОГРАФИИ [c.37]

    Основными физико-химическими характеристиками адсорбентов являются, с одной стороны, их структурные характеристики, часто не зависящие или мало зависящие от свойств адсорбирующихся веществ (удельная поверхность, пористость) и, с другой стороны, свойства, определяемые в основном природой системы адсорбент — адсорбат (энергия адсорбции, изотерма адсорбции и т. п.). Все эти величины обычно определяются при помощи адсорбционных опытов в статических условиях. Однако адсорбционные измерения часто бывают весьма длительными и требуют много времени для завершения и получения окончательного результата. В особенности это относится к калориметрическим определениям дифференциальных теплот адсорбции, требующим сложной аппаратуры, весьма чувствительной к колебаниям внешних условий. В послед нее время появляется довольно много работ по газо-хроматографическому исследованию изотерм адсорбции [1]. В ряде работ показано, что хроматографический метод позволяет быстро при некоторых допущениях определить изотерму адсорбции в удовлетворительной близости к изотермам, измеренным в статических условиях в вакуумной аппаратуре. Гораздо в меньшей степени исследованы возможности определения теплот адсорбции по данным газовой хроматографии [2], так как в лабораториях, занимающихся газовой хроматографией, обычно нет калориметров, позволяющих для сопоставления непосредственно измерять теплоты адсорбции для тех же систем. [c.37]

    Исследование физико-химических характеристик адсорбции [c.39]

    Для нормальных алканов теплота адсорбции линейно возрастает с числом атомов углерода в молекуле. Для углеводородов с двумя атомами углерода в молекуле теплота адсорбции цеолитом растет при переходе от этана к этилену и ацетилену в соответствии с энергией дополнительного (к дисперсионному) взаимодействия л -электронных связей с ионами, находящимися на поверхности каналов цеолита [13, 14]. Более новые данные но определению физико-химических характеристик адсорбентов можно найти в работах [15] и [16]. [c.43]

    Методом хроматографической адсорбции из керосина были выделены ароматические углеводороды в виде нескольких фракций, которые были разделены повторной адсорбцией па типы. Физико-химическая характеристика выделенных фракций дана н табл. 1. [c.182]

    При использовании микроорганизмов в качестве флокулянта следует учитывать физико-химические характеристики, изменяющиеся в процессе их жизнедеятельности. Известно, что прочность связи при адсорбции микроорганизмов зависит от фазы их развития [67]. В начальные этапы развития микроорганизмов связь между адсорбентом и адсорбатом довольно прочная, а в более поздние этапы развития наблюдается уменьшение сил взаимодействия. Следует также отметить влияние pH и природы катионов на адсорбционные силы. При приближении pH среды к изоэлектрической точке уменьшается 1-потенциал и увеличивается адсорбция. Этот вывод был подтвержден экспериментально при исследовании влияния pH и возраста культуры микроорганизмов на их флокулирующие свойства [69—71]. Для сгущения фосфоритового концентрата класса —0,074 —0,050 в качестве флокулянтов использовали бактерии и дрожжи. [c.31]


    Перенос вещества в поле действия сил адсорбции (в микропорах) по своей природе близок к переносу вещества в жидкости, поскольку плотность конденсированной фазы близка к плотности жидкости. Элементарный акт миграции адсорбированной молекулы можно рассматривать как двухстадийный процесс. Первой стадией является образование вакансии в адсорбционном пространстве по соседству с адсорбированной молекулой. Вторая стадия -- перемещение в эту вакансию органической молекулы, находящейся в поле действия сил адсорбции. Первая стадия характеризуется свободной энергией активации образования вакансии в адсорбционном пространстве, вторая — свободной энергией активации перехода адсорбированной молекулы в активированное состояние. На базе изложенных представлений нами получено соотношение, связывающее величины коэффициентов диффузии адсорбированных молекул различных органических веществ с их физико-химическими характеристиками (молекулярной рефракцией и растворимостью). Было также показано, что при адсорбции низкомолекулярных органических веществ из водных растворов внутридиффузионный массоперенос определяется в основном диффузией адсорбированных молекул. [c.138]

    Книга посвящена новой обширной области применения газовой хроматографии — определению физико-химических характеристик систем твердое тело — газ, жидкость — газ и чистых твердых и жидких веществ. В ней рассмотрены вопросы использования газо-хроматографических методов для оценки катализаторов и носителей, определения коэффициентов диффузии, изменения энтропии, теплоты адсорбции и других величин. [c.208]

    С 1963 г. в практике газовой хроматографии применяют капиллярные колонки, заполненные предварительно приготовленным сорбентом [8, 9]. Систематическое изучение характеристик колонок этого типа проведено в работах [10—12], в которых исследованы общие аналитические свойства этих колонок в более широком аспекте (в частности, впервые изучено изменение эффективности колонок этого типа в зависимости от основных параметров эксперимента), а также показана перспективность их использования для измерения физико-химических характеристик (теплота адсорбции, энергия активации химических реакций и т. д.). В хроматографической практике применяют короткие и длинные капиллярные колонки. [c.223]

    Уравнения (3.62) и (3.63) позволяют рассчитать основные характеристики поверхностного слоя раствора, например поверхностное натяжение раствора по его показателю преломления, поверхностному натяже ию и показателям преломления отдельных компонентов раствора температурную зависимость поверхностного натяжения раствора поверхностную активность растворенного вещества адсорбцию зависимость этих величин от температуры и другие физико-химические характеристики. [c.105]

    С использованием уравнения (1.42) в физико-химических измерениях для определения изотермы адсорбции из жидкой фазы на поверхности ТН — НЖФ связано новое направление в применении газовой хроматографии как метода определения физико-химических характеристик веш.еств. Однако для обоснования нового метода необходимо было провести сравнение величин, полученных данным и независимым методами. С этой целью представлялось целесообразным измерить коэффициент адсорбции Кь двумя методами газохроматографическим, используя уравнение (1.41), и статическим или независимым хроматографическим, используя один из традиционных методов определения изотермы адсорбции (см,, например, [87] ). Это было выполнено в ряде работ [42, 91, 92]. [c.26]

    Метод газовой хроматографии применяют для изучения физико-химических характеристик реакционноспособных веществ. С помощью газовой хроматографии могут быть изучены физико-химические характеристики сорбции нестабильных соединений, но поскольку все физико-химические характеристики сорбции определяются величинами удерживания и в некоторых случаях шириной пика, эти параметры не должны искажаться. Однако для рассматриваемых соединений интересна область физико-химических исследований, связанная с изучением тех явлений, которые в аналитической хроматографии являются мешающими (искажающими результаты) физической адсорбции, активированной адсорбции, хемосорбции, химических реакций. [c.186]

    К физико-химическим характеристикам сорбентов и сорбатов, определяемых с помощью газовой хроматографии, помимо вышеуказанных в первую очередь относятся изотермы адсорбции [5]. Обычно их определяют методом Глюкауфа [6], основанным на графическом интегрировании в соответствии с уравнением  [c.188]

    Важнейшей физико-химической характеристикой системы адсорбент — адсорбируемое вещество является равновесная адсорбция. Применительно к осушке и очистке рабочей среды холодильных машин наибольший интерес представляет равновесная адсорбция из растворов. Для определения адсорбции из раствора пользуются различными понятиями — истинная, исправленная, кажущаяся и т. д. Систематизация этих понятий показала, что все они характеризуют избыток вещества в поверхностном растворе (в адсорбенте) по сравнению с его содержанием в объемном растворе (в жидкой среде). Адсорбция определяется химической природой поверхности, пористой структурой адсорбента, составом раствора, свойствами растворенных веществ и [c.58]

    Обобщая вышеизложенные сведения о трансформащ1и буровых реагентов, нефтешламов, нефти и нефтепродуктов в почве и воде, следует еще раз подчеркнуть, что это сложный процесс, на который оказывают влияние особенности гранулометрического состава почв, содержание органического вещества и обменных катионов, а также химический состав нефти и ее свойства. Большое значение также имеет характер их распространения в среде, включая процессы испарения и конденсации, диффузии, адсорбции и десорбции, биодеградации под воздействием микроорганизмов и различные реакции абиотического расщепления. При этом важно также учитывать физико-химические характеристики растворимость углеводородов, точку кипения, давление паров и др., а также условия, при когорых протекает биологическое окисление загрязнителей, адсорбированных частичками почвы, роль органических и неорганических почвенных коллоидов и т. д. Необходимо принимать во внимание и характер миграционных процессов, которые, с одной стороны, приводят к широкому распространению загрязнения за пределы исходного района за счет горизонтальной миграции низко- и среднемолекулярных углеводородов, а с другой - приводят к концентрации в зоне загрязнения высокомолекулярных компонентов нефти и буровых реагентов в верхних слоях почвы. [c.190]

    Если в дополнение к естественному процессу газообразования (за счет световой энергии и кислорода воздуха, возможных анаэробных процессов гниения под покрытием) на локальных участках организовать интенсивную обработку осадка (электрохимически, плазмохимически, погружным горением, электродуговым методом и т.д.), то в дополнение к общему обычному газоотводу понадобятся и автономные для подачи газов на утилизацию. Отсасываемые из-под покрытия газы, в зависимости от их состава, количества, физико-химических характеристик, а также от мест расположения хранилища могут утилизоваться сжиганием, абсорбцией, адсорбцией или любым другим способом. Целью обработки отходов является, применяя различные, уже известные технологии, максимально возможная их деструкция, то есть в данной технологии можно применить методы деструкции органосодержащих отходов различной интенсивности. Учитывая большую площадь иловых карт можно было бы иметь достаточно много превращенного сырья даже при малых скоростях деструкции. Причем деструкцию можно вести на любом участке хранилища, вплоть до всей его площади (зависит от наличия энергоресурсов , [c.29]

    В отличие от проявитель-ного фронтальный метод позволяет выделить из смеси в чистом виде лишь одно наиболее слабо сорбирующееся вещество. Поэтому для аналитического разделения смеси веществ он не применяется. Однако в ряде специальных случаев, например при необходимости выделения одного компонента в чистом виде, концентрирования примесей, а также для определения некоторых физико-химических характеристик одного компонента (например, изотермы адсорбции), фронтальный метод может применяться с успехом. [c.15]

    Из обсуждения в разд. 1.3.2 и 1.4.2 следует, что в препаративной хроматографии используют два типа эффективности собственную эффективность колонки, которая определяется динамическими и гидродинамическими свойствами упакованного слоя, конструкцией аппаратуры, свойствами материала насадки и т. д., разделительную эффективность, которая существенно зависит от природы и количества образца и физико-химических характеристик разделительной системы. Число тарелок N используется как мера любого типа эффективности, но первая эффективность обычно определяется при идеальных, а последняя — при реальных условиях. Как отмечено выше, собственная эффективность колонки измеряется при малых нагрузках в условиях, когда изотерма адсорбции или распределения линейна (ср. разд. 1.4.4). Каждая колонка, используемая в препаративной хроматографии, должна иметь собственную эффективность, измеренную в аналитических условиях (малые нагрузки), как можно большую для данной комбинации конструкции колонки и материала насадки. Эмпирически установлено, что длина, или высота, тарелки к в эффективной колонке приблизительно равна удвоенному диаметру частиц ((/р), которыми упакована колонка. Таким образом, колонка длиной 30 см, заполненная насадкой с размером частиц 10 мкм, должна содержать примерно 15 тысяч тарелок в идеальных условиях (/1 2 р = 2-10мкм = = 20 мкм или 0,002 см 30 см//г= 15000). Частицы размером 100 мкм в той же самой колонке должны давать 1500 тарелок (30 см/(2-0,01) = 1500). Многочисленные факторы, приводящие к уменьшению этой величины для идеальной колонки, показанные на рис. 1.6, рассматриваются в работах [39—47, 50—59] и не будут здесь анализироваться подробно. [c.36]

    Как и для других неметаллических тугоплавких соединений, составляющих основу современной керамической промышленности, работы по компьютерному моделированию оксидов алюминия следуют двум взаимосвязанным направлениям. В рамках первого из них ставится проблема наиболее корректного исследования фундаментальных электронных свойств, природы химической связи и основных физико-химических характеристик полиморфных модификаций А12О3, рассматриваемых как идеальные кристаллы. Второе направление обращается к описанию А12О3 как элемента керамических материалов, акцентируя внимание на изменениях характеристик оксидов в результате наличия разного рода несовершенств кристаллов (вакансии, легирующие элементы), рассматриваются поверхностные свойства, пленочнью состояния и гетероструктуры, предпринимаются попытки описания границ зерен, моделируются процессы адсорбции и т. д. [c.117]

    Рассмотрено влияние строения органических веществ на адсорбционное равновесие, установлена связь между влиянием органических веществ на структуру водных растворов и жидкой воды и анергией адсорбции. Предложены методы вычисления адсорбционных равновесий для отдельных веществ и их смесей из растворов по индивидуальным физико-химическим характеристикам веществ. Обоснованы кретерин, характеризующие избирательность адсорбции компонентов смеси из раствора. Показана возможность вычисления ряда технологических характеристик, необходимых для проектирования адсорбционных станций очистки сточных вод, по индивидуальным характеристикам компонентов стоков. [c.2]

    Одной из задач молекулярной теории адсорбции является вычисление физико-химических характеристик (констант адсорбционного равновесия, теплот и энтропий адсорбции, теплоемкости адсорбата) на основании свойств молекулы адсорбата и свойств адсорбента. Эта задача может быть решена методами молекулярной статистики с помош,ью теории молекулярного взаимодействия лишь в простейших случаях (литературу см. в [1, 2]). Отклонения от предельного закона Генри связаны либо с притя жением адсорбат—адсорбат, либо с отталкиванием адсорбированных моле кул друг от друга или с неоднородностью поверхности адсорбента. Влияние этих факторов пока не охарактеризовано количественно с помощью молекулярной теории. Поэтому представляют теоретический интерес и практическую ценность нонытки расчета этих термодинамических функций с помощью приближенных уравнений адсорбционного равновесия [3—12], содержащих константы равновесия для различных вкладов взаимодействий в адсорбционных системах, в частности, для взаимодействия адсорбат адсорбат. [c.367]

    Примерная схема выделения целевого продукта (антибиотика) из культуральной жидкости может быть представлена в следующем виде (рис. 135). В приведенную схему должны быть внесены соответствуюхцие коррективы в зависимости от физико-химических характеристик целевого продукта и возможностей аппаратурного оформления процесса. В настоящее время все большее распространение приобретают мембранные методы концентрирования и выделения различных веществ, хотя до сих пор в ряде производств БАВ (включая антибиотики, например, пенициллин) не удалось отказаться от традиционных способов выделения и очистки целевых продуктов (экстракция в системе "жидкость-жидкость", адсорбция на активированных углях, диализ). [c.443]

    Основные области применения НКК 1) анализ сложных смесей (например, анализ смесей углеводородов [19, 20], спиртов [14], стероидов [17], барбитуратов [21], загрязнений воздуха [22] и т. д.) 2) анализ примесей (например, анализ примесей в изопрене [10] и во фторотане [23]) 3) экспресс-анализ (анализ углеводородов [24, 25]) 4) применение в промышленных автоматических хроматографах [26] 5) измерение физико-химических характеристик (например, теплот адсорбции [24]). [c.227]

    Авторы стремились дать в справочнике, хотя и в сжатой форме, но систематический и по возможности широкий набЬр современных физико-химических характеристик. В настоящее издание введено много новых таблиц и расширен ряд разделов (свойства растворителей и растворов, явления переноса — вязкость и диффузия в га-. зах и растворах, сведения по симметрии молекул и кристаллов, магнитные свойства атомов и молекул, молекулярные диаграммы, молекулярные спектры, кинетика реакций в растворах, адсорбция, катализ и ингибирование и т. п.). [c.8]

    Важнейшим фактором, определяющим свойства наполненных и армированных полимеров, является их адгезия к поверхности твердого тела. Достаточно сильное взаимодействие на межфазной границе полимер - твердое тело - основное условие усиления полимеров при введении в них наполнителя. Во многих случаях при получении наполненных полимеров через растворы или из жидких, способных к отверждению композиций, первичным актом образования адгезионного взаимодействия является адсорбция на границе раздела полимерных молекул из раствора или из реакционной системы в ходе ее отверждения. Особенно велика роль адсорбционного взаимодействия в случае использования многокомпонентных связую1цих, где возможна селективная адсорбция компонентов. Адсорбционные явления на межфазных границах приводят к тому, что на них образуется адсорбционный слой, отличающийся по своим физико-химическим характеристикам от материала в объеме. Образование межфазных адсорбционных слоев, как будет показано далее, является фактором, определяющим адгезию полимера к поверхности. Поэтому теории адсорбции и адгезии являются важнейшими составляюлщми теории образования и свойств полимерных композиционных материалов. [c.16]


Смотреть страницы где упоминается термин Адсорбция физико-химические характеристики: [c.76]    [c.162]    [c.135]    [c.231]    [c.222]    [c.125]    [c.58]    [c.9]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1961-1966) Ч 1 (1969) -- [ c.128 , c.206 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция химическая



© 2025 chem21.info Реклама на сайте