Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакторы также Процесс

    В настоящее время все больше появляется работ, в которых собственно химическое превращение веществ осуществляется совместно с целенаправленным разделением реакционной смеси в одном и том же аппарате. Сюда можно отнести работы, посвященные исследованию хроматографического эффекта в реакторах, реакционно-абсорбционным и реакционно-экстракционным процессам, а также процессам, в которых химическое превращение успешно сочетается с ректификацией или отгонкой. Известны реакционноосмотические процессы, реакционно-отделительные процессы и многие другие случаи направленного совмещения. В любом из перечисленных процессов химическая реакция составляет единую сложную систему с массопереносом. Естественно, монография Дж. Астарита далеко не восполняет пробела, образовавшегося за последнее время в данной области. Ее задача более скромна — систематизировать в основном знания в области химической абсорбции и дать некоторые толкования механизма столь сложного процесса. Отметим, что наряду с предпочтительностью изложения вопросов, в решении которых принимал непосредственное участие автор, в предлагаемой вниманию читателей монографии существуют и другие крайности. Так, например использованные автором модели массопереноса если и нельзя считать устаревшими, то во всяком случае, далеко не адекватными наблюдаемым явлениям, которые необходимо уточнить. Кроме того, библиография по затронутым в книге вопросам более чем скромна и за редким исклю- Йнием не включает многие исследования, выполненные отечественными исследователями хотя бы в последнее десятилетие. Однако эти серьезные недостатки не обесценивают рассматриваемую монографию, так как представленный в ней в обобщенном виде материал все же дает некоторое представление о современном совтоя-нии затронутых вопросов. [c.5]


    Политропический процесс, протекающий с отводом или подводом тепла, когда скорость отвода или подвода тепла не пропорциональна количеству выделенного или поглощенного тенла. В рассматриваемом случае температура в реакторе также меняется от входа к выходу, но характер температурной кривой зависит в большей степени от работы поверхности теплообмена, чем от вида кинетической кривой. К полптропическим системам могут быть отнесены реакционные секции змеевиков печей термического крекинга и пиролиза, реакторы каталитического крекинга с неподвижным катализатором в процессе регенерации, змеевиковые реакторы полиэтилена ысокого давления и др. [c.263]

    В — при 360—550 С при производстве фталевого ангидрида из нафталина или о-ксилола путем каталитического окисления воздухом. И — нагреватели, реакторы, конверторные трубы, приемники-охладители, теплообменники, вакуумные реакторы для очистки, насосы, конверторные бесшовные трубы, применяемые для проведения низко- и высокотемпературных процессов, а также процессов в кипящем слое с катализатором при 450°С. [c.478]

    Несмотря на богатый накопленный опыт в проектировании установок Клауса, в сущности очень трудно поддерживать процесс на полном уровне конверсии в промышленных условиях. К тому же органы по защите окружающей среды во многих частях мира установили такие пределы выбросов в атмосферу, что уже нельзя эксплуатировать установки ниже стандартного уровня. Частично эта проблема возникает в связи с тем, что химические реакции в процессе только равновесные и не заверщаются полностью. Отклонение в пропорциях воздуха и сероводорода от номинальных значений нарушает баланс между сероводородом и диоксидом серы, из-за чего один из этих газов в избыточном количестве проходит через установку неизмененным. В любом случае это ведет к увеличению выбросов 502, так как отходящий газ всегда дожигается с целью разложения сероводорода. Колебания температуры в каталитических реакторах также ведут к снижению конверсии установок Клауса. Присутствующие в кислом газе углеводороды при [c.93]

    За последнее десятилетие в СССР и некоторых зарубежных странах получила распространение отрасль науки — математическое моделирование химических реакторов и процессов. Ее успехи обусловлены, с одной стороны, совершенствованием экспериментальных. методов исследования кинетики химических превращений и скоростей переноса тепла и реагирующих веществ, а с другой, — стремительным развитием вычислительной математики и вычислительной техники. Сейчас математическое моделирование стало общим методом оптимального проектирования химической аппаратуры. Поэтому редактор перевода счел целесообразным дополнить книгу разделом, в котором в конспективной форме изложены основные идеи и этапы моделирования каталитических реакторов (глава XV), а также подробной библиографией работ по математическому моделированию химико-технологических процессов, опубликованных в 1965—1967 гг. В дополнении отражены главным образом исследования коллектива лаборатории моделирования Института катализа СО АН СССР, проведенные совместно с сотрудниками Института математики и ВЦ Сибирского отделения АН СССР, особенно работы В. С. Бескова, Т. И. Зеленяка, Ю. И. Кузнецова, В. А. Кузина, Ю. Ш. Матроса, В. Б. Скоморохова и А. В. Федотова. [c.11]


    Емкостные апиараты с мешалками применяют в качестве реакторов жидкофазных процессов, а также для приготовления растворов, смешения жидкостей и других вспомогательных процессов. [c.182]

    По масштабам производства на первом месте стоит применение экстракции в нефтяной, пищевой и коксохимической промышленности. Кроме того, экстракция получила разнообразное, хотя и меньшее по объему, применение в различных отраслях химической технологии органических производств (например, в фармацевтической промышленности) и еще меньшее в технологии неорганических производств. Новой и многообещающей областью применения жидкостной экстракции является быстро развивающаяся в настоящее время ядерная энергетика. Приготовление основных исходных растворов и вспомогательных материалов (имеется в виду производство естественных радиоактивных веществ), а также процессы регенерации продуктов распада, образующихся в атомном реакторе, в значительной степени основываются на экстракции. [c.379]

    Вместе с ПГС может уноситься часть катализатора, что может вызывать полимеризацию в аппаратуре системы циркуляции ПГС. Поэтому выходящую из реактора ПГС промывают органическим растворителем в безнасадочном скруббере для прекращения процесса полимеризации. Однако случаи уноса катализатора с ПГС в аппаратуру контура циркуляции все же наблюдаются. Поэтому в контуре и трубопроводах, холодильниках-конденсаторах, центрифугах в газодувке образуются полимерные отложения. Унос особенно велик в системах, в которых чрезмерно велика скорость ПГС, обусловленная малыми диаметрами аппаратов и большой нагрузкой по газу. Для предупреждения полимеризации этилена в контуре циркуляции в трубопровод на выходе ПГС из реактора также стали подавать смесь изопропанола с бензином. Внедрение способа частичной дезактивизации уносимого с ПГС катализатора позволило в несколько раз повысить пробег системы циркуляции между чистками и уменьшить вероятность создания аварийной обстановки на производстве. Следует обратить внимание на необходимость выбора оптимальных скоростей ПГС, выходящей из реакторов. Очевидно, необходимо строго регламентировать расход [c.116]

    Математическое описание реактора синтеза метанола содержит описания процессов, протекающих в адиабатическом слое катализатора, а также процессов смешения холодного и горячего газовых потоков при входе в слой катализатора. [c.328]

    Цикл в периодической технологической схеме можно сократить за счет совместной подачи реагентов дозировочными насосами (при этом перед реактором устанавливают смеситель), а также снижения времени обезвоживания при подводе дополнительного тепла через теплообменник, который включается в циркуляционную систему реактора. Периодический процесс универсален, позволяет производить на данной установке любые мыльные и углеводородные смазки. Последние получают при работе только первой секции установки после обезвоживания твердых углеводородов (парафина, це- [c.101]

    Энергия, используемая при работе атомных электростанций, выделяется в результате ядерного деления. Топливом для ядерного реактора служит какое-либо делящееся вещество, например уран-235. Обычно уран обогащают изотопом уран-235, доводя содержание последнего приблизительно до 3%, и такой обогащенный уран используют в форме иОз. Гранулами из этого вещества наполняют трубки из циркония или нержавеющей стали. Контроль над протеканием процесса деления осуществляют с помощью стержней из таких веществ, как кадмий или бор, которые хорошо поглощают нейтроны. Контрольные стержни позволяют поддерживать поток нейтронов, достаточный для того, чтобы цепная реакция была самоподдерживающейся, но препятствуют перегреву активной зоны реактора . Реактор приводится в действие каким-либо источником нейтронов его остановка осуществляется достаточно глубоким погружением контрольных стержней в активную зону, т.е. туда, где происходит деление (рис. 20.15). В активной зоне реактора также находится замедлитель - вещество, замедляющее скорость нейтронов, для облегчения их захвата ядерным топливом. Наконец, в активной зоне циркулирует охлаждающая жидкость, которая отводит тепло, [c.269]

    Если В1 1, при расчете Процесса можно считать температуру постоянной во всем сечении и меняющейся только у стенки. Как следствие этого концентрация по всему сечению реактора также постоянна. Таким образом, приходим к приближению одномерного реактора идеального вытеснения  [c.253]

    Здесь мы в большей степени касаемся применения фотохимии в промышленном синтезе. Очевидно, что фотохимический процесс должен превосходить по выходу или чистоте продукта обычные методы производства, чтобы конкурировать с ними. Особенно подходящими кандидатами для промышленного применения являются цепные реакции (часто с радикальными переносчиками цепи) с фотохимической начальной стадией. Мы уже рассматривали такое их использование в связи с фотополимеризацией (разд. 8.8.2). Заметим, что фотохимическая реакция может быть экономически оправданной даже в том случае, когда ее квантовый выход низок, если выход химического продукта выше, чем у обычных процессов. В производстве веществ тонкой химической технологии расходы на свет составлявот незначительную часть общей стоимости продукта высокого качества. Более того, вследствие относительно малых количеств используемого материала серийный процесс часто может представлять увеличенную копию лабораторного метода. При использовании фотохимии в широкомасштабном валовом химическом производстве возникают несколько большие трудности, так как плата за энергию может теперь составлять существенную часть стоимости конечного продукта. В широкомасштабном производстве часто применяются реакторы непрерывного действия, ставящие перед фотохимией проблемы, связанные с их конструкцией. В частности, необходимо использовать прозрачные реакторы или прозрачные кожухи ламп, стенки которых часто загрязняются образующимися смолообразными (и светопоглощающими) побочными продуктами. Размер реактора также может серьезно ограничиваться поглощением света реагентами. Этим недостаткам фотохимического синтеза должна быть противопоставлена более высокая селективность получения продуктов и лучший контроль за их образованием. Процесс производства отличается меньшими тепловыми нагрузками, поскольку реагенты не нужно нагревать, а затем охлаждать. Выли разработаны и технологии преодоления проблем, связанных с фотохимическими реакторами. Они включают освещение поверхности падающих тонких слоев реагентов использование ламинарных потоков несмешивающихся жидкостей, причем ближайшей к стенке реактора должна быть жидкость, поглощающая свет применение пузырьков газа, вызывающих турбулентность, для улучшения обмена реагента. И на- [c.283]


    В реакторах с кипящим слоем также происходит увеличение объема и разрушение частиц катализатора, но здесь по крайней мере не может иметь место закупоривание реактора, и процесс не прерывается. Основным недостатком разрушения катализатора является унос его мелких частиц из реактора, и, несмотря на высокую эффективность циклонов, происходит засорение аппаратов, в которые поступает газ из реактора. В настоящее время точно не установлено, ведет ли образование углистых частиц к дезактивации железных катализаторов. Так как реакция протекает в диффузионной области (скорость зависит от размера гранул катализатора), то возможно, что разрушение гранул в некоторой степени компенсирует процесс его дезактивации. [c.178]

    Влияние чистоты этилена и условий нолимеризации на процесс полимеризации и на качества продуктов полимеризации [2, 4]. Как скорость полимеризации этилена, так и выходы и качество продуктов полимеризации в значительной мере зависят от чистоты перерабатываемого этилена и хлористого алюминия. Условия полимеризации, в первую очередь температурный режим, количество и качества вводимого в реактор вместе с этиленом легкого масла, эффективность перемешивания содержимого реактора, также оказывают большое влияние на процесс и его результаты. [c.484]

    Реакторы для проведения гетерогенных процессов в системе Г—Ж не имеют характерных особенностей и служат типовой аппаратурой, в которой на химических заводах осуществляют также физические массообменные процессы и операции — физическую абсорбцию и десорбцию, испарение, дистилляцию и ректификацию, промывку газов, теплообмен. В таких же реакторах осуществляют и хемосорбционные процессы (например, в производстве соды, минеральных кислот, ряда органических веществ). В табл. 5 приведены некоторые типы реакторов для процессов в системе Г—Ж, систематизированные по принципу устройства и режиму движения фаз. Все эти типы реакторов фактически работают при промежуточных режимах, приближающихся к одной из идеальных моделей перемешивания. [c.167]

    В природе существует множество процессов, не подчиняющихся рассмотренным выше закономерностям. К ним относятся горение газов галогенирование крекинг и пиролиз углеводородов полимеризация ядерный распад многие биологические изменения и др. Основная, отличительная черта этих процессов — зависимость их скорости от формы, объема и качества обработки стенок реактора, а также от массы реагирующих веществ в реакторе. Такие процессы начинаются от небольшого начального импульса энергии, протекают с очень высокими скоростями при относительно низких температурах и не требуют энергетических затрат на активацию. [c.178]

    Аналогично решениям, рассмотренным для каскада реакторов с перемешиванием в объеме в жидкой фазе, можно исследовать также процессы, протекающие в каскаде реакторов с псевдоожиженным слоем катализатора и в газовом объеме. [c.157]

    В работе [18] и в гл. 2 для системы (4.22) при х = 1 показано, что в случае, когда характерное время изменения поверхностной концентрации [А2] — Млг существенно меньше такового у [Ва2] — Мв 7> периодические колебания концентрации Са с определенным периодом приводят к повышению скорости и селективности образования вещества В за счет нестационарного состояния катализатора. В качестве способа поддержания требуемого пе-стационарного состояния катализатора в изотермическом реакторе в данном разделе обсуждается метод изменения направления подачи смеси в слой катализатора . Пусть на вход реактора подается реакционная смесь с избытком по веществу Вг. При неизменных входных условиях в реакторе устанавливается стационарный режим, характеризующийся при достаточном времени контакта полной степенью превращения х и селективностью х по целевому продукту В. Если время контакта реактора достаточно большое, так что степень превращения вещества А достигает значений, близких к 1, в центральной части слоя, то выходной участок характеризуется повышенной степенью покрытия веществом Ва. Если в такой ситуации произвести переключение направления подачи реакционной смеси на противоположное, то газ, содержащий вещество А, начинает поступать на участок с повышенным содержанием [Вг2], что, согласно [1], приведёт к высокой селективности процесса. Для того чтобы в установившемся режиме при периодических переключениях направления подачи реакционной смеси селективность в нестационарных условиях была выше, чем селективность в стационарных условиях-5, согласно [18], необходимо и достаточно, чтобы выполнялось условие Далее приводятся результаты математического моделирования периодических режимов в изотермическом проточном реакторе. Предполагая процессы в газовой фазе квазп-стациопарными но отношению к нестационарным процессам на каталитической поверхности, а также неизменную скорость фильтрации по всей длине реактора, можно записать уравнение материального баланса в газовой фазе следующим образом  [c.118]

    При организации работы реакторов с падающей активностью катализатора необходим циклический режим между реакцией и регенерацией. Наличие этих двух разных периодов - главная особенность этих процессов при их моделировании. Примерами таких процессов являются каталитический крекинг, дегидрирование парафинов и олефинов для получения мономеров синтетического каучука, новые процессы риформинга, а также процессы в регенеративных теплообменниках, адсорберах. [c.209]

    Методы подобия (физическое моделирование) применимы при проектировании сравнительно простых процессов и операций, в частности протекающих в однофазных системах с фиксированными границами, при небольших изменениях масштабов. Для анализа двухфазных систем со свободными поверхностями (процессов, осложненных химическими реакциями), а также процессов с многозначной стохастической картиной связи между явлениями использование методов физического моделирования затруднительно. Основным методом расчета и анализа сложных систем реакторов стал метод математического моделирования. [c.31]

    Поскольку в проточном реакторе время процесса т равно отношению высоты (длины) реакционного объема Н к линейной скорости потока реагентов О), а также т выражается отношением реакционного объема V к расходу смеси реагентов Ус, т. е. [c.50]

    Часто для регенерации применяют значительные избытки воздуха или воздуха в смеси с водяным паром, так что концентрацию кислорода можно считать постоянной по всей длине реактора. Тогда процесс регенерации в кинетической области может быть описан квазигомогенной моделью как периодический для всего реактора в целом системой из двух уравнений — материального и теплового баланбов. Решение этой системы вполне аналогично системе ( 11.25), ( 11.26) или ( 11.49), ( 11.50) для реактора идеального вытеснения. Условия устойчивости и параметрической чувствительности здесь также аналогичны периодическому реактору или реактору идеального вытеснения и рассматриваются в главе 111. [c.299]

    Для повышения экономичности процесса необходимо также ускорить освоение технологических схем и усовершенствование реакторов и регенераторов гидрокрекинга низкого давления (30—50 ат) с движущимися циркулирующими микросферическими катализаторами. Продукты гидрокрекинга низкого давления (при 30—50 от), по-видимому, потребуется дополнительно подвергать гидрогенизационному облагораживанию в комбинированных системах. Эти системы должны иметь реактор со стационарными катализаторами для первичного жидкопарофазного гидрокрекинга и дополнительный второй реактор также со стационарным катализатором для парофазного изомеризующего гидрокрекинга. Комбинированные установки гидрокрекинга сыграют большую роль в будущем. В комбинированных системах смогут также сочетаться реакторы парофазной и жидкофазной ступеней процесса со стационарными и с суспендированными высокоактивными катализаторами, имеющие общую систему циркуляции водородсодержащего газа. Большое значение в будущем, по-видимому, приобретут разработки систем, сочетающих гидрокрекинг, при котором предусмотрена специальная подготовка тяжелого сырья, с установками каталитического крекинга, предназначенными для переработки гидрооблагороженных газойлей, полученных в процессах гидрокрекинга. [c.349]

    Этот фактор играет важную роль при промышленной полимеризации этилена под низким давлением с использованием катализатора Циглера. Он играет значительную роль также и при эмульсионной полимеризации стирола. Уолл и его коллеги [12], исследовавшие эту реакцию энопериментально, сумели подтвердить сделанные выше теоретические выводы. Они исследовали также различие между реактором периодического действия п реактором смешения применительно к реакции сополиме-ризации. Если в реакторе периодического действия мономеры, имеющие различные скорости реакции, образуют сополимер переменного состава, то в реакторе смешения процесс протекает е постоянной скоростью, в результате чего образуется сополимер однородного состава. [c.117]

    Д. служит основой мн. распространенных техн. операций спекания порошков, химико-термич. обработки металлов (напр, азотирования и цементации сталей), гомогенизации сплавов, металлизации и сварки материалов, дубления кожи и меха, крашения волокон перемещения газов с помощью т. наз. диффузионных насосов. Д -одна из стадий многочисл. химико-технол. процессов (напр., массообменных) представления о диффузионном переносе в-ва используют при моделировании структуры потоков в хим. реакторах и др. Роль Д. существенно возросла в связи с необходимостью создания материалов с заранее заданными св-вами для развивающихся областей техники (ядерной энергетики, космонавтики, радиационных и плазмохим. процессов и т. п.). Знание законов, управляющих Д, позволяет предупреждать нежелательные изменения в изделиях, происходящие под влиянием высоких нагрузок и т-р, облучения и т.д. Закономерностям Д. подчиняются процессы физ.-хим. эмиграции элементов в земных недрах и во Вселенной, а также процессы жизнедеятельности клеток и тканей растений (напр., поглощение корневыми клетками N, Р, К-осн. элементов мннер. питания) и живых организмов. [c.105]

    Одна из основных трудностей при получении бутилкаучука в том, что процесс сопровождается выделением значительного количества тепла, которое должно быть снято в течение короткого времени. Для этой цели продукты питания реактора предварительно подвергаются охлаждению, вместе с этим, во избежание местных перегревов, ведущих к ухушению качества полимера, реактор также стабильно охлаждают циркуляцией жидкого этилена. [c.255]

    Из рассмотрения рис. 2 можно сделать вывод, что одному п тому же коэффициенту пористости может соответствовать несколько значений а, т. е. одно и то же сыпучее тело прп одной и той же пористостп может оказывать различное сопротнвление сжатию в зависимости от характера предшествующего нагружения. Иными словами, для любого сыпучего тела каждая последующая стадия его напряженного состояния зависит от напряженного состояния предыдущей (его предыстории). На примере катализатора можно показать, что его напрян енное состояние при транспортировке является предшествующим процессу загрузки в реактор. Собственно процесс загрузки, также имеющий в динамике свое напряженное состояние, будет определять напряженное состояние в неподвижном слое последнее будет, в свою очередь, являться предысторией напряженного состояния, например процесса псевдоожижения и т. д. Можно предположить, что возникновение па одной из стадий в объеме слоя катализатора крупномасштабных или локальных неоднородностей пористости (т. е. зон непредельного и предельного равновесия) приведет к их усилению или ослаблению в последующей стадии. [c.31]

    Классификация по фазовому составу имеет решающее влияние на устройство каталитических реакторов. Причем для применения твердых катализаторов все каталитические процессы по виду основной фазы можно разделить на газовые и жидкостные. Наличие жидкой фазы Б двух- или трехфазной системе предопределяет, в основном, вид катализатора, режим процесса и устройство реактора. Поэтому процессы в реагирующей системе газ-жидкость с твердым катализатором мы будем также относить к жидкостным. [c.42]

    Качественное исследование процесса нитрования пиридона осуществлялось на лабораторной установке путем подачи скачкообразных возмущаюш,их воздействий. При скачкообразном увеличении скорости нриливания нитрующего агента (азотной кис-.лоты) давление в реакторе также скачкообразно возрастало после чего несколько снижалось и вновь плавно возрастало уж после возвращения скорости прилива кислоты к исходной величине. Скачкй давления особенно опасны в начале процесса нитрования, когда количество непрореагировавшего нитруемого вещества в реакторе значительно. [c.187]

    В системе с обратной связью, создаваемой рециркулятами, изменением степени превращения можно максимизировать производительность единицы объема реактора любого процесса и если при этом протекают вторичные реакции, то минимизировать образование за счет них побочных продуктов, а также свободно управлять скоростями конкурирующих реакций за счет изменения состава рециркулята и соответственно профиля температуры и давления. [c.43]

    Второй путь — применение порошкообразных высокоактивных и селективнодействующих катализаторов в упрощенных системах с реакторами также намного большего диаметра. Принципиальная схема такого усовершенствованного процесса гидрокрекинга системы [c.274]

    Решение по выявлению переходного процесса для канадого реактора каскада при возмущениях в данном реакторе, которые независимы от возмущений в предыдущем реакторе, также можно выполнить аналитически, применяя для каждого реактора систему уравнений (IV,47) и (IV,52). [c.154]

    Можно также предварительно нагретое ароматическое сырье перекачивать в промежутбчную емкость без добавки водорода для полимеризации ненасыщенных. После удаления высококипящих компонентов к сырью добавляют водород, нагревают до 320° С и пропускают через реактор. Этот процесс был разработан Баденской фабрикой и компанией Шольвен и осуществлен в промышленном масштабе на металлургическом заводе Юнайтед стейтс СТИЛ в Клертоне (Пенсильвания). Как на этой установке, так и на заводе Джонс энд Лафлин стил в Аликвиппе (Пенсильвания), для разделения ароматических углеводородов от насыщенных и получения целевых продуктов высокой чистоты используется процесс экстракции юдекс (водньш гликолем). [c.156]

    Образовавшийся СаСОз направляется в спец. реактор, где благодаря теплу, выделяющемуся при сгорании топлива, разлагается на СаО и СО , к-рые вновь поступают в газогенератор. Достоинства метода не требуется дорогостоящий О2, сжигание топлива в воздухе (при разложении СаСОз) происходит вне газогенератора, поэтому получаемый газ не содержит Nj и имеет высокую теплоту сгорания. Недостаток необходимость сепарации и циркуляции твердых горючих реагентов (СаО и СаСОз), что приводит к усложнению и возрастанию стоимости установки. Разрабатываются также процессы Г. с использованием тепла, получаемого от ядерных реакторов и передаваемого газообразным или твердым теплоносителем, в расплаве Fe и др. [c.452]

    Низкая скорость прохождения процесса в каскадном реакторе также создает ему преимущества при получении более качественного алкилата, а кроме того, позволяет снизить коррозию в ректификационной колонне. Для каскадного реактора характерно также низкое давление, что позволяет механическим смесительным мешалкам работать с высокой степенью надежности. По технологии компании Эксон существенно меньше расходуется серной кислоты. К недостаткам каскадных реакторов можно отнести то, что секции взаимосвязаны и нарушение режима в одной из них приводит к остановке системы в целом, а во-вторых, по ходу движения эмульсии снижается концентрация изобутана. [c.205]

    Реакторы (англ. rea tors от ре... и лат. a tor — действующий, приводящий в движение) — аппараты для проведения химических реакций. В нефтехимической промышленности применяют реакторы термических процессов — крекинга, коксования, пиролиза, а также реакторы каталитических процессов — крекинга, риформинга, гидрогенизации (гадроочистки, гидрокрекинга, гидродеалкилирования), переработки легких углеводородов (алкилирования, полимеризации). [c.138]

    Модель К сконструирована для пластикации и смешения влажных (вплоть до пастообразных) материалов и пластических масс. Машины этой модели применяются также для переработки шоколадных масс, карамельных смесей, тестообразных веществ, композиций для изготовления анодных блоков и других так называемых электродных смесей. Кроме того, машины данного типа используются в химической технологии для ацетилирования целлюлозы, в качестве форреакторов в производстве плавиковой кислоты, кристаллизаторов и реакторов для процессов поликонденсации н полиаддукции (полиприсоединения). [c.106]


Смотреть страницы где упоминается термин Реакторы также Процесс : [c.46]    [c.45]    [c.302]    [c.284]    [c.25]    [c.29]    [c.311]    [c.199]    [c.241]    [c.295]    [c.215]    [c.201]   
Синтез углеводородов из окиси углерода и водорода (1954) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Процесс реакторов



© 2024 chem21.info Реклама на сайте