Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы диэлектрической проницаемости

    Важной характеристикой растворителя, влияющей на механизм реакции, является диэлектрическая проницаемость, от которой в первую очередь зависит состав частиц, на которые распадаются вещества-электролиты в растворе (разд. 34.2.4). Кроме того, диэлектрическая проницаемость растворителя влияет на процесс диссоциации, а также кислотно-основное равновесие. Так, рекомбинация ионов в нейтральные молекулы происходит преимущественно в растворителях с низким значением диэлектрической проницаемости г, а увеличение е способствует их диссоциации. Выбор подходящего растворителя или их смеси позволяет получить любое значение е среды, в которой протекает реакция. Этим широко пользуются при титровании в неводных растворителях (разд. 39.9). [c.457]


    Основываясь на современных исследованиях Н-связи, можно сделать предположение, что процесс поляризации существенно зависит от перемещения и положения протона Н-мостика в электрическом поле. Так, в работах [206, 660] при рассмотрении влияния среды на структурную форму комплекса с водородной связью (КВС) отмечается зависимость этой формы от диэлектрической проницаемости среды. При исследовании водородной связи О—Н---М обнаружено, что с повыщением диэлектрической проницаемости раствора происходит переход КВС из молекулярной формы в ионную с последующей диссоциацией комплекса при более высоких значениях е раствора [660, 661]. Существенно, что перенос протона вдоль Н-связи в КВС, как установлено в работе [662], вызывается реорганизацией среды. Хотя влияние среды на связь О—Н---0 мало изучено, высокая подвижность протонов в структуре льда все же д ет основание предполагать, что в образуемых при определенных величинах сорбции КВС возможна миграция протона Н-связи. [c.246]

    Эта формула дает лучшую сходимость с опытом, чем формула Борна. Метод Ван-Аркеля и де-Бура отличается от борновского тем, что в нем процесс гидратации разделяется на два этапа. Энергия образования первого гидратного слоя вычисляется на основе взаимодействия между газообразным ионом и полярными молекулами воды, т. е. взаимодействия, происходящего вне сферы жидкой фазы. Такой способ расчета позволяет учесть свойства отдельных молекул воды (их дипольные моменты, поляризуемость и т. п.). Поэтому при рассмотрении процесса образования первого гидратного слоя, где эти свойства особенно важны, появляется возможность отказаться от представления о воде лишь как о среде с определенной диэлектрической пропицаемостью. Поскольку на второй стадии цикла в воду вносится ион, уже частично гидратированный, с радиусом, зиачителглю большим, чем радиус исходного иона, то одна и та же ошибка в его определении здесь будет иметь меньи ее значение. Возмуихения, вызванные введением такого гидратированного иоиа в воду, будут меньшими, и представление о воде как о непрерывной среде с определенной диэлектрической проницаемостью, а следовательно, и применение формулы (2.14) оказываются более оправданными, чем в методе Борна. Молекулу воды Ван-Аркель и де-Бур представляют себе в виде с([)еры с радиусом 0,125 нм и электрическим моментом диполя, равкым 6,17-10 ° Кл.м (1,85 0). [c.59]


    Внешнее электрическое поле широко используется в процессах обезвоживания и обессоливания нефтей для интенсификации коалесценции отдельных капель. Рассмотрим на примере поведения пары капель механизм их взаимодействия. Будем считать, что капли не деформируются, что эквивалентно замене их двумя жесткими сферами. За счет растворенных минеральных солей капли можно считать проводниками в поле они поляризуются и начинают взаимодействовать друг с другом (рис. 1.4). Сила их взаимного притяжения пропорциональна диэлектрической проницаемости нефти г , квадрату напряженности электрического поля Е и существенно зависит от расстояния между каплями и их радиусов и Общее выражение для силы взаимного притяжения двух незаряженных частиц, действующей вдоль линии, соединяющей их центры, можно записать в виде [c.19]

    Состояние теории в настоящее время таково, что возможно чисто качественное рассмотрение влияния среды, в которой реакция протекает, на ее скорость. Применительно к кислотному катализу жидкими кислотами в процессах, используемых в переработке нефти, можно указать на следующее. В принципе кислотный катализ может осуществляться как в кислотной фазе при растворении в ней углеводородов, так и в углеводородной при растворении в ней кислоты. Так как диэлектрическая постоянная углеводородов мала ( 2), то ионы в углеводородной фазе могут существовать только в виде ионных пар. В кислотной фазе, имеющей высокую диэлектрическую проницаемость, идет диссоциация на независимые друг от друга ионы, реагирующие со скоростью, на несколько порядков большей, чем ионы в ионных парах. Поэтому реакция всегда идет в кислотной фазе. [c.164]

    Считая, что молекулы воды, образующие внутренний гидратный слой вокруг иона, не участвуют в процессах ориентации и поляризации, т, е. не определяют величины диэлектрической проницаемости, можно написать [c.66]

    Несмотря на широкий круг используемых в различных работах материалов — сорбентов, значительно отличающихся по структуре и физико-химическим свойствам, можно отметить общие, наиболее типичные явления, обнаруживаемые при сорбции воды. Так, диэлектрические изотермы в зависимости от наклона г йа, как правило, можно разделить на несколько участков. Каждому соответствует определенный, характерный для данного интервала влажности материала процесс поляризации. Очевидно, что поляризация и диэлектрическая проницаемость [c.242]

    Более "быстрыми по сравнению с теплопроводностью являются лучистый и конвективный перенос тепла, последний япя многих высушиваемых тел исключен. Нагреву подвергаются тела, содержащие воду. Вода имеет характерный максимум диэлектрической проницаемости в области СВЧ диапазона электромагнитных волн. Выбор воздействия СВЧ электромагнитного поля является в решении данной задачи физически оптимальным. Дальнейшее ускорение процесса сушки может быть достигнуто при использовании вибраций или акустического поля, ускоряющими перенос влаги к поверхности и ее удаление от поверхности тела [6]. При решении более общей задачи необходимо рассмотреть все возможные физические явления, приводящие к конечной цели. [c.9]

    В работе [39] описывается электрогидродинамический (ЭГД) сепаратор, основанный на воздействии электрического поля на включения (пузырьки) в жидкости (в потоке). Основными факторами, влияющими на процесс разделения фаз, являются неоднородность поля, разность диэлектрических проницаемостей среды носителя ех и включений 2 и наличие направленного потока среды. ЭГД-сепаратор позволяет отделить все примеси, для которых и Е1>Е2- Рекомендуемые [c.139]

    Электростатическая составляющая обусловлена возникновением доннановского потенциала, т. е. электрическими характеристиками раствора и ионита (заряды ионов, диэлектрическая проницаемость, дипольный момент растворителя), концентрацией раствора, степенью превращения (емкостью) ионита, сродством ионита и раствора и температурой. Подчеркнем, что среди прочих факторов температура также оказывает влияние на эффекты, вызывающие набухание, поэтому важно рассмотреть и учесть при моделировании тепловые процессы, возникающие при отмывке ионита. [c.375]

    На рис. 393 показано устройство Эме, служащее для измерения диэлектрической проницаемости в условиях ректификации [65]. Измерительную ячейку устройства можно помещать в трубу, подающую флегму в колонну, что обеспечивает возможность при необходимости своевременно изменять режим процесса ректификации. Монография Эме содержит ценный обзору полученных до настоящего времени значений диэлектрической проницаемости для различных веществ с указанием длины волны, температуры, [c.461]

    Разрушение эмульсии электрическим полем представляет собой весьма сложный процесс и зависит от многих факторов. Для выяснения его сущности целесообразно рассмотреть поведение капелек воды во внешнем электрическом поле и их взаимодействие под влиянием последнего. Это взаимодействие зависит от диэлектрической проницаемости и электропроводности воды и нефти, от поверхностного натяжения на границе фаз, вязкости нефти, характера и величины электрического поля и т. д. [c.47]


    Ввиду того что все процессы, связанные с нагреванием диэлектрика, идут одновременно, при рассмотрении кривых следует говорить лишь о преобладающем влиянии в разных интервалах температур тех или иных факторов. Так, например, о преобладающем влиянии на диэлектрическую проницаемость раствора явлений диссоциации молекулярных ассоциатов и происходящего вследствие этого освобождения полярных групп можно сделать заключение по восходящей ветви кривой г=f t), где Ae/Ai>0. Наоборот, на нисходящей ветви кривой, когда Ae/Ai<0, определяющее влия- [c.186]

    Процесс получения концентрированных дисперсий рассматривался как последовательное добавление бесконечно малого количества дисперсной фазы А7р в дисперсионную среду На промежуточной стадии г (рис. .14), когда общий объем равен V, концентрация дисперсной фазы — Ф, а диэлектрическая проницаемость — е, добавление бесконечно малого количества дисперсной фазы приводит [c.341]

    Последовательным добавлением бесконечно малых порций дисперсной фазы [этот процесс описывается уравнением (У.198)] будет достигнута конечная концентрация Ф и диэлектрическая проницаемость е.  [c.343]

    Наличие кристаллической воды в молекулах вещества существенно сказывается на процессе сушки в электромагнитном поле, так как при переходе ее в жидкое состояние (78 С) изменяется диэлектрическая проницаемость и [c.15]

    Три важных фактора — индуктивный эффект, эффект поля и резонансный эффект — могут сильно влиять на поведение органических кислот и оснований, включая и биологически важные а-аминокислоты. В водном растворе, обычной среде нротекания биологических реакций, эти эффекты обусловливают большое разнообразие свойств, так что процессы диссоциации могут происходить во всем диапазоне pH. Это вал<но, потому что белки, построенные из аминокислот, в зависимости от своего аминокислотного состава могут принимать участие в кислотно-основных превращениях. Действительно, в упрощенном виде диссоциацию аминокислот можно рассматривать как миниатюрную модель диссоциации белка. В биохимических реакциях важные функции выполняют белки, и аналогия с аминокислотами может слу кить основой для понимания процессов передачи протонов. Однако такая модель слишком упрощена. Она не учитывает кооперативные взаимодействия. Например, как поведет себя лизин при диссоциации под действием линейно-расположенных положительно заряженных аминокислотных остатков, входящих в состав белка Далее, каким образом близко расположенная гидрофобная область белковой молекулы (т. е. область с более Ш13-кой диэлектрической проницаемостью) влияет на ее диссоциацию в данном химическом процессе То, что в этом случае можно ожидать значительных изменений, видно из поведения глицина при диссоциации в среде с низкой диэлектрической проницаемостью например, в 95%-ном этаноле (рКа карбоксильной группы глицина равен 3,8, а аминогруппы 10,0). Можно было бы подумать, что в этом случае но кислотности глицин близок к уксусной кислоте, но это не так, поскольку для последней р/( равен 7,1. [c.42]

    II электрическом поле. Конечные результаты определяются в значительной степени как параметрами, связанными с самим технологическим процессом и окружающими (атмосферными) условиями, так и с факторами, характеризующими порошковую систему размер, форма, насыпная плотность частиц, их диэлектрическая проницаемость, электропроводность, электризация. Влияние этих свойств должно проявляться прежде всего на скорости движения частиц. [c.117]

    Химическая теория растворов Д. И. Менделеева рассматривает растворитель не только как среду, в которой протекает реакция, но и как непосредственного участника химического процесса. Как среда для протекания реакции растворитель обычно характеризуется диэлектрической проницаемостью. Как участника реакции кислотно-основного взаимодействия растворитель можно характеризовать его донорно-ак-цеп торны ми свойствами по отношению к протону. Конечно, эти свойства не исчерпывают своеобразия и природу растворителя, поскольку существует еще и специфическое взаимодействие. [c.34]

    На практике при изучении диэлектрической релаксации полимеров определяют температурно-частотные зависимости компонент комплексной диэлектрической проницаемости. При этом Б соответствии с принципом ТВЭ можно проводить измерения в режиме изменения температуры с малой по сравнению с изменением т скоростью при фиксированной частоте внешнего электрического поля (скорость изменения температуры образца 19 град/мин). Другой вариант сводится к фиксации температуры образца и вариации частоты внешнего электрического поля. Второй случай экспериментально осуществим труднее, так как требуется аппаратура охватывающая широкий интервал частот, однако он по очевидным причинам предпочтительнее. В этом случае непосредственно реализуется миграция стрелки действия, что открывает возможность строгого расчета некоторых параметров, характеризующих релаксационный процесс таких, например, как полная величина поглощения (ест — е ) или параметр распределения [c.239]

    В отличие от большинства низкомолекулярных соединений, где возможен только один процесс диэлектрической релаксации, в полярных полимерах их может быть обнаружено как минимум два. Типичная кривая температурной зависимости компонент комплексной диэлектрической проницаемости для аморфного полимера приведена на рис. VII. 5.  [c.240]

    У растворителей с более высокими значениями донорного или акцепторного числа основная часть энергии, необходимой для разрыва связи, выделяется за счет координационной стабилизации возникающей частицы. Поэтому на процесс растворения влияет также диэлектрическая проницаемость среды. [c.450]

    КОГО термометра. Погрешность измерений не превышала 5 % Методика измерения диэлектрической проницаемости заключалась в следующем. Керосин и исследуемые нефти предварительно очищали от механических примесей и обезвоживали. Контроль за постоянством температуры в процессе измерения проводили ио термометру, помещенному на ультратермостате. Исследуемую жидкость помещали в измерительный конденсатор, который подключали к куметру параллельно настроечному конденсатору, добиваясь максимального отклонения стрелки куметра. Для определения рабочей емкости пустого измерительного конденсатора и паразитной емкости монтажных проводов конденсатор предварительно калибровали ио эталонным жидкостям — толуолу и че- [c.122]

    Мы не будем рассматривать здесь различные типы измери тельных ячеек и приборов, выпускаемых промышленностью, и технику работы на них — для этого существуют специальные руководства. Типы кривых осциллометрического титрования в основном сходны с кондуктометрическими. Но в осциллометрии ветви кривых линейны только в том случае, если измерения проводят в области перегиба характеристических кривых и не происходит слишком сильных изменений электропроводности. В противном случае на кривых в большей или меньшей степени возникают плавные изгибы. При проведении измерений в выбранной оптимальной рабочей области получают такую же, а иногда даже большую точность измерений, чем в кондуктометрии. Поэтому области применения осциллометрии и кондуктометрии совпадают, иногда осциллометрия даже более предпочтительна. Это происходит в тех случаях, когда важны такие преимущества осциллометрии, как возможность безэлектродных измерений и увеличение чувствительности с уменьшением диэлектрической проницаемости. Осциллометрик используют для индикации кислотно-основного, осадительного и комплексометрического титрования различных типов, а также при титровании агрессивных растворов и в неводных средах. Она пригодна и для решения различных кинетических проблем при исследовании процессов кристаллизации, растворения (на- пример, гидраргиллита в алюминатном щелоке), омыления, этерификации, полимеризации, самоокисления и т. д. Метод ос-Циллометрии находит применение в фазовом анализе, например при изучении процесса плавления, затвердевания, фазового обмена, расслоения, для построения диаграмм состояния и т.д. Особенно важным является использование осциллометрии для Контроля и регулирования процессов производства. Этот метод пригоден для неразрушающего анализа ряда продуктов или содержимого ампул. [c.336]

    Катионная полимеризация. Стадией инициирования при катионной полимеризации является образование комплексных ионов или ионных пар при взаимодействии кислот Льюиса с водой, га-логенводородами, галогеналкилами и т. п. В средах с низкой диэлектрической проницаемостью, где свободные катионы практически отсутствуют, процесс роста цепи осуществляется при непосредственном участии противоиона. [c.178]

    Разрыв ковалентной связи в молекулах газа обычно приводит к образованию двух нейтральных радикалов. Такие реакции называются атомными или гомолитическими. Разрыв ковалентной связи в молекуле может привести и к образованию двух противоположно заряженных ионов. Такие процессы называются гетвролитическими и почти не наблюдаются в газах, но очень характерны для растворов. Объясняется это тем, что гетеро-литический распад в газах требует затраты большой энергии на преодоление взаимного электростатического притяжения ионов. В растворах же большие диэлектрические проницаемости многих растворителей заметно понижают электростатическое притяжение ионов, поэтому энергия гетеролитического разрыва ковалентной связи может стать ниже энергии гомоли-тического разрыва. Кроме того, гетеролитическому распаду способствует поляризация диссоциирующей связи под действием электрических полей полярных молекул растворителя. [c.84]

    Начальное направление электродного процесса до установления равновесного состояния, заряды металла и раствора зависят от энергии сольватации потенциалопределяющих ионов. Энергия сольватации определяется индивидуальными свойствами растворителя, в частности его диэлектрической проницаемостью, то электродный потенциал должен иметь неодинаковое значение в различных растворителях. При изучении электрохимических систем с неводными растворами встречаются существенные затруднения из-за выбора электрода сравнения, который должен иметь постоянный потенциал в растворах элек- [c.486]

    Преимущество мультидекаметра Сле-фогта [66] состоит в том, что измеряемая частота не является строго фиксированной и может изменяться в интервале от 10 кГц до 12 МГц. Грант [67] описал прибор для регистрации значений диэлектрической проницаемости, который весьма пригоден для использования в процессах ректифи- [c.461]

    Аналогичные н. менения к вызывают добавки в систему кубового остатка процесса производства высших алифатичсски. аминов и экстракта. Увеличение диэлектрической проницаемости при модифицировании мa iyтoв может быть связано с экстремальным и.1менением размеров ССЕ в зависимости от внешних воздействий. [c.164]

    Если зависимость комплексной диэлектрической проницаемости от частоты не описывается уравнением с одним временем релаксадии, то согласно термодинамической теории дипольной релаксации /1,42/, взаимосвязь естественных процессов такова, что наблюдаются две или большее число нормальных реакций. Е следует уравнению [c.122]

    Пытаясь определить причины поднятия уровня воды в цилиндре с отрицательно заряженным электродом, Рейсс поставил другой опыт. Он пропускал постоянный ток через прибор, состоящий из. и-образной трубки (рис. 91), средняя часть которой была заполнена мелким кварцевым песком. В этом приборе кварцевый песок играл роль пористой диафрагмы. После включения электрического тока уровень воды в колене с отрицательным электродом начал повышаться, а в колене с положительным электродом — поиилоться. Это продолжалось до тех пор, пока разность уровней в обоих коленах не достигла определенной величины. Многочисленные опыты показали, что, как и при электрофорезе, этот процесс протекает с постоянной скоростью. Причем количество перенесенной жидкости находится в прямой зависимости от приложенной разности потенциалов и диэлектрической проницаемости и обратно пропорционально вязкости этой среды. Впоследствии явление переноса жидкости через пористые диафрагмы и узкие капилляры получило название электроосмоса. [c.311]

    Инверсия (рацемизация) без обмена называется изоинверсией. Механизм этого процесса подразумевает образование ионных пар. Действительно, в присутствии краун-эфира, способствующего образованию ионов, выход рацемата увеличивается [307]. На практике стереохимический путь многих реакций, катализируемых алкокси-дами металлов в неполярных растворителях, может быть в корне изменен при добавлении в среду каталитических количеств краун-эфиров. По этой причине в средах с низкой диэлектрической проницаемостью ионные пары с карбанионом как отрицательным ионом играют необычную роль промежуточных соединений. Например, изучена скорость обмена / обм и рацемизации йрац как функция [c.445]

    Уравнения (7.2) и (7.3) получены Дебаем при условии, что все диполи в диэлектрике одинаковы и не взаимодействуют между собой, поэтому имеется одно время релаксации т. Однако в реальных диэлектриках, в частности полимерах, процессам релаксации присуще распределение времен Xi, описываемое релаксационным спектром. Тот факт, что диэлектрические свойства полимеров не могут быть точно описаны уравнением с одним т, был впервые принят во внимание Фуоссом и Кирквудом [7.2], которые прямым образом учли существование спектра времен релаксации для полимеров. Учет распределения времен релаксации в конденсированных системах, в которых отсутствуют дальнодействующие силы, сделан в теории диэлектрических свойств слабополярных систем. Если функция распределершя времен релаксации является симметричной, то для обобщенной диэлектрической проницаемости может быть использовано модифицированное уравнение Дебая вида [c.177]

    Подобного рода эффекты возможны также и в ферментативных реакциях, поскольку микросреда активного центра многих ферментов обнаруживает по своей полярности или диэлектрической проницаемости свойства скорее органических растворителей, чем воды (см. гл. I). По аналогии с э ектами, наблюдаемыми в нефермента-тиБных реакциях, десольватация реагирующих групп в активных центрах ферментов может дать ускорение более чем в 10 раз [291 (если сравнивать ферментативный процесс с гомогенно-каталитической реакцией, идущей в воде). В литературе пока не описаны системы, для которых было бы строго доказано участие сольватационных эффектов или электростатической стабилизации, в ферментативном катализе. [c.67]

    Ускорения в реакциях, катализируемых циклоамилозами, могут быть обусловлены также эффектом микросреды. Например, процесс декарбоксилирования кислот, скорость которого возрастает при понижении диэлектрической проницаемости среды, ускоряется в 10—15 раз также и в присутствии циклоамилоз [89, 94, 951. В этом случае, естественно, отсутствует зависимость эффективности катализа от положения заместителя и размеров кольца. [c.113]

    Первой стадией процесса растворения вещества, состоящего из полярных молекул, является поляризация ковалентной связи растворителем, что, вообще говоря, приводит к гетеролити-ческому расщеплению на положительную и отрицательную частицы. Многочисленными примерами можно доказать, что способность растворителя расщеплять вещество на ионы в первую очередь определяется его донорным и акцепторным числами, а не диэлектрической проницаемостью ел Даже растворитель с большой диэлектрической проницаемостью не способен гете-ролитически расщепить связи растворенной частицы, если он не имеет достаточной координирующей способности. Так, например, хлорная кислота в серной кислоте (ег = 80) не образует ионов, в то время как в водном растворе (ег=78,5) О—Н-связь в молекуле НСЮ4 полностью разрывается. [c.450]

    В растворителях с высокой диэлектрической проницаемостью участие растворителя в образовании ионов увеличивается за счет влияния диэлектрических свойств. В зависимости от значения диэлектрической проницаемости ионы, образовавшиеся в результате разрушения ионной решетки или гетеролиза полярной связи, либо ассоциированы, либо находятся в растворе в виде отдельных ионов, окруженных сольватной оболочкой. При использовании растворителей с низкой диэлектрической проницаемостью возникают преимущественно ионные ассоциаты и ионные пары, в которых два или более иона связываются электростатическими силами. Ассоциированные ионы образуют самостоятельные частицы и вследствие взаимного насыщения электрических зарядов не дают вклада в электрическую проводимость раствора. При переходе к среде с более высокой диэлектрической проницаемостью электростатическое притяжение между катионами и анионами в соответствии с законом Кулона (разд. 32.3.1) ослабляется и образуются отдельные, большей частью сольватированные ионы. При растворении полярных соединений в растворителе с высокой диэлектрической проницаемостью это состояние достигается без каких-либо промежуточных состояний. Процесс перехода ионных ассоциатов в свободные ионы называют диссоциацией. Весь процесс можно записать с помощью следующей схемы последовательных реакций [c.451]

    Они соответствуют реакциям катионной кислоты ЗН+ (а), нейтральной кислоты 5Н (б) и анионной кислоты 5Н (в). В случае (а) между компонентами реакции не происходит кулоновского взаимодействия, величина которого зависит от диэлектрической проницаемости (ДП) растворителя. В случае (б) и еще в большей степени в случае (в) эти взаимодействия про- являются сильнее они тем больше, чем меньше значение ДП. Равновесие обеих реакций тем сильнее сдвинуто в прямом направлении, чем больше значение ДП, и наоборот. Из этого следует, что константы кислотности катионных кислот зависят не от значения ДП, а только от основности растворителя. Напротив, кислотность нейтральных и еще в большей степени анионных кислот в растворителях с низким значением ДП меньше, чем в растворителях с высокой ДП, если допустить, 1что кислотность растворителя не изменяется. Если катионная и нейтральная кислоты, находящиеся в смеси, из-за сходства кислотных свойств титруются совместно, то при переходе к. растворителю с другим значением ДП становится возможным их дифференцированное титрование. Это правило применимо также и при титровании кислоты яо двум ступеням диссоциа- ции. Если растворитель характеризуется низким, значением ДП, то кислоту можно нейтрализовать последовательно по жаждой ступени диссоциации, в то время как в растворителе с высокой ДП происходит нейтрализация по двум ступеням одновременно (рис. Д. 146). Растворители с небольшими зна- чениями ДП обладают большой склонностью к образованию ассоциатов различных типов, в связи с чем двухступенчатые процессы могут быть кажущимися. Образование растворенными частицами ассоциатов и взаимодействие их с растворите- [c.344]

    Целью работы является изучение влияния органического компонента в малых и больших количествах на растворимость и термодинамические характеристики процесса растворения. На основании результатов исследования сопоставляется влияние на растворимость электролитов органических ве1иеств, понижающих (ацетон, спирты) и повышающих (мочевина, тиомоче-вина) диэлектрическую проницаемость раствора. [c.89]


Смотреть страницы где упоминается термин Процессы диэлектрической проницаемости: [c.457]    [c.274]    [c.464]    [c.208]    [c.191]    [c.193]    [c.342]    [c.5]    [c.190]    [c.52]    [c.445]    [c.274]   
Растворитель как средство управления химическим процессом (1990) -- [ c.62 , c.182 , c.183 , c.184 , c.185 , c.186 , c.189 , c.190 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость



© 2025 chem21.info Реклама на сайте