Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновские лучи и кристаллическая

    Изучение кристаллических структур проводится чаще всего-двумя методами рентгеноструктурным анализом, основанном на дифракции рентгеновских лучей кристаллической решеткой вещества, и электронографическим анализом, основанном на дифракции электронов или нейтронов Используя эти методы, было [c.238]

    Символы означают дифракция электронов газовыми молекулами S—спектроскопический метод и X—дифракция рентгеновских лучей кристаллическими веществами. См. 4.3. [c.424]


    Рентгенография. Для исследования твердых углеводородов и других ком-]а.-109 г8 понент нефти в кристаллическом состоянии, а также для изучения структуры катализаторов применяется метод дифракции рентгеновских лучей. Кристаллическая решетка вещества играет роль системы дифракционных решеток. [c.340]

    Метод фазового анализа основан на том, что картина рассеяния рентгеновских лучей кристаллическим веществом зависит в первую очередь от атомной структуры, т. е. от характера расположения атомов и молекул. Рентгенограммы двух полиморфных модификаций, например алмаза и графита, совершенно различны, тогда как рентгенограммы изоморфных веществ различного химического состава, например хлористого натрия и бромистого калия, весьма сходны. Из приведенных на рис. 3—5 рентгенограмм ряда веществ видно  [c.13]

    Для успешного решения многих задач, связанных с исследованием интенсивности когерентного и некогерентного рассеяния рентгеновских лучей кристаллическими и аморфными телами, требуется использование монохроматического излучения. В связи с этим получение мощных монохроматических источников заслуживает большого внимания. Использование фокусирующих монохроматоров [1—3] приводит к значительному выигрышу в интенсивности по сравнению с плоскими монохроматорами. В случае фокусирующих монохроматоров интенсивность отраженного пучка, его спектральный состав и геометрия существенным образом зависят от размера и яркости источника (фокуса рентгеновской трубки), совершенства кристалла, используемого в качестве монохроматора, и условий фокусировки [4]. [c.116]

    Как видно из сказанного, называть эти осадки аморфными не совсем правильно. Правильнее было бы называть их скрытокристаллическими , поскольку они образуются из кристаллов, хотя и мельчайших. Действительно, наличие кристаллической решетки у аморфных осадков может быть в большинстве случаев доказано на опыте путем исследования их с помощью рентгеновских лучей, а иногда и под микроскопом. [c.99]

    В последнее время созданы рентгеновские установки, автоматически расшифровывающие рентгенограммы и даже воспроизводящие стереоскопический чертеж структуры исследуемого вещества. Для этого с помощью фотоэлемента регистрируются рентгеновские лучи, претерпевшие дифракцию на кристаллической решетке исследуемого вещества. Импульсы фотоэлемента автоматически кодируются и вводятся в электронно-вычислительную машину. На основании этой информации машина создает модель одной из возможных структур и затем делает обратный расчет, т. е. по структуре рассчитывает рентгенограмму. В случае несовпадения рассчитанной и эксперимен- [c.151]


    Интенсивность рассеяния рентгеновского излучения в веи естве зависит от угла, под которым это рассеяние наблюдается (по отношению к направлению падающего луча). Эта зависимость в случае газов выражается непрерывной кривой без минимумов и максимумов и может быть теоретически объяснена на основании представления о независимости движения отдельных молекул газа. Твердые кристаллы рассеивают рентгеновские лучи только в определенных направлениях, что является следствием фиксированного расположения атомов в узлах кристаллической решетки и дает возможность полного анализа молекулярной структуры кристалла. [c.161]

    Изучение рассеяния рентгеновских лучей в жидкостях с многоатомными молекулами показывает, что не только относительное расположение молекул в некоторой степени упорядочено, но и их взаимная ориентация не вполне хаотична. Это, по-видимому, справедливо даже по отношению к таким симметричным молекулам, как U в- случае же несимметричных полярных молекул, например воды, имеет место вполне закономерная взаимная ориентация соседних молекул воды с образованием временных водородных связей между ними. Интересно, что преобладающая кристаллическая структура жидкой воды при повышенных температурах соответствует не структуре обычного льда, которая тоже имеется в жидкой воде, а более плотной структуре, относящейся к структуре льда так же, как относятся друг к другу две кристаллические модификации кремнезема—кварц и тридимит. [c.162]

    Прохождение рентгеновских лучей через кристаллическое вещество сопровождается отклонением их от первоначального направления. Это явление называется дифракцией рентгеновских лучей. [c.111]

    Под действием электромагнитного поля рентгеновских лучей электроны атомов, входящих в кристаллическую решетку вещества, начинают колебаться. Частота вынужденных колебаний электронов будет равна частоте электромагнитного поля первичного пучка рентгеновских лучей. Колеблющийся атом становится источником электромагнитных волн, распространяющихся от него во все стороны с частотой, равной частоте первичного луча. Расположение атомов в любой кристаллической решетке закономерно и расстояния между ними в данном направлении одинаковы, поэтому лучи, рассеянные отдельными атомами, будут интерферировать между собой. Интенсивность их в одних направлениях будет получаться значительно больше, чем в других. Следовательно, для рентгеновских лучей кристалл является трехмерной дифракционной решеткой, [c.111]

    Уравнение Вульфа—Брегга. Русский физик Г. В. Вульф дал наглядное объяснение отклонению рентгеновских лучей при прохождении их через кристаллическое вещество. Он показал, что рассеивание рентгеновских лучей атомами можно рассматривать как отражение рентгеновских лучей от параллельных атомных плоскостей кристалла. [c.112]

    Эта концепция применима к дифракции в кристалле, поскольку кристаллическая решетка может быть описана с помощью набора параллельных плоскостей с различными расстояниями с/ между ними. Если пучок рентгеновских лучей падает на любой набор плоскостей под углом, для которого выполняется соотношение Брэгга, то из кристалла будет исходить единственный вторичный пучок. И на самом деле, когда на монокристалл вещества действует пучок интенсивного рентгеновского излучения, из него в различных направлениях испускаются многие тысячи более слабых пучков или отражений, как это показано на рис. 17.9. Угол между каждым отраженным пучком и падающим пучком излучения определяется расстоянием между рассеивающими плоскостями. [c.375]

    Распространяя это обсуждение на случай трех измерений, можно сказать, что любая точка обратной решетки, лежащая на сфере отражения (определяемой длиной волны, направлением падающего пучка и началом координат элементарной ячейки), в принципе приводит к дифрагированному пучку, выходящему из кристалла в направлении, определяемом центром сферы и точкой пересечения о. р. со сферой. Отсюда немедленно следует, что по мере уменьшения Х (т.е. по мере увеличения энергии рентгеновских лучей) размер сферы растет и при пересечении сферы обратной решеткой наблюдается больше отражений. Отметим, что о. р. вращается вместе с кристаллом вокруг начала координат, которое находится на поверхности сферы отражения, а не в центре ее. Таким образом, для данной кристаллической системы можно получить больше информации. В действительности оказывается, что число возможных отражений N выражается как [c.381]

    Рассмотрим прохождение через кристалл пучка рентгеновских лучей с длиной волны X. Ввиду значительной проникающей способности рентгеновского излучения большая часть его проходит через кристалл. Некоторая доля излучения отражается от плоскостей, в которых расположены атомы, составляющие кристаллическую решетку (рис. 1.77). Отраженные лучи интерферируют друг с другом, в результате чего происходит их взаимное усиление или погашение. Очевидно, что результат интерференции зависит от разности хода 6 лучей, отраженных от соседних параллельных плоскостей. Усиление происходит в том случае, когда б равно целому числу длин волн, тогда отраженные волны будут в одинаковой фазе. Как видно из рис. 1.77, луч Si отраженный от плоскости атомов Ри проходит меньший путь, чем луч S , отраженный от соседней плоскости Р , разность этих путей равна сумме длин отрезков АВ и ВС, Поскольку АВ ВС = d sin ф, то 6 = 2d sin ф (где d — расстояние между плоскостями отражения, ф — угол, образуемый падающим лучом и плоскостью). Усиление отраженного излучения происходит при условии [c.142]


    Разработана методика оценки параметров межмолекулярной динамики констант скорости, времен релаксации, коэффициентов диффузии на базе данного малоуглового разрешения рентгеновских лучей. Метод применим для жаро-термостойких полимеров и углеродистых веществ пеков, коксов, -фракций и -фракций и позволяет судить о механизме формирования кристаллической структуры. [c.153]

    После открытия Лауэ (1912 г.) дифракции рентгеновских лучей теория кристаллической решетки, которая начала развиваться еще в ХУП в., получила полное экспериментальное подтверждение. Методом рентгеноструктурного анализа были измерены межатомные расстояния и определено положение атомов в кристаллах. При этом было установлено, что структура кристаллов является плотнейшей упаковкой соответствующих структурных единиц и определяется прежде всего размерами этих структурных единиц. Согласно правилу Гольдшмидта (1927 г.), строение кристалла определяется числом его структурных единиц (ионов), отношением их радиусов, а также их поляризационными свойствами. Усиленное изучение связи состава и свойств твердых веществ с их кристаллической структурой привело к формированию новой отрасли химии — кристаллохимии. Кристаллохимические исследования, среди которых выдающееся значение имели работы Л. Полинга, А. В. Шубникова, Н. В. Белова, А. И. Китайгородского, помогли глубже понять природу твердых веществ, раскрыть закономерности, управляющие образованием кристаллических структур, в том числе таких сложных, как структуры силикатов и алюмосиликатов. [c.166]

    Пусть узкий пучок монохроматических рентгеновских лучей с длиной волны % падает на совокупность большого числа кристалликов. Каждый из них может быть охарактеризован набором семейств параллельных плоскостей с определенными межплоскостными расстояниями (рис. XXX. 5). При взаимодействии рентгеновских лучей с кристаллическим веществом возникает дифракционная картина, максимумы интенсивности которой удовлетворяют уравнению Брэгга [c.356]

    Гетерогенность структуры доменного типа может наблюдаться методом малоуглового рассеяния рентгеновских лучей в случае растяжения аморфных образцов полистирола и полиметилметакрилата при температуре ниже Го- Обнаруживаемая методами дифракции рентгеновских лучей в больших и малых углах гетерогенность структуры расплава полиэтилена — результат проявления специфики полимерного состояния вещества, заключающейся в возможности расположения одной и той же длинной макромолекулы в нескольких упорядоченных областях, что приводит к сохранению чередования в расплаве областей повышенной и пониженной плотности, аналогично тому, как это наблюдается для частично-кристаллического полимера. Все эти данные не согласуются с моделью гомогенного полимера в виде совокупности хаотически перепутанных цепей. Сегменты и цепи группируются в областях упорядочения, больших областей флуктуации плотности. А так как эти области увеличиваются с возрастанием молекулярной массы полимера, можно сделать вывод, что истинное распределение сегментов содержит своеобразные ядра (домены) с повышенной плотностью. Остальные сегменты полимерной системы находятся вне этих доменов. [c.27]

    Выше уже говорилось, что свет, который в классической физике рассматривается с позиций волновой механики, проявляет и корпускулярные свойства. В то же время, можно показать, что электроны также обладают волновыми свойствами. Так, Дэвиссон и Джермер (1927 г..) установили, что электроны рассеиваются на кристаллической решетке подобно рентгеновским лучам (разд. 6.4.1). Еще до этого де Бройль (1925 г.) обобщил уравнение Эйнштейна [c.27]

    При структурных исследованиях кристаллических веществ используется взаимодействие рентгеновского излучения с кристаллом. При этом проникающие в кристалл рентгеновские лучи (с длиной волны I) всегда отражаются от атомов (ионов) кристаллической решетки под углом а в соответствии с формулой Вульфа — Брэгга  [c.110]

    Важную информацию о связи в кристаллах можно получить с помощью так называемого фурье-преобразования рассеяния рентгеновских лучей на электронах кристаллической решетки монокристалла. Так как в кристалле электронная плотность периодически изменяется, снимают диаграммы электронной плотности, на которых проводят линии одинаковой электронной плотности. [c.111]

    В отличие от оптических рентгеновские спектры связаны с переходами электронов во внутренних оболочках атомов. Так как длина волны рентгеновского луча соизмерима с межатомными расстояниями в кристаллах, то кристаллическая решетка является для рентгеновских лучей дифракционной решеткой. При прохождении через нее рентгеновских лучей будут наблюдаться закономерное отклонение их от первоначального направления и образование определенной дифракционной картины. Исследование диф- [c.152]

    На дифрактограммах (рис. 9.5) имеются пики, соответствующие рассеянию рентгеновских лучей кристаллической частью целлюлозы и аморфное гало в виде плавной части кривой с максимумом интенсивности при 2в = 19°. Расшифровав дифрактограмму, определяют брегговские углы 0 и рассчитывают параметры элементарной ячейки. После этого строят модель ячейки. [c.242]

    Для достижения максимальной точности проба должна быть измельчена до частиц, размеры которых много меньше критической толщины. В этом случае, согласно X. И. Шалгоски [29], способ заполнения держателя образца не оказывает большого влияния на результат. Современные приборы дают возможность менять образцы, не опасаясь направленного рассеяния рентгеновских лучей кристаллическими частицами достаточно малых размеров. [c.230]

    В 1906 г. Чарлз Гловер Баркла установил, что различные элементы испускают определенные серии характеристических рентгеновских лучей. Уильям Генри Брэгг и его сын Уильям Лоренс Брэгг смогли объяснить это в 1912 г. дифракцией рентгеновских лучей кристаллическими веществами. В 1913 г. Генри Мозли, используя в качестве антикатодов в рентгеновских трубках различные элементы, получил по методу Брэггов эмиссионные спектры этих элементов. При этом он обнаружил, что длины волны таких рентгеновских лучей уменьшаются с увеличением атомной массы излучающего элемента. Связь между увеличением атомной массы элементов и уменьшением длины волны зависела от величины положительного заряда ядра атома. Мозли составил диаграмму и показал, что, зная длину волны рентгеновских лучей, можно рассчитать электрический заряд ядра элемента. Например, заряд ядра равен для водорода +1. гелия +2, лития +3, урана -(-92. Величина заряда ядра соответствует порядковому номеру, понятие о котором ввел Иоганнес Роберт Ридберг, чтобы исправить выявленное нарушение закономерности в расположении элементов в периодической системе. Некоторые элементы с большей атомной массой размещены в соответствии с зарядом их ядра в системе перед элементами с меньшей массой (Аг — перед К, Со — перед №, Те — перед I). Именно в этом заключается физический смысл порядкового номера элемента. [c.104]

    Таким образом, несмотря на разную валентность, три элемента— К, На и Са—в состоянии замещать друг друга. Это, кстати, отражается в разрыве между ортоклазом и плагиоклазами. Равным образом трехвалентный алюминий в состоянии заместить четырехвалентный кремний и нередко действительно замещает его в амфиболах, тогда как в плагиоклазе при эволюции в сторону альбита кремний вытесняет алюминий. Другой важный результат изучения рентгеновскими лучами кристаллической структуры состоит в ТО М, что очень мало минералов являются молекулярными соединениями, большинство их, и в частности силикаты, являются ионными. Способность к разнообразным отклонениям в составе, проявляемая, например, пироксенами и амфиболами, слюдами и т. п., в значительной степени объясняется взаимными замещениями между индивидуальными атомами и ассоциациями атомов. Поэтому более обычно и, несомненно, более точно и показательно пользоваться в случае минералов ионными или атом ными формулами, а не, по-старому, молекулярными. Разбор этой интересной темы читатель может найти в работах Брэммела [8] и Гольдшмидта [9]. [c.279]

    Изучение кристаллических структур методами рентгеноструктурного (основан на дифракции рентгеновских лучей кристаллической решеткой вещества) и электронографического анализа (основан на дифракции электронов или нейтронов) показало, что реальные кристаллы отличаются от идеальных. В реальных кристаллах строгая пространственная периодичность нарушается из-за наличия дефектов кристаллической структуры. Многие свойства кристаллических тел объясняются наличием таких дефектов. Последние могут быть собственными, если они образуются вследствие теплового движения в кристалле, или примесными, если в кристалле появляются посторонние примеси, введенные случайно или преднамеренно. Дефекту. могут затрагивать одну или несколько элементарных ячеек или весь кристалл в целом. В технологии пигментов большой интерес представляют, например, такие дефекты, как ультрамикротрещины, определяющие прочность кристалла, что в свою очередь играет важную роль в процессах измельчения и диспергирования пигментов. Если в момент кристаллизации возникают механические помехи росту кристалла, в нем может возникнуть дефект, называемый дислокацией. При деформациях кристалла дислокации и их скопления могут перерастать в ультрамикротрещины. Во многих случаях в узлах кристаллической решетки могут отсутствовать структурные единицы, т. е. атомы, ионы или молекулы. Такие дефекты носят название вакансий. В пространстве между узлами (в междоузлии ) могут присутствовать атомы, ионы или молекулы, причем как свои собственные (принадлежащие веществу кристалла), так и примесные (принадлежащие другому веществу). Вакансии и наличие атомов, ионов или молекул в междоузлиях оказывают существенное влияние на оптические свойства пигментов (цвет, показатель преломления), их электропроводность, а также на скорость роста кристаллов, особенно при реакциях в твердой фазе. [c.182]

    Цепная молекула представляет сополимер звеньев четырех типов, различающихся своими остатками, которые являются представителями двух пуриновых оснований — аденина (А) и гуанина (Г), а также двух пиримидиновых оснований — тимина (Т) и цитозина (Ц). В то время как общий состав оснований варьирует в широких пределах, в образцах ДНК, полученных из различных источников, содержание аденина всегда равно содержанию тимина, а содержание гуанина — содержанию цитозина [333, 334]. Эта эквивалентность имела решающее значение при создании Уотсоном и Криком модели ДНК, основанной на довольно ограниченных кристаллографических данных. Они указали, что образование водородных связей А + Т и Г + Ц приводит к структурам с почти идентичными размерами, и картина дифракции рентгеновских лучей кристаллической ДНК может быть объяснена, если предположить, что две антипарал-лельные переплетающиеся цепи имеют такую последовательность оснований, при которой аденин одной цепи всегда накладывается на ТИМИН другой, а гуанин подобным же образом попарно взаимодействует с цитозином. Модель винтовой лестницы ИСХ0ДН011 спирали изображена на рис. 39. Последующими исчерпывающими кристаллографическими анализами [335, 336] было доказано, что модель Уотсона — [c.125]

    Стехиометрические нарушения, а также инородные примеси неизбежно вызовут местные искажения геометрического порядка в кристалле. Все эти нарушения могут в ряде случаев привести к тому, что кристалл окажется разделенным трещинами на отдельные микрокристаллические блоки, в той или другой степени скрепленные друг с другом. Такое блочное строение характерно для многих кристаллических тел (например, различные силикагели, алюмогели, активированный уголь и др,), имеющих важное значение в гетерогенном катализе. Таким образом, в реальном кристалле, кроме обусловленных термодинамическими причинами тепловых дефектов, имеются необратимые нарушения, связанные с историей образования данного образца, так называемые биографические дефекты. Поскольку нарушения решетки приводят к энергетической неравноценности отдельных элементов кристалла, наличие этих нарушений облегчает образование и дополнительного количества тепловых дефектов, число которых может быть значительно больше, чем в идеальном кристалле. Отклонения от свойств идеального кристалла могут быть обнаружены и экспериментально. Так, сухие кристаллы поваренной соли разрушаются при натяжениях порядка 4 кГ/см , в то время как теоретический расчет дает величину порядка 200 кГ1см . Если же эксперимент проводить с кристаллом, погруженным в насыщенный раствор соли, т, е, в условиях, когда возможно залечивание микродефектов, опытная нагрузка приближается к теоретической. Изучение интенсивности отражения от кристалла рентгеновских лучей (Ч, Г. Дарвин) показало, что многие кристаллические тела состоят из совокупности микрокристаллов, повернутых друг к другу под различными углами. При этом было установлено, что для большинства кристаллических тел линейный размер отдельных блоков равен 10 -ь10- см. Такой же результат был получен и при исследовании лауэграмм механически деформируемых кристаллов (А. Ф. Иоффе). Объемная блочная [c.340]

    Предположение де Бронля о наличии у электрона волновых свойств получило экспериментальное подтверждение уже в 1927 г., когда К- Д. Девиссоном и Л. X. Джермером в США, Дж. П. Томсоном в Англин и П. С. Тартаковским в СССР независимо друг от друга было установлено, что прн взаимодействии пучка электронов с дифракционной решеткой (в качестве которой использовались кристаллы металлов) наблюдается такая же дифракпион-ная картина, как и при действии на кристаллическую решетку металла пучка рентгеновских лучей в этих опытах электро вел себя как волна, длпна которой в точности совпадала с вычисленной по уравнению де Бройля. В настоящее время волновые свойства электронов подтверждены большим числом опытов и широко используются в электронографии — методе изучения структуры веществ, основанном на дифракции электронов. [c.70]

    С помощью физических методов удалось измерить расстояние между соответствующими атомами в цис- и транс-изомёрных этиленовых соединениях, Так, напр(1мер, Дебай при помощи интерферометрического метода (измерения рассеяния рентгеновских лучей, производимого отдельными молекулами в кристаллической решетке) нашел, что [c.46]

    С другой стороны, о существовании субмикротрещин в нагруженных полимерах известно уже давно, с тех пор как ленинградская школа [17, 18, 27, 28] применила для их изучения методы рассеяния рентгеновских лучей. Подобные субмикротрещины были обнаружены в ПЭ, ПП, ПВХ, ПВБ, ПММА и ПА-6. Авторы данных работ отметили две существенные особенности образования субмикротрещин [28]. Во-первых, субмикроскоиические трещины имеют конечные размеры, причем их поперечные размеры практически не зависят от продолжительности действия нагружения, величины напряжения и температуры (табл. 8.3). Во-вторых, поперечный размер субмикротрещин определяется структурой полимера. Для ориентированных кристаллических полимеров поперечный размер субмикротрещин совпадает с диаметром микрофибрилл для неориентированных аморфных полимеров, имеющих глобулярную структуру, данный размер совпадает с диаметром глобул [28]. [c.254]

    Если длина волны близка по порядку величины размерам молекул и расстояниям между ними, то наблюдается известная интерференционная картина, изучение которой позволяет получить ценные сведения о структуре вещества. Рентгеновские лучи и электроны рассеиваются на электронных оболочках атомов, причем в первом случае (рентгеновские лучи) главную роль играют максимумы электронной плотности, а во втором случае (пучки электронов) — неоднородность электрического поля вблизи атомных ядер. Рентгеновский метод наиболее ценен при определении структуры кристаллических соединений (его основы рассматриваются в разд. 6.4.1). Здесь обсуждают только наиболее существенные аспекты определения строения отдельных молекул с помощью дифракционных методов. Строение молекулы можно установить вполне однозначно, если получить дифракционную картину вещества в газовой фазе (пар). Однако из-за низкой плотности рассеивающей среды для получения дифракционной картины в рентгеновских лучах необходима экспозиция в течение многих часов, а для получения элект-ронограммы — в течение нескольких секунд. Поэтому для исследования молекул в газовой фазе применяется преимущественно метод электронографии. [c.74]

    Известным аналогом периодических коллоидных структур мо-, жет служить кристалл монтимориллонитовой глины при его внутрикристаллическом набухании в водных растворах. При внутрикристаллическом набухании кристаллические плоскости толщиной каждая около 10 А раздвигаются и между ними образуются жидкие прослойки. Условием набухания является насыщение кристалла ионами Н+, или Na При очень низких концентрациях внутрикристаллические прослойки достигают толщины в 300 А. Одинаковость всех прослоек сохраняет периодическую структуру системы и позволяет по дифракции рентгеновских лучей измерять толщины прослоек. Полученные данные согласуются с теорией ДЛФО. Такой набухший кристалл служит хорошей моделью других периодических структур. С помощью этой модели можно также, как показал О. Г. Усьяров, обнаружить существование ближней и дальней потенциальной ям, энергетического барьера и влияние валентности ионов на закономерности набухания. [c.319]

    НЕЙТРОНОГРАФИЯ — метод изучения структуры молекул, кристаллов, жидкостей с помощью дифракции (рассеивания) нейтронов имеет много общего с рентгегюграфией. Дифракция нейтронов — типичное оптическое явление, аналогичное дифракции рентгеновских лучей, в котором ярко проявляются волновые свойства нейтрона. Для нейтронографических исследований требуются пучки тепловых нейтронов высокой интенсивности. Поэтому Н. начала развиваться лишь после строительства ядерных реакторов. Для исследования структуры вещества узкий направленный пучок тепловых нейтронов из реактора падает на монокристалл. Отражение нейтронных волн от кристаллической поверхности происходит в результате взаимодействия нейтронов с ядрами кристалла. Чтобы определить структуру кристалла, надо измерить углы, под которыми наблюдаются отражения первого порядка и интенсивность его. Н. имеет ряд преимуществ по сра-внлшю с рентгенографией благодаря зк1 чительному расширениво числа объектов исследования. [c.172]

    РЕНТГЕНОВСКИЕ ЛУЧИ — электро магнитные колебания весьма малой длины волн, возникающие при воздействии на вещество быстрыми электронами. Р. л. открыты в 1895 г. В. Рентгеном. Волновая природа Р. л. установлена в 1912 г. М. Лауэ, открывшим явление интерференции Р. л. в кристаллах. Это открытие явилось основой развития рентгеноструктурного анализа. Р. л. невидимы для глаза, обладают способностью вызывать яркую видимую флюоресценцию в некоторых естественных и в искусственно изготовляемых кристаллических веществах, они действуют на фотоэмульсию и вызывают ионизацию газов. Этими свойствами Р. л. пользуются для обнаружения, исследования и практического использования Р. л. Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при попадании электронов на антикатод рентгеновской трубки оно разлагается в сплошной спектр. Характеристические Р. л. образуются при выбивании электрона из одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внен)не-го слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов, с той лишь разницей, что структура характеристического спектра, в отличие от оптического спектра газов, не зависит от вещества, дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в периодической системе элементов Д. И. Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Другой особенностью характеристических спектров является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию в свободном состоянии или в химическом соединении. Это свойство является основой рентгеноспектрального йпализа. Р. л. широко используются в науке и технике. Высокая про- [c.213]


Смотреть страницы где упоминается термин Рентгеновские лучи и кристаллическая: [c.219]    [c.294]    [c.248]    [c.156]    [c.361]    [c.6]    [c.252]    [c.81]    [c.110]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллическая структура, диффракция рентгеновских лучей

Кристаллические области измерение методом диффракции рентгеновских лучей

Лучи рентгеновские

Определение кристаллических структур с помощью рентгеновских лучей

Приложение IV. Рентгеновские лучи и кристаллическая структура

Рентгеновские лучи и кристаллическая структура

лучами рентгеновскими лучами



© 2025 chem21.info Реклама на сайте