Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Промоторы для железных катализаторов калий

    Предполагается, что промоторы отдают электроны поверхностным атомам металла, тем самым упрочняя связь углерод — металл адсорбированного СО, поскольку СО действует как акцептор электронов. Такое видоизменение катализатора может, в свою очередь, воздействовать на реакционную способность поверхностного комплекса, образованного при гидрировании. При промотировании оксидом калия селективность железных катализаторов сдвигается в направлении получения жидких углеводородов более высокой молекулярной массы, так как повышенная прочность связи железо—углерод увеличивает поверхностное покрытие СО, а также вероятность роста углеродной цепи. В противоположность оксиду углерода водород на поверхностях железа ведет себя как донор электронов, и поэтому промотирование оксидом калия приводит к снижению адсорбции водорода [38]. Это уменьшает активность катализатора в процессе гидрирования и способствует образованию олефинов. Последнее, по-видимому, происходит при дегидратации адсорбированных окисленных промежуточных соединений. [c.77]


    Действие катализатора сильно зависит от его физического состояния (плотный, порошкообразный и т. п.) и от присутствия посторонних веществ. Некоторые вещества, называемые промоторами, усиливают действие катализатора. Например, синтез аммиака, протекающий на железном катализаторе, может промотироваться диоксидом калия. [c.340]

    Малые примеси к активной фазе катализатора (металла, полупроводника), как это объясняется электронной теорией катализа, могут резко повышать ее каталитическую активность и влиять на селективность каталитического процесса. Вокруг чужеродного атома, внедрившегося в поверхность катализатора, образуется зона напряжений, спадающих от центра к периферии, обладающих различной избыточной энергией, широким набором дополнительных локальных уровней энергий адсорбции. Тем самым повышается вероятность возникновения участков, оптимально соответствующих условиям данной реакции. Это обычный механизм промотирования катализаторов. Эффективность промотирующего действия добавок (активаторов, промоторов) растет с интенсивностью вызываемых ими нарушений решетки. Поэтому особенно эффективным нередко оказывается промотирование весьма малыми количествами таких веществ, которые при более высоких их содержаниях отравляют катализатор. Промотор может содействовать течению гетерогенно-каталитической реакции, способствуя адсорбции реагирующих веществ или десорбции продуктов с поверхности катализатора. Так, добавка оксида калия к железному катализатору синтеза аммиака способствует десорбции образующегося аммиака с поверхности. [c.306]

    И среди каталитических реакций встречаются такие, в которых используются либо все центры поверхности, либо активна небольшая их часть. При окислении аммиака в азотную кислоту на платине реакция настолько быстрая, что с поверхностью реагирует при столкновении практически каждая молекула (см. разд. 6, гл. Vni). Тоже самое наблюдается при разложении озона на поверхности окиси серебра [52] и аммиака или германа на поверхностях германия [53]. С другой стороны, не может быть сомнений в том, что необходимость удаления последних следов кислорода с поверхности железных катализаторов синтеза аммиака при обмене азота или при синтезе аммиака указывает на то, что лишь небольшая доля центров активна это подтверждается действием промоторов, например окиси калия, которые могут удалять кислотные центры , активные для крекинга, но неактивные для синтеза аммиака (см. разд. 3 гл. Vni). Доказано (см. разд.7 гл. VHI), что такие кислотные центры активны в реакциях крекинга на природных глинах и алюмосиликатных катализаторах независимо от того, являются ли они кислотами Брэнстеда или Льюиса однако они не заполняют полностью поверхности катализаторов. Введение в поверхность окислов показало, что в некоторых реакциях окисления в каждый данный момент времени активна только небольшая часть центров 154 ..  [c.267]


    Железный катализатор синтеза аммиака (окись алюминия или окись калия употребляют как промоторы) [c.31]

    Железные катализаторы, применяемые в синтезах аммиака чистое железо и железо с промоторами — 1,6% окиси калия и 1,3% окиси алюминия [c.238]

    Эффективный катализатор был получен путем введения в железо окислов калия и алюминия. Опубликовано много работ и выдано много натентов но методам приготовления промотированных железных катализаторов. Основные этапы их приготовления заключаются в плавлении окиси железа и растворении промоторов в расплаве, который затем охлаждают и дробят на куски. Измельченный катализатор восстанавливают азотноводородной смесью, в результате чего он превращается в пористое железо, содержащее примеси. [c.113]

    Реакцию синтеза аммиака проводят в присутствии железного катализатора, содержащего небольшие количества (3—8%) окислов алюминия, калия, кальция и кремния — так называемых промоторов. [c.24]

    Замечено, что некоторые вещества, сами по себе неактивные, при добавлении в небольших количествах к катализаторам могут значительно увеличить их активность. Подобные вещества называются промоторами или активаторами. Например, действие железного катализатора при синтезе аммиака можно усилить прибавлением к нему окислов калия или алюминия. Добавление церия к никелевому катализатору усиливает действие последнего при реакции взаимодействия окиси углерода с водородом с образованием метана. Каталитическая активность пятиокиси ванадия по отношению к реакции окисления ЗОг повышается в сотни раз при добавлении небольших количеств щелочи. [c.300]

    Результаты, полученные Ларсоном и сотрудниками [79] при изучении плавленого магнетитового катализатора, иллюстрируют влияние промотора на активность катализатора. Некоторые из этих данных представлены в табл. 31. Добавка к железу трудно восстанавливаемых окислов увеличивает каталитическую активность, в то время как легко восстанавливающиеся окислы (окислы никеля и меди) уменьшают ее. Катализаторы, содержащие окись калия и трудно восстанавливаемые окислы, были заметно активнее, особенно при давлении 100 ат, чем катализаторы, содержащие только одни трудно восстанавливаемые окислы. В то же время присутствие щелочи уменьшало активность чистых железных катализаторов или железных катализаторов, содержащих легко восстанавливаемые окислы. Таким образом, трудно восстанавливаемые окислы действуют как структурные промоторы (см. стр. 38 и 54). [c.75]

    Возникает вопрос, чем обусловлено изменение работы выхода для железных катализаторов при введении промоторов Известно, что адсорбция атомов щелочных металлов на поверхности железа, вольфрама и других металлов приводит к уменьшению работы выхода [16]. При этом наблюдается линейная зависимость между уменьшением ф металла и понижением ионизационного потенциала / адсорбированных атомов [17]. Нами при исследовании серии аммиачных катализаторов, содержащих одинаковую молярную концентрацию окислов различных щелочных металлов, была обнаружена линейная зависимость между изменением ф катализаторов и значением I щелочного металла [7]. Это позволяет предположить, что в аммиачном контакте часть щелочного промотора восстанавливается до металла и может находиться на поверхности железа в виде адсорбированных атомов щелочного металла, которые уменьшают ф катализатора вследствие образования диполей, направленных положительным концом от поверхности железа. Присутствие атомов щелочного металла — не единственная возможная причина уменьшения ф для железа при добавлении модифицирующих окислов. В литературе имеются указания на одновременное существование различных форм щелочного промотора в аммиачных контактах (растворимая и нерастворимая в воде щелочь [18], в присутствии окиси алюминия — алюминаты калия различного состава [19] и т. д.). Окислы и другие соединения, являющиеся модифицирующими промоторами, могут, по-видимому, уменьшать ф для аммиачного катализатора вследствие наличия собственного диполя у молекул примеси. Уменьшение ф для железных катализаторов в присутствии окиси кальция скорее связано с наличием собственного диполя примесных молекул, поскольку в литературе имеются указания на малую вероятность восстановления окислов щелочноземельных металлов в аналогичных условиях [20]. Подобные представле- [c.187]

    Наблюдавшееся некоторое увеличение ф для железных катализаторов при введении структурообразующих добавок трудно объяснить аналогичным образом. Скорее можно думать, что на металлической часта поверхности катализатора, промотированного одной структурообразующей добавкой, например окисью алюминия, остаются небольшие количества прочно связанного кислорода, которые и обусловливают увеличение ф по сравнению с железом. Это предположение подтверждается тем, что железные контакты с добавкой окиси алюминия значительно труднее и медленнее восстанавливаются из окислов, чем непромотированное, дважды промотированное и промотированное одной окисью калия железо 119]. При совместном промотировании двумя или несколькими промоторами поверхность аммиачного катализатора становится очень сложной, и работа выхода для такой поверхности определяется одновременно многими факторами концентрацией и соотношением различных форм щелочного промотора, содержанием остаточного кислорода на поверхности и т. д. Поэтому величина работы выхода будет изменяться в зависимости от приготовления, восстановления и предварительной обработки образцов. Интересно, однако, что несмотря на наличие большого числа посторонних примесей в катализаторах промышленного типа и независимо от метода предварительной обработки катализаторов [7] уменьшение ф при введении модифицирующих добавок четко наблюдается для всех исследованных аммиачных катализаторов." [c.188]


    Увеличение выхода высших спиртов при синтезе из окиси углерода и водорода па железных катализаторах, активированных ш,елочами, в зависимости от основности промоторов было отмечено еще в начале текущего столетия [10, 11, 14]. В последующем аналогичные результаты были получены [31] нри синтезе высших спиртов на окисноцинковых катализаторах максимальные выходы спиртов достигались при применении катализаторов, содержащих ионы калия, рубидия или цезия [32]. Было проведено систематическое исследование влияния добавки пяти различных щелочных ионов к окисному хромо-марганцевому катализатору, применяемому в синтезе спиртов [28]. Полученные результаты приведены в табл. 1. Можно видеть, что присутствие ионов лития, натрия или калия (добавленных в виде гидратов окисей) снижает выход продуктов суммарной реакции (выраженный в процентах превращения газа за один пропуск над катализатором) в присутствии ионов рубидия ИЛ1 цезия такое снижение не наблюдалось. [c.150]

    Одним из лучших катализаторов синтеза аммиака является же.пезо с малыми добавками промоторов — окислов калия и алюминия. Существуют различные способы приготовления этого катализатора например, железо или железную руду (магнетит) плавят вместе с добавками и окисляют в струе кислорода из полученной массы путем дробления и просеивания приготовляют гранулы, которые загружают в контактный аппарат и восстанавливают азотноводородной смесью. Синтез аммиака осуществляют при 450—550° и давлении 200—1000 атм. [c.215]

    Промотор может также приводить к образованию достаточного количества хемосорбированных атомов. Как указывает Будар [265], присутствие на поверхности железного аммиачного катализатора алюминия или калия приводит к снижению работы выхода, которое благоприятно для хемосорбции большего количества азота по сравнению с его количеством при других условиях (6 =0,2 см. раздел IX, 12). Первые атомы азота, адсорбированные под совместным промотирующим действием алюминия или калия и кислорода (так же как и в случае меди, про-мотированной кислородом см. раздел IX, 5), связываются более прочно. Однако в то же время хемосорбируется большее количество азота, причем теплота хемосорбции для всех этих атомов азота достаточно мала, для того чтобы они могли- участвовать в реакции. Можно отметить также, что повышенная хемосорбция водорода по В-типу, усиленная промоторами , как указано в разделе X, 5, способна облегчить хемосорбцию азота по тому же механизму, В данном случае также весьма важно, чтобы теплота хемосорбции была снижена до достаточно малой величины. [c.167]

    Некоторые вещества, сами не являясь катализаторами, даже в малом количестве резко увеличивают активность катализатора. Их называют промоторами или активаторами. Например, синтез ЫНз из Н2 и N2 ведут иа железном катализаторе, промотнрованном малыми количествами окиси калия и окиси алюминия. [c.31]

    Хотя прочно адсорбированные частицы уменьшают исходную металлическую поверхность, доступную для реактантов, это не обязательно ухудшает свойства катализатора. Объясняется это следующим. Адсорбированные вещества могут изменять (обычно снижать) теплоту адсорбции реактанта и таким путем повышать его реакционную способность. По-видимому, именно такая ситуация наблюдается при промотнровании окисью калия железного катализатора синтеза аммиака. Кроме того, промотор может подавлять самоотравление катализатора необратимо адсорбированными молекулами реактанта, способствуя тем самым увеличению концентрации промежуточных соединений, определяющих скорость реакции. Наконец, функция нереакционноспособных адсорбированных частиц может заключаться в создании активных центров особой конфигурации, способных адсорбировать реактанты. Поэтому, если путь превращения адсорбированного реактанта зависит от структуры центра, направление суммарной реакции изменится. Происходить это может несколькими путями. Каталитическая реакция может идти лишь на небольших группах поверхностных атомов металла, оставшихся не занятыми прочно адсорбированными частицами, или же прочно связанный адсорбат и поверхностные атомы металла могут составлять единый активный центр. Приведенные замечания вновь подчеркивают важность детальной характеристики катализатора при выяснении механизмов реакции. [c.37]

    Двуокись тория является также активатором контактов на основе металлов группы железа, кобальта и никеля. Окислы магния, алюминия и кремния служат главным образом носителем добавки карбоната калия играют важную роль в про-мотировании железных контактов. Окись хрома применяется как носитель,а окислы марганца — как активаторы никелевых контактов. Окись цинка является одним из компонентов катализатора изосинтеза. Медь, способствующая понижению температуры восстановления железного катализатора, улучшает его свойства. Этот перечень можно было бы продолжить, но перечисленные вещества являются распространенными компонентами катализаторов синтеза углеводородов. Катализаторы на основе кобальта и никеля применяются в виде нанесанных контактов используемые в промышленности плавленые железные катализаторы не содержат носителя рутениевые контакты используются без носителя и без промоторов. [c.143]

    В одной из специфических методик стабилизатор (и обычно химический промотор) добавляют к расплавленному окислу. В данном случае исходный окисел—магнетит Рез04, стабилизатором служит окись алюминия, окись магния или двуокись кремния, а химическим промотором — окись калия (образующаяся при добавлении карбоната калия). После измельчения до желаемой степени катализатор восстанавливают водородом до металлического железа. Это классический железный катализатор [c.231]

    Наиболее известным примером использования селективной хемосорбции для определения удельной поверхности неметаллического компонента является измерение адсорбции двуокиси углерода на окиси калия в промотированных железных катализаторах синтеза а.ммиака [117]. В этих катализаторах содержится, например, до 1,6% К2О в качестве промотора и - 10% AI2O3 в качестве стабилизатора. Адсорбцию проводят при 195 К, повышая давление двуокиси углерода до 80 кПа ( 600 мм рт. ст.). В указанных условиях происходит и физическая и химическая адсорбция газа количество последнего принимают равным тому количеству адсорбата, которое не откачивается при 273 К- Результаты более поздних исследований [118, 119] показывают, что первоначальное предположение, согласно которому двуокись углерода хемосорбируется только на поверхности окиси калия, следует тщательно проверить, поскольку известно, что при 195 К двуокись углерода быстро и прочно адсорбируется на чистом железе. Даже допуская, что при монослойном покрытии железа двуокисью углерода Хт 10, нельзя не прийти к выводу, что по крайней мере некоторая часть хемо-сорбированной двуокиси углерода, отнесенная к адсорбции на окиси калия, должна протекать на железе. Возможно, что хемосорбция двуокиси углерода на поверхности железа снижается до миниму.ма в результате присутствия адсорбированного (остаточного) кислорода, и это может объяснять, почему дисперсные железные катализаторы без окиси калия не хемосорбируют значительного количества двуокиси углерода. [c.331]

    Эти железные катализаторы начали успешно применять только после того, как стало ясным, насколько важно полностью восстановить поверхность железа даже в промотированных катализаторах. Любое количество кислорода, оставшегося на поверхности железа, будет отравлять реакцию. Промотированные железные катализаторы обычно готовят плавлением в атмосфере кислорода смесей магнетита (Рез04) и промотирующих окислов, например окисей алюминия и калия с последующим восстановлением водородом в тех же условиях, в каких проводится синтез. Другие методы сводятся к совместному осаждению гидроокисей или окисей из водных растворов, их прокаливанию и восстановлению либо введению промоторов пропиткой. Нильсен [55] утверждает, что при отношении закиси железа к окиси, равном 0,5 до восстановления, получаются катализаторы с максимальной активностью. Присутствие следов воды или кислорода в водороде, применяемом для восстановления или синтеза, может привести к образованию поверхностных окислов железа, что нарушает активность катализатора. Уже 0,016% водяного пара оказывает определенное действие, а 0,32% — сильно ингибирует синтез. Это иллюстрируется рис. 66 по Эммету и Бру-науэру [57а]. Влияние кислорода, оставшегося на поверхности, показано ниже [57в] 5 мг кислорода на 13 г железа соответствует 1 атому кислорода почти на 800 атомов железа. [c.293]

    Каган, Морозов и Подуровская [138], изучая сорбцию аммиака железными катализаторами, содержащими окись калия и окись алюминия как промоторы, при каталитическом синтезе аммиака пришли к выводу, что окись алюминия при этом адсорбирует относительно большие количества аммиака (при высоких температурах, достигаюш их 500°, и давлении 10 —500 мм рт. столба). Относительно большое тепло адсорбции указывает на активирующее действие. Окись калия понижает адсорбцио иную способностьи энергию адсорбции аммиака окисью алюминия. Таким образом, вследствие адсорбции аммиака, окись алюминия уменьшает скорость синтеза аммиака, в то время как окись калия уменьшает это отрицательное действие окиси алюминия. Молекулы аммиака адсорбируются преимущественно активными центрами катализатора, покрывая в то же время поверхность железа и поверхность промотора. [c.370]

    Исследования опытных образцов показали, что тугоплавкие окислы SiOa и АЬОз способствуют развитию и стабилизации поверхности железного катализатора, но слабо влияют на его удельную каталитическую активность. Щелочноземельные и щелочные промоторы, наоборот, уменьшают поверхность катализатора, но придают поверхности высокую удельную активность. Таким образом, для получения катализатора оптимальной активности необходимо вносить определенные количества промоторов и в строго установленных соотношениях. В результате испытания активности, устойчивости и физико-химических свойств (поверхность, пористость, рентгеновская дисперсность и др.) различных образцов был предложен четы-рехпромотированный катализатор ГК-1, содержащий в качестве промоторов окислы алюминия, кальция, калия и кремния [1]. [c.109]

    Влияние прибавки к железным катализаторам трудно восстано-вляемых окислов, как например окиси алюминия, кремния и цинка, рекомендуемой в патентах Баденской анилиновой и содовой фабрики (BASF), исследовалось Ларсоном и его сотрудниками. Железный катализатор, работающий при 450° С с объемной скоростью 5000 при 100 ат давления, способен давать лишь от 3 до 5% аммиака в чистой азото-водородной смеси 1 3, в то время как железо, содержащее несколько процентов окиси алюминия, дает от 8 до 9% ам1миака. ак впервые показал Ларсон i , добавка к железным катализаторам двух окислов, один из которых имеет кислый или амфотерный характер, как например окись алюминия, циркония, кремния, титана и т. д., а другой является щелочным окислом, как например окись калия, повышает их активность более, чем добавление окислов одной лишь первой грзшпы. Выход аммиака в чистой азото-водородной смеси 1 3, проходящей при 100 ат давления с объемной скоростью 5000 при температуре 450° С над таким катализатором с двумя промоторами, достигает 13 или 14% против 8—9% для катализаторов с одним промотором и 3—5% для чистого железного катализатора. Более ясное представление об этих данных можно получить из табл. 13. [c.115]

    Описанный метод анализа применялся также к реакции распада аммиака на железных катализаторах. Каждая кривая 1/г по Рг/Рй) Що/М ) % для катализаторов, промотированных окисью алюминия и окисью калия, в некоторой части представляет прямук> линию, в то время как такие же кривые для железного катализатора, содержащего кроме, других промоторов, еще несколько процентов молибдена, оказываются изогнутыми на всем своем протяжении. Из графика 1 х 1/Т, построенного на основании эгих данных, получается для Е значение около 45 ООО кал.  [c.140]

    Для орто-пара-превращения при низких температурах эффективны также железные катализаторы с добавками промоторов— окислов алюминия и калия, применяющихся для синтеза аммиака по Габеру активность этих катализаторов уменьшается в значительной степени при адсорбции водорода выше 100 . Обработка кислородом при температурах до 450° подобного влияния на катализ при низких температурах не оказывает это и неудивительно, если считать, что при этом получается магнитный окисел РедО , который согласно вышеизложенным соображениям должен обладать высокой каталитической активностью (Гаркнес и Эмметт, 1933 г.). [c.107]

    В последнее время было показано [ ], что добавки окислов молибдена и вольфрама в промотированный железный катализатор синтеза аммиака повышают его активность. Для установления распределения окислов вольфрама и молибдена в окисленном катализаторе нами были исследованы структуры образцов катализаторов, приготовленных электронлавкой природного магнетита Оленегорского месторождения, после его соответствующего обогащения до содерн ания окиси кремния 0.4%. Были приготовлены образцы без промоторов и с добавками 1) 10% окиси молибдена 2) 10% окиси молибдена и 10% окиси кальция 3) 10% окиси вольфрама 4) 10% окиси вольфрама и 10% окиси кальция 5) 20% окиси молибдена, 20% окиси кальция, 20% окиси калия. [c.5]

    Химические промоторы. Эти промоторы изменяют химическую природу поверхности, увеличивая активность или избирательность катализатора. Они также могут способствовать увеличению или сохранению площади поверхности. Например, окись калия лишь незначительно влияет на площадь поверхности и активность дважды промотированного аммиачного катализатора при работе под давлением 30 атм. Однако окись калия заметно увеличивает каталитическую активность при более высоких давлениях (100 атм). Предполагается, что щелочь ускоряет десорбцию аммиака, препятствуя накоплению его в количествах, достаточных для подавления реакции при работе под высоким давлением [3]. При синтезе углеводородов из окиси углерода и водорода на железных катализаторах небольшие добавки карбоната калия вызывают заметные изменения активности катализатора и состава продуктов синтеза. При одинаковой температуре синтеза средний молекулярный вес продуктов повышается с увеличением содержания карбоната калия до 2 частей К2СО3 на 100 частей Ге. Активность катализатора возрастает с увеличением содержания карбоната калия приблизительно до 0,5 части на 100 частей железа, остается постоянной при изменении содержания от 0,5 до 1,0 части КдСОд на 100 частей Ре и уменьшается при большем содержании карбоната калия. В класс химических промоторов можно также включить промоторы, облегчающие предварительную обработку катализаторов. Например, медь добавляют к осажденным кобальтовым или железным катализаторам для повышения скорости восстановления водородом и обуглероживания окисью углерода. Поэтому катализаторы, промотиро-ванные медью, могут быть подвергнуты предварительной обработке при значительно более низких температурах. Введение меди в железные катализаторы в количествах до 20 частей меди на 100 частей железа незначительно влияет на активность катализаторов или на состав продуктов реакции. Однако введение меди в кобальтовый катализатор сокращает срок его службы [4]. [c.34]

    Наиболее интересной особенностью результатов, помещенных в таблице, является резко выраженное влияние промоторов на величину площади поверхности восстановленных катализаторов. Почти чисто железный катализатор № 973, восстановленный при 400°, имел малую площадь поверхности, а спекание при 500° уменьшало ее более чем вдвое. Катализатор № 930, нромотированный окисью калия, имел такую же площадь, как и чисто железный катализатор. Катализаторы № 954, нромотированный окисью алюминия, и № 424, нромотированный окисью алюминия и окисью циркония, имели площади поверхности в 10 раз большие, чем катализаторы № 973 и № 930. Катализаторы № 931 и № 958, промотированные окисью алюминия и окисью калия, также имели заметно большую поверхность, чем катализаторы № 973 и № 930. Таким образом, окись алюминия и окись циркония являются структурными промоторами для этих катализаторов. [c.54]

    СОСТОЯНИИ. Физическая адсорбция азота позволяет установить общую площадь поверхности. Низкотемпературная (—183°) хемосорбция СО является показателем доли поверхности, занятой атомами железа. Для приблизительно чистого железного катализатора № 973 отношение объема хемосор-бированной окиси углерода к объему физически адсорбированного азота при монослойном покрытии равно 1,13. Полученная величина не является ошибочно завышенной, так как слой хемосорбированных молекул может быть упакован более плотно, чем слой, удерживаемый физическими силами. Присутствие промоторов уменьшает эту величину, причем окись калия оказалась наиболее эффективной. Двуокись углерода хемосорбируется на окиси калия, находящейся на поверхности катализаторов. Это явление может служить основой для определения доли площади поверхности, занятой каждым компонентом катализатора. Повидимому, в свободных от щелочей катализаторах № 954 и № 424 промоторы-окислы занимают соответственно около 55 и 35% поверхности. 1,07% окиси калия покрывает около 70% поверхности катализатора № 930. В катализаторе. № 958 около 62% поверхности состоит из атомов железа, 27%—из окиси калия и оставшиеся 11%—из окиси алюминия. Оказалось, что на поверхности катализатора № 931 нет свободной окиси алюминия. Возможно, что на поверхности окись алюминия связана с окисью калия. Таким образом, концентрация промоторов на поверхности выше, чем в объемной фазе. Это явление сильнее выражено для окиси калия, чем для окиси алюминия. Такое заключение согласуется с тем наблюдением, что щелочь легко улетучивается из однократно промотированного катализатора и может быть легко экстрагирована водой из невосстановленного, однажды и дважды промотированного катализатора. [c.55]

    Высказывалось предположение, что промотирующее действие окиси калия в сочетании с трудно восстанавливаемыми окислами заключается в увеличении скорости десорбции аммиака с поверхности катализатора [3], повидимому, с поверхности трудно восстанавливаемого окисла. Каган, Морозов и Подуровская [80] нашли, что аммиак сильно адсорбируется на окиси алюминия при температурах 600—700°. Добавление окиси калия уменьшает адсорбцию аммиака. Данные табл. 31 показывают, что наилучшими промоторами для железных катализаторов являются окиси алюминия, циркония или кремния вместе с окисью калия. [c.75]

    В ряде случаев лучшим оказывается катализатор, состояпщй не из одного, а из нескольких веществ, например промышленный синтез метанола проводится при участии катализатора, в состав которого входят окислы цинка и хрома. Активность и избирательность катализатора часто изменяются при введении в его состав незначительных количеств (десятые доли процента, один-два процента) некоторых веществ. Так, активность пятиокиси ванадия при контактном окислении двуокиси серы повышается в сотни раз при добавлении к ней небольшого количества щелочи. Промышленный железный катализатор синтеза аммиака содержит в качестве таких добавок от 1 до 2% окиси алюминия и окиси калия. Он значительно активнее и устойчивее, чем чистое железо. Эти добавки называются промоторами. Причины действия промоторов различны. Промоторы способствуют увеличению и сохранению числа активных центров на единицу поверхности катализатора. Они могут образовывать с основным компонентом соединения высокой активности, образовывать высокоразвитую поверхность, препятствовать перестройке поверхности при нагревании. Часто для лучшего использования катализатора его наносят на асбест, силикагель, активную пористую окись алюминия, активный уголь и другие материалы. Они называются носителями. В ряде случаев носители действуют подобно промоторам,— они повышают активность катализатора вследствие химического взаимодействия с основным веществом и содействуют образованию и сохранению структуры. [c.78]


Смотреть страницы где упоминается термин Промоторы для железных катализаторов калий: [c.255]    [c.340]    [c.37]    [c.370]    [c.499]    [c.348]    [c.294]    [c.227]    [c.178]    [c.187]   
Синтез углеводородов из окиси углерода и водорода (1954) -- [ c.34 , c.53 , c.54 , c.71 , c.75 , c.76 , c.98 , c.187 , c.200 , c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Железные катализаторы

Катализатора промоторы

Катализаторы калия

Промоторы



© 2025 chem21.info Реклама на сайте