Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновские лучи и кристаллическая структура

    Изучение кристаллических структур проводится чаще всего-двумя методами рентгеноструктурным анализом, основанном на дифракции рентгеновских лучей кристаллической решеткой вещества, и электронографическим анализом, основанном на дифракции электронов или нейтронов Используя эти методы, было [c.238]

    Рентгенография. Для исследования твердых углеводородов и других ком-]а.-109 г8 понент нефти в кристаллическом состоянии, а также для изучения структуры катализаторов применяется метод дифракции рентгеновских лучей. Кристаллическая решетка вещества играет роль системы дифракционных решеток. [c.340]


    В работе [595] методом дифракции рентгеновских лучей исследовалась структура найлона 6. В тех случаях, когда кристаллический полимер поглощает растворитель, обладающий большим сродством к полимеру, весьма вероятно, что кристаллическое состояние полимера в процессе такого набухания будет существенно меняться. Методом дифракции рентгеновских лучей был исследован целый ряд водных растворов полимеров, например желатины [596], пектата натрия [597], целлюлозы [598—600] н поливинилового спирта [601, 602]. [c.545]

    Метод фазового анализа основан на том, что картина рассеяния рентгеновских лучей кристаллическим веществом зависит в первую очередь от атомной структуры, т. е. от характера расположения атомов и молекул. Рентгенограммы двух полиморфных модификаций, например алмаза и графита, совершенно различны, тогда как рентгенограммы изоморфных веществ различного химического состава, например хлористого натрия и бромистого калия, весьма сходны. Из приведенных на рис. 3—5 рентгенограмм ряда веществ видно  [c.13]

    В последнее время созданы рентгеновские установки, автоматически расшифровывающие рентгенограммы и даже воспроизводящие стереоскопический чертеж структуры исследуемого вещества. Для этого с помощью фотоэлемента регистрируются рентгеновские лучи, претерпевшие дифракцию на кристаллической решетке исследуемого вещества. Импульсы фотоэлемента автоматически кодируются и вводятся в электронно-вычислительную машину. На основании этой информации машина создает модель одной из возможных структур и затем делает обратный расчет, т. е. по структуре рассчитывает рентгенограмму. В случае несовпадения рассчитанной и эксперимен- [c.151]

    Интенсивность рассеяния рентгеновского излучения в веи естве зависит от угла, под которым это рассеяние наблюдается (по отношению к направлению падающего луча). Эта зависимость в случае газов выражается непрерывной кривой без минимумов и максимумов и может быть теоретически объяснена на основании представления о независимости движения отдельных молекул газа. Твердые кристаллы рассеивают рентгеновские лучи только в определенных направлениях, что является следствием фиксированного расположения атомов в узлах кристаллической решетки и дает возможность полного анализа молекулярной структуры кристалла. [c.161]

    Изучение рассеяния рентгеновских лучей в жидкостях с многоатомными молекулами показывает, что не только относительное расположение молекул в некоторой степени упорядочено, но и их взаимная ориентация не вполне хаотична. Это, по-видимому, справедливо даже по отношению к таким симметричным молекулам, как U в- случае же несимметричных полярных молекул, например воды, имеет место вполне закономерная взаимная ориентация соседних молекул воды с образованием временных водородных связей между ними. Интересно, что преобладающая кристаллическая структура жидкой воды при повышенных температурах соответствует не структуре обычного льда, которая тоже имеется в жидкой воде, а более плотной структуре, относящейся к структуре льда так же, как относятся друг к другу две кристаллические модификации кремнезема—кварц и тридимит. [c.162]


    Разработана методика оценки параметров межмолекулярной динамики констант скорости, времен релаксации, коэффициентов диффузии на базе данного малоуглового разрешения рентгеновских лучей. Метод применим для жаро-термостойких полимеров и углеродистых веществ пеков, коксов, -фракций и -фракций и позволяет судить о механизме формирования кристаллической структуры. [c.153]

    После открытия Лауэ (1912 г.) дифракции рентгеновских лучей теория кристаллической решетки, которая начала развиваться еще в ХУП в., получила полное экспериментальное подтверждение. Методом рентгеноструктурного анализа были измерены межатомные расстояния и определено положение атомов в кристаллах. При этом было установлено, что структура кристаллов является плотнейшей упаковкой соответствующих структурных единиц и определяется прежде всего размерами этих структурных единиц. Согласно правилу Гольдшмидта (1927 г.), строение кристалла определяется числом его структурных единиц (ионов), отношением их радиусов, а также их поляризационными свойствами. Усиленное изучение связи состава и свойств твердых веществ с их кристаллической структурой привело к формированию новой отрасли химии — кристаллохимии. Кристаллохимические исследования, среди которых выдающееся значение имели работы Л. Полинга, А. В. Шубникова, Н. В. Белова, А. И. Китайгородского, помогли глубже понять природу твердых веществ, раскрыть закономерности, управляющие образованием кристаллических структур, в том числе таких сложных, как структуры силикатов и алюмосиликатов. [c.166]

    Гетерогенность структуры доменного типа может наблюдаться методом малоуглового рассеяния рентгеновских лучей в случае растяжения аморфных образцов полистирола и полиметилметакрилата при температуре ниже Го- Обнаруживаемая методами дифракции рентгеновских лучей в больших и малых углах гетерогенность структуры расплава полиэтилена — результат проявления специфики полимерного состояния вещества, заключающейся в возможности расположения одной и той же длинной макромолекулы в нескольких упорядоченных областях, что приводит к сохранению чередования в расплаве областей повышенной и пониженной плотности, аналогично тому, как это наблюдается для частично-кристаллического полимера. Все эти данные не согласуются с моделью гомогенного полимера в виде совокупности хаотически перепутанных цепей. Сегменты и цепи группируются в областях упорядочения, больших областей флуктуации плотности. А так как эти области увеличиваются с возрастанием молекулярной массы полимера, можно сделать вывод, что истинное распределение сегментов содержит своеобразные ядра (домены) с повышенной плотностью. Остальные сегменты полимерной системы находятся вне этих доменов. [c.27]

    Применение рентгеновского излучения для исследования кристаллических веществ основано на том, что его длина волны сопоставима с расстоянием между упорядоченно расположенными атомами в решетке кристаллов, которая для него является естественной дифракционной решеткой. Сущность рентгеновских методов анализа как раз и заключается в изучении дифракционной картины, получаемой при отражении рентгеновских лучей атомными плоскостями в структуре кристаллов. [c.71]

    Длина волны рентгеновских лучей того же порядка, что и расстояние между атомами и ионами в молекулах или кристаллах 0,1 нм). Поэтому кристалл ведет себя по отношению к рентгеновскому лучу как дифракционная решетка. Рентгеноструктурный метод исследования основан на том, что рентгеновские лучи, проходя через кристалл, отклоняются или отражаются вполне закономерным образом в зависимости от параметров кристаллической решетки. Помещая на их пути фотопленку, получают рентгенограмму кристалла в виде точечных пятен для упорядоченных структур или в виде тонких дуг для волокнистых и порошкообразных структур. [c.395]

    Для изучения структуры коллоидных частиц наиболее приемлемым оказался метод использования отраженных рентгеновских лучей Дебая — Шеррера, широко применяемый для исследования мелкокристаллических материалов. Попадая на фотопленку, отраженные лучи оставляют следы в виде дифракционных линий — тонких искривленных полос. Размытость этих полос зависит от размеров частиц. Поэтому, измерив ширину дифракционной линии, можно рассчитать размер коллоидных частиц. Рентгенографический метод сыграл большую роль в изучении кристаллической структуры многих золей, природ- [c.395]

    Анализ формулы (5.2) указывает, что ц чрезвычайно малая величина, это свидетельствует о слабом поглощении рентгеновских лучей веществом, их высокой проникающей способности. Эта особенность, а также дифракция рентгеновских лучей на кристаллических решетках служат основой их практического использования для изучения структуры оптически непрозрачных веществ без их разрушения. Для возникновения явления дифракции необходимо, чтобы расстояние между соседними плоскостями отражения в рассеивающем кристалле было не менее половины длины волны падающего луча. (Длины волн видимого света находятся в интервале 400—700 нм, а межплоскостные расстояния в кристаллических решетках изменяются в пределах 1 нм. Вот почему для структурного анализа используют рентгеновские лучи, длина волн которых 10 — 103 нм ) [c.115]


    Для расчета дифракционных эффектов в стареющих сплавах обычно используют два теоретических подхода. В одном из этих подходов рассматривав т рассеяние рентгеновских лучей на отдельном нарушении, а затем рассчитывают интерференционную картину, обусловленную вторичными волнами, идущими от этих нарушений, и производят усреднение по всем конфигурациям распределений нарушений по кристаллу матрицы. В другом подходе кристалл снлава рассматривается как периодическая структура, состоящая из средних атомов, образующих кристаллическую решетку. В такой модели все возможные нарушения правильной периодичности описываются с помощью флуктуационной волны, искажающей правильную кристаллическую решетку среднего сплава. Такая флуктуационная волна может описывать либо изменение концентрации сплава, либо распределение статических смещений атомов, либо то и другое одновременно. В этом случае периодиче- [c.105]

    Для исследования строения твердых тел применяются рентгеноструктурный, электронномикроскопический, кристаллооптический, металлографический, петрографический и другие методы. Особенно большое значение имеет рентгенографический и электронный анализы кристаллов. Рентгеновские лучи широко применяются для выяснения строения кристаллических решеток и их деформации под влиянием внешних воздействий. За последнее десятилетие метод рентгеновского анализа все с большим успехом применяется также для изучения строения жидкостей, для определения структуры молекул и расстояний между атомами в молекуле. [c.56]

    По целому ряду принципиальных и технических особенностей рентгеноструктурный анализ наиболее эффективен для практического исследования кристаллической структуры. Подавляющее большинство таких исследований выполняется именно этим методом. Электронография и нейтронография используется главным образом для решения частных, специфических задач. Поэтому далее рассматриваются основы только рентгеноструктурного анализа — основы теории, методики и практики определения кристаллической структуры по дифракционному спектру рентгеновских лучей. [c.47]

    Экспериментальное исследование кристаллических структур основано на дифракции рентгеновских лучей на частицах кристаллической решетки. При ударе пучка рентгеновских лучей длиной волны Я о частицу этот пучок претерпевает дифракцию, т. е. вновь испускается во все стороны от этой частицы (рис. 62). Взаимодействие лучей, отраженных двумя соседними частицами, может привести [c.106]

    Наряду с оптическими методами для исследования дисперсных систем используются и рентгеновские методы, отличие которых от оптических заключается в малой длине волны рентгеновского излучения по сравнению с размером частиц дисперсной фазы. В основном рентгеновские методы используются для изучения внутренней структуры частиц дисперсной фазы (кристалличности, упаковки молекул). Возможно и определение размеров частиц, основанное на анализе формы дифракционных линий на рентгенограмме при дифракции рентгеновских лучей на малых кристаллах образуются размытые дифракционные максимумы, по ширине которых можно оценить размер частиц (точнее говоря, областей совершенной кристаллической решетки). Аморфные частицы, как известно, не дают дифракционных максимумов оценка размеров таких частиц может быть проведена с помощью анализа диффузного рассеяния рентгеновских лучей возле первичного пучка (так называемое малоугловое рассеяние). Теория этого метода определения размера аморфных частиц имеет общие черты с теорией рассеяния света большими частицами. [c.172]

    Таким образом, несмотря на разную валентность, три элемента— К, На и Са—в состоянии замещать друг друга. Это, кстати, отражается в разрыве между ортоклазом и плагиоклазами. Равным образом трехвалентный алюминий в состоянии заместить четырехвалентный кремний и нередко действительно замещает его в амфиболах, тогда как в плагиоклазе при эволюции в сторону альбита кремний вытесняет алюминий. Другой важный результат изучения рентгеновскими лучами кристаллической структуры состоит в ТО М, что очень мало минералов являются молекулярными соединениями, большинство их, и в частности силикаты, являются ионными. Способность к разнообразным отклонениям в составе, проявляемая, например, пироксенами и амфиболами, слюдами и т. п., в значительной степени объясняется взаимными замещениями между индивидуальными атомами и ассоциациями атомов. Поэтому более обычно и, несомненно, более точно и показательно пользоваться в случае минералов ионными или атом ными формулами, а не, по-старому, молекулярными. Разбор этой интересной темы читатель может найти в работах Брэммела [8] и Гольдшмидта [9]. [c.279]

    Изучение кристаллических структур методами рентгеноструктурного (основан на дифракции рентгеновских лучей кристаллической решеткой вещества) и электронографического анализа (основан на дифракции электронов или нейтронов) показало, что реальные кристаллы отличаются от идеальных. В реальных кристаллах строгая пространственная периодичность нарушается из-за наличия дефектов кристаллической структуры. Многие свойства кристаллических тел объясняются наличием таких дефектов. Последние могут быть собственными, если они образуются вследствие теплового движения в кристалле, или примесными, если в кристалле появляются посторонние примеси, введенные случайно или преднамеренно. Дефекту. могут затрагивать одну или несколько элементарных ячеек или весь кристалл в целом. В технологии пигментов большой интерес представляют, например, такие дефекты, как ультрамикротрещины, определяющие прочность кристалла, что в свою очередь играет важную роль в процессах измельчения и диспергирования пигментов. Если в момент кристаллизации возникают механические помехи росту кристалла, в нем может возникнуть дефект, называемый дислокацией. При деформациях кристалла дислокации и их скопления могут перерастать в ультрамикротрещины. Во многих случаях в узлах кристаллической решетки могут отсутствовать структурные единицы, т. е. атомы, ионы или молекулы. Такие дефекты носят название вакансий. В пространстве между узлами (в междоузлии ) могут присутствовать атомы, ионы или молекулы, причем как свои собственные (принадлежащие веществу кристалла), так и примесные (принадлежащие другому веществу). Вакансии и наличие атомов, ионов или молекул в междоузлиях оказывают существенное влияние на оптические свойства пигментов (цвет, показатель преломления), их электропроводность, а также на скорость роста кристаллов, особенно при реакциях в твердой фазе. [c.182]

    Цепная молекула представляет сополимер звеньев четырех типов, различающихся своими остатками, которые являются представителями двух пуриновых оснований — аденина (А) и гуанина (Г), а также двух пиримидиновых оснований — тимина (Т) и цитозина (Ц). В то время как общий состав оснований варьирует в широких пределах, в образцах ДНК, полученных из различных источников, содержание аденина всегда равно содержанию тимина, а содержание гуанина — содержанию цитозина [333, 334]. Эта эквивалентность имела решающее значение при создании Уотсоном и Криком модели ДНК, основанной на довольно ограниченных кристаллографических данных. Они указали, что образование водородных связей А + Т и Г + Ц приводит к структурам с почти идентичными размерами, и картина дифракции рентгеновских лучей кристаллической ДНК может быть объяснена, если предположить, что две антипарал-лельные переплетающиеся цепи имеют такую последовательность оснований, при которой аденин одной цепи всегда накладывается на ТИМИН другой, а гуанин подобным же образом попарно взаимодействует с цитозином. Модель винтовой лестницы ИСХ0ДН011 спирали изображена на рис. 39. Последующими исчерпывающими кристаллографическими анализами [335, 336] было доказано, что модель Уотсона — [c.125]

    Предположение де Бронля о наличии у электрона волновых свойств получило экспериментальное подтверждение уже в 1927 г., когда К- Д. Девиссоном и Л. X. Джермером в США, Дж. П. Томсоном в Англин и П. С. Тартаковским в СССР независимо друг от друга было установлено, что прн взаимодействии пучка электронов с дифракционной решеткой (в качестве которой использовались кристаллы металлов) наблюдается такая же дифракпион-ная картина, как и при действии на кристаллическую решетку металла пучка рентгеновских лучей в этих опытах электро вел себя как волна, длпна которой в точности совпадала с вычисленной по уравнению де Бройля. В настоящее время волновые свойства электронов подтверждены большим числом опытов и широко используются в электронографии — методе изучения структуры веществ, основанном на дифракции электронов. [c.70]

    С другой стороны, о существовании субмикротрещин в нагруженных полимерах известно уже давно, с тех пор как ленинградская школа [17, 18, 27, 28] применила для их изучения методы рассеяния рентгеновских лучей. Подобные субмикротрещины были обнаружены в ПЭ, ПП, ПВХ, ПВБ, ПММА и ПА-6. Авторы данных работ отметили две существенные особенности образования субмикротрещин [28]. Во-первых, субмикроскоиические трещины имеют конечные размеры, причем их поперечные размеры практически не зависят от продолжительности действия нагружения, величины напряжения и температуры (табл. 8.3). Во-вторых, поперечный размер субмикротрещин определяется структурой полимера. Для ориентированных кристаллических полимеров поперечный размер субмикротрещин совпадает с диаметром микрофибрилл для неориентированных аморфных полимеров, имеющих глобулярную структуру, данный размер совпадает с диаметром глобул [28]. [c.254]

    Влияние способа очистки и измельчения на кристаллическую структуру графитов определяли методом рентгеновской дифракции. С исследуемых проб получены рентгенограммы иа аппарате УРС-60, а отдельные отражения зарегистрированы на дифрактометре ДРОН-1 с использоваиием монохро1матизиро ванного Си Ка -из-луче ия. [c.150]

    Если длина волны близка по порядку величины размерам молекул и расстояниям между ними, то наблюдается известная интерференционная картина, изучение которой позволяет получить ценные сведения о структуре вещества. Рентгеновские лучи и электроны рассеиваются на электронных оболочках атомов, причем в первом случае (рентгеновские лучи) главную роль играют максимумы электронной плотности, а во втором случае (пучки электронов) — неоднородность электрического поля вблизи атомных ядер. Рентгеновский метод наиболее ценен при определении структуры кристаллических соединений (его основы рассматриваются в разд. 6.4.1). Здесь обсуждают только наиболее существенные аспекты определения строения отдельных молекул с помощью дифракционных методов. Строение молекулы можно установить вполне однозначно, если получить дифракционную картину вещества в газовой фазе (пар). Однако из-за низкой плотности рассеивающей среды для получения дифракционной картины в рентгеновских лучах необходима экспозиция в течение многих часов, а для получения элект-ронограммы — в течение нескольких секунд. Поэтому для исследования молекул в газовой фазе применяется преимущественно метод электронографии. [c.74]

    Известным аналогом периодических коллоидных структур мо-, жет служить кристалл монтимориллонитовой глины при его внутрикристаллическом набухании в водных растворах. При внутрикристаллическом набухании кристаллические плоскости толщиной каждая около 10 А раздвигаются и между ними образуются жидкие прослойки. Условием набухания является насыщение кристалла ионами Н+, или Na При очень низких концентрациях внутрикристаллические прослойки достигают толщины в 300 А. Одинаковость всех прослоек сохраняет периодическую структуру системы и позволяет по дифракции рентгеновских лучей измерять толщины прослоек. Полученные данные согласуются с теорией ДЛФО. Такой набухший кристалл служит хорошей моделью других периодических структур. С помощью этой модели можно также, как показал О. Г. Усьяров, обнаружить существование ближней и дальней потенциальной ям, энергетического барьера и влияние валентности ионов на закономерности набухания. [c.319]

    НЕЙТРОНОГРАФИЯ — метод изучения структуры молекул, кристаллов, жидкостей с помощью дифракции (рассеивания) нейтронов имеет много общего с рентгегюграфией. Дифракция нейтронов — типичное оптическое явление, аналогичное дифракции рентгеновских лучей, в котором ярко проявляются волновые свойства нейтрона. Для нейтронографических исследований требуются пучки тепловых нейтронов высокой интенсивности. Поэтому Н. начала развиваться лишь после строительства ядерных реакторов. Для исследования структуры вещества узкий направленный пучок тепловых нейтронов из реактора падает на монокристалл. Отражение нейтронных волн от кристаллической поверхности происходит в результате взаимодействия нейтронов с ядрами кристалла. Чтобы определить структуру кристалла, надо измерить углы, под которыми наблюдаются отражения первого порядка и интенсивность его. Н. имеет ряд преимуществ по сра-внлшю с рентгенографией благодаря зк1 чительному расширениво числа объектов исследования. [c.172]

    РЕНТГЕНОВСКИЕ ЛУЧИ — электро магнитные колебания весьма малой длины волн, возникающие при воздействии на вещество быстрыми электронами. Р. л. открыты в 1895 г. В. Рентгеном. Волновая природа Р. л. установлена в 1912 г. М. Лауэ, открывшим явление интерференции Р. л. в кристаллах. Это открытие явилось основой развития рентгеноструктурного анализа. Р. л. невидимы для глаза, обладают способностью вызывать яркую видимую флюоресценцию в некоторых естественных и в искусственно изготовляемых кристаллических веществах, они действуют на фотоэмульсию и вызывают ионизацию газов. Этими свойствами Р. л. пользуются для обнаружения, исследования и практического использования Р. л. Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при попадании электронов на антикатод рентгеновской трубки оно разлагается в сплошной спектр. Характеристические Р. л. образуются при выбивании электрона из одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внен)не-го слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов, с той лишь разницей, что структура характеристического спектра, в отличие от оптического спектра газов, не зависит от вещества, дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в периодической системе элементов Д. И. Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Другой особенностью характеристических спектров является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию в свободном состоянии или в химическом соединении. Это свойство является основой рентгеноспектрального йпализа. Р. л. широко используются в науке и технике. Высокая про- [c.213]

    С помощью электронографического анализа можно в принципе решать те же задачи, что и рентгенографическим анализом исследование кристаллической структуры, проведение фазового анализа, определение межплоскостных расстояний и периодов решетки, определение текстуры и ориентировки кристаллов и т. д. Однако особенности волновых свойств пучка электронов обусловливают и определенную специфику их использования, а также преимущества и недостатки по сравнению с рентгенографическим методом исследования кристаллов. Преимущество электронограмм заключается прежде всего в том, что в связи с малой длиной волны и сильным взаимодействием электронов с веществом этим методом можно получить резкие и интенсивные рефлексы при меньших размерах кристаллов и-меньшем количестве вещества, чем при рентгенографическом анализе, В рентгенографии, например, расширение линий начинается при р.эзмере частиц 500—900 А, а в электронографии оно становится заметным лишь при размерах 20—30 А. Интенсивность электронного луча гораздо больше, а необходимая экспозиция гораздо меньше, чем рентгеновских лучей, что дает существенные методические преимущества. Интенсивность отражений при дифракции электронов обычно настолько велика, что позволяет визуально на флюоресцирующем экране наблюдать дифракционную картину. Указанные особенности электронографии делают ее особенно ценной, например, при исследовании зародышей новых фаз. Электронография может использоваться также при изучении положений легких атомов в кристаллической решетке, хотя для этого более пригодна нейтронография, [c.105]

    Положения главных максимумов дифракционного спектра / (Н) соответствуют узлам обратной решетки правильного кристалла, а функция. У (Н) является непрерывной функцией вектора обратного пространства Н. Любое искажение правильной структуры кристалла будет сопровождаться перераспределением части интенсивности главных максимумов дифракционного спектра в области обратного пространства между узлами обратной решетки. Это проявляется на рентгенограммах в виде диффузного фона между главными отран<ениями. Геометрия и интенсивность диффузного фона зависит от характера искажений правильной трех-мерно-периодической структуры кристалла, благодаря чему возможно экспериментальное изучение нарушений кристаллической структуры по эффектам диффузного рассеяния. Подробное изложение теории диффузного рассеяния рентгеновских лучей можно найти в работах [1—4]. [c.99]

    У. Л. Брегг и У. Г. Брегг и несколько позднее Г. В. Вульф вывели основную формулу, позволяющую расшифровывать структуру по данным интерференции рентгеновских лучей. Любую кристаллическую решетку можно рассматривать как совокупность плоскостей, находящихся на одинаковом расстоянии друг от друга. Пусть рентгеновский луч падает, как это показано иа рис. XXIII. 1, под определенным углом скольжения 0 к плоскости (угол скольжения является дополнительным к углу между лучом и перпендикуляром к плоскости). [c.494]

    Исследование структуры кристаллов. Правильная форма кристаллов обусловлена упорядоченным расположением составляющих их частиц - атомов, ионов или молекул. Как указано выше, это расположение может быть представлено в виде кристаллической решетки - пространственного каркаса, образованного пересекающимися друг с другом плоскостями. В точках пересечения трех плоскостей (узлах решетки) лежат центры частиц, образующих кристалл. Такие представления о строении кристаллических тел высказывались давно многими исследователями, в частности М. В. Ломоносов использовал их для объяснения свойств селитры. Однако экспериментально исследовать внутреннюю структуру кристаллов удалось только в XX столетии, после того как в 1912 г. Лауэ, Фридрих и Книппинг (Германия) открыли явление дифракции рентгеновских лучей, на котором основан метод рентгеноструктурного анализа. [c.151]

    Физические свойства вещества зависят от атомного состава, структуры, характера движения и взаимодействия частиц. Для определения этих параметров используются разнообразные физические методы исследования. К ним относятся методы, основанные на явлении дифракции рентгеновского излучения, электронов п нейтронов. Явление дифракции рентгеновских лучей на монокристаллах было открыто М. Лауз в 1912 г. Оно явилось началом рентгеноструктурного анализа твердых тел, жидкостей и газов. Советские ученые А. Ф. Иоффе, С. Т. Конобеевский, Н. Е. Успенский, Н. Я. Селяков одними из первых применили рентгеноструктурный метод для определения геометрических размеров кристаллических решеток и их пространственной симметрии, нахождения координат атомов кристалла, обнаружения преимущественных ориентировок (текстур), возникающих при деформации твердых тел, исследования внутренних напряжений, построения диаграмм состояния. Их основополагающие работы в этой области получили дальнейшее развитие в трудах Г. В. Курдюмова, Г. С. Жданова, Н. В. Белова, В. И. Данилова, В. И. Ивероновой, А. И. Китайгородского, Б. К. Вайнштейна и др. [c.4]


Смотреть страницы где упоминается термин Рентгеновские лучи и кристаллическая структура: [c.219]    [c.37]    [c.361]    [c.6]    [c.252]    [c.81]    [c.110]    [c.250]    [c.57]    [c.631]    [c.282]    [c.14]    [c.208]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.213 , c.217 , c.218 , c.263 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллическая структура

Кристаллическая структура, диффракция рентгеновских лучей

Лучи рентгеновские

Определение кристаллических структур с помощью рентгеновских лучей

Приложение IV. Рентгеновские лучи и кристаллическая структура

Рентгеновские лучи и кристаллическая

лучами рентгеновскими лучами



© 2025 chem21.info Реклама на сайте