Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ЯМР-спектроскопия магнитный дипольный момент

    В то же время существуют неоспоримые аргументы в пользу применения твердотельного ЯМР в биологии величины, отражающие зависимость от направления, которые усредняются за счет быстрых движений в растворителе, содержат весьма важную и часто однозначно интерпретируемую дополнительную информацию о структуре исследуемых веществ. Кроме того, в биологических системах содержатся компоненты, нерастворимые в воде, В основном они образуют надмолекулярные структуры. К ним относятся мембраны, рассмотрение которых будет проведено нами в дальнейшем, волокнистые протеины, строение которых напоминает структуру коллагена. Коллаген является компонентой клеточного остова. К ним относятся также большие системы, состоящие из большого числа отдельных компонент, каждая из которых является водорастворимой, таких, как актомиозиновая система мышечных клеток или фрагментов, входящих в состав сложных вирусов. Эти системы иногда могут кристаллизоваться, и в этом случае, конечно, они могут достаточно эффективно анализироваться с использованием методов рентгеноструктурного анализа. В ряде случаев эти системы можно ориентировать в сильных постоянных магнитных полях за счет наличия у них магнитных дипольных моментов, что существенно упрощает проблемы, возникающие в ЯМР-спектроскопии. [c.144]


    Строение можно изучать химическими методами — второе важнейшее положение Бутлерова — также не потеряло своего значения в наши дни. Изучение строения органических соединений — природных и синтетических — было и остается основной задачей органической химии. При этом, как и во времена А. М. Бутлерова, мы пользуемся методами химического анализа и синтеза. Однако наряду с ними в наше время широко применяются физические методы определения строения — разные виды спектроскопии, ядерный магнитный резонанс, масс-спектрометрия, определение дипольных моментов, рентгенография, электронография. Значение этих методов ныне столь велико, что, дополняя Бутлерова, в наше время мы можем сказать строение можно изучать химическими и физическими методами. [c.31]

    Один из наиболее важных источников сведений о строении молекул и молекулярных уровнях энергии представляет собой спектроскопия. Например, спектры дают количественную информацию о длинах связей и валентных углах, частотах колебаний, энергиях диссоциации, дипольных моментах и форме кривых потенциальной энергии. Методы ядерного магнитного резонанса и электронного парамагнитного резонанса стали настолько необходимыми в химической практике, что они рассмотрены в отдельной главе. [c.361]

    Другим важным следствием частично двоесвязанного характера связи в амидах является существование конфигурационных изомеров—(58) Е или цис-) и (59) I- или транс-), возникающих из-за отсутствия свободного вращения вокруг связи С(0)—N. Существование этих изомеров установлено с помощью данных ядерного магнитного резонанса, инфракрасной и Раман спектроскопии, а также измерениями дипольного момента [153] (см. также разд. Э.9.2.2). В отдельных случаях один из изомеров был выделен путем кристаллизации или за счет образования комплекса при низкой температуре. [c.427]

    В настоящее время широко применяются физические методы исследования для определения строения органических молекул рентгеноструктурный анализ, структурная электронография, инфракрасная спектроскопия, комбинационное рассеяние света, дипольные моменты, электронные спектры поглощения, электронный парамагнитный резонанс, ядерный магнитный резонанс. Теория химического строения раскрыла неисчерпаемые возможности для синтеза разнообразных органических веществ с заранее заданными свойствами. [c.306]


    Из физических методов определения строения органических соединений используются спектроскопия (видимая, ультрафиолетовая, инфракрасная и комбинационного рассеяния), масс-спектро-метрия, определение дипольных моментов, ядерный магнитный резонанс и др. Описание всех этих методов можно найти в специальных руководствах и в учебниках по физике и физической химии. [c.21]

    Упомянутые выше методы являются более непосредственными по сравнению с некоторыми методами, разработанными позднее,— измерением дипольных моментов, магнитной восприимчивости,, спектроскопией и др. Результаты, полученные с помощью этих новых методов, могут быть использованы в сочетании с данными других физических измерений требуются известные теоретические предположения, чтобы на основании этих результатов сделать заключение о форме молекулы. [c.254]

    Определенную информацию о структуре можно получить и другими методами 1) по данным о дипольном моменте, 2) о магнитной восприимчивости, 3) по интенсивности электронных спектров, 4) с помощью мессбауэровской (гамма-резонансной) спектроскопии и 5) по круговому дихроизму и путем изучения дисперсии оптического вращения. Эти физические методы имеют существенные ограничения в отношении числа и вида молекул, которые можно исследовать с их помощью, и некоторые другие недостатки. Эти методы не дают сведений о длинах связей и углах между ними. Более того, в некоторых случаях из-за сложности интерпретации данных могут быть сделаны неправильные выводы, поэтому эти методы редко используют в структурных исследованиях. [c.294]

    В повседневной практике химика-органика несравненно большее значение имеют спектроскопические методы, и здесь на первое место выдвинулся (открыт в 1946 г.) метод ядерного магнитного резонанса (ЯМР), основанный на взаимодействии магнитных моментов ядер (например, ядра водорода) с внешним магнитным полем. Метод протонного магнитного резонанса дает исчерпывающие сведения о химической природе, пространственном положении и числе атомов водорода в молекуле и тем самым о ее строении. Методы инфракрасной (ИКС) и электронной спектроскопии в ультрафиолетовой и видимой областях спектра, а также спектров комбинационного рассеяния света (СКР) выявляют функциональные группы, распределение электронной плотности, пространственное строение молекул органических соединений. Метод электронного парамагнитного резонанса (ЭПР) для определения природы свободных радикалов, образующихся при химических реакциях, обусловлен взаимодействием неспаренного электрона парамагнитного соединения со внешним магнитным полем. Масс-спектроскопия (спектрометрия) путем определения массы и относительных количеств ионов, возникающих при бомбардировке электронами молекул, исследует их строение. Метод дипольных моментов устанавливает конфигурацию молекул и отчасти распределение в них электронной плотности. Повысился интерес исследователей к методу полярографии органических соединений (изучение пространственного строения, кинетики, таутомерии и т. д.). Большое значение имеет исследование термодинамических свойств органических соединений (например, при оценке их взрывчатых свойств). [c.10]

    Строение непредельных нитросоединений исследовалось различными физическими и физико-химическими методами рентгеноструктурного анализа, дипольных моментов, ядерного магнитного резонанса, электронного парамагнитного резонанса, рефрактометрии, инфракрасной и ультрафиолетовой спектроскопии, спектров комбинационного рассеяния света, полярографии. [c.187]

    Большинство современных знаний о структуре молекул получено с помощью молекулярной спектроскопии. Анализ молекулярных спектров позволяет определить не только положение различных энергетических уровней молекул на основании измерения волновых чисел спектральных линий, но и геометрическую конфигурацию молекулы, т. е. валентные углы и длины связей [1]. Зная интенсивности спектральных линий, можно рассчитать вероятности переходов и симметрию молекулярных состояний. Измерения зеемановского и штарковского расщепления уровней позволяют определить магнитный и электрический дипольные моменты, а такл<е дают информацию о поляризуемости молекул. [c.242]

    В дальнейшем структура полиоксиметилена изучалась различными авторами, использовавшими для этой цели ряд методов дифракцию рентгеновских лучей [5, 6], колебательную спектроскопию 7—10], измерение дипольных моментов [11] и ядерный магнитный резонанс [12—14, 48]. [c.166]

    Приведенные в табл. 6.6 и 6.7 примеры не оставляют сомнений в том, что дипольный момент молекул с полным основанием можно отнести за счет распределения заряда, которое определяется молекулярной геометрией. В наше время химики считают, что для характеристики молекулы недостаточно ее брутто-формулы или даже структурной формулы — необходимо знать пространственное геометрическое строение молекулы. Для этой цели химики используют сейчас целые области физики, которые позволяют получать такие важнейшие сведения о строении молекул. Сюда относятся инфракрасная (ИК) спектроскопия, ядерный магнитный резонанс (ЯМР), [c.190]


    Строение можно изучить экспериментально, используя химические методы — анализ и синтез. В наше время при установлении строения широко используют также физические методы — разные виды оптической спектроскопии, ядерный магнитный резонанс, масс-спектрометрию, рентгенографию, электронографию,, определение дипольных моментов. [c.23]

    Самую непосредственную информацию о геометрии молекул (межатомных расстояниях, валентных и двугранных углах) дают рентгено-и электронография. Векторный характер дипольных моментов позволяет делать важные выводы об ориентации полярных связей. Менее прямую, но практически очень ценную информацию о пространственных особенностях можно получить с помощью ультрафиолетовой и инфракрасной спектроскопии. Важнейшим методом исследования в органической химии вообще и в стереохимии в частности стал ядерный магнитный резонанс. Стереохимическую информацию можно получать как из значений химических сдвигов, так и из констант спин-спинового взаимодействия. [c.39]

    Физические методы органической химии. Сборник под ред. А. Вайсбергера. ИЛ, Т. I, 1950 (532 стр.). Рассмотрены главным образом методы определения физических свойств различных веществ температуры плавления, температуры кипения, растворимости и др. Т. II, 1952 (587 стр.). Описаны методы регулирования и измерения температуры, колориметрия, микроскопия и др. Т. III, 1954 (216 стр.). Дипольный момент, масс-спектрометрия, определение радиоактивности. Т. IV, 1955 (747 стр.). В этом томе рассмотрены главным образом физико-химические методы анализа спектроскопия и спектрофотометрия, поляриметрия, полярография, магнитная восприимчивость, колориметрия и др. [c.472]

    Тем не менее существуют экспериментальные методы, с помощью которых получают некоторые сведения о распределении заряда в молекулах или комплексах [75]. Данные этих методов при определенных предположениях часто используют для расчета степени ионности связи. Наиболее прямой метод определения распределения электронной плотности — метод рентгеновской дифракции — не является достаточно чувствительным, чтобы использовать его данные для количественных выводов, хотя распределение электронов вокруг атомов галогенов в галогенидах щелочных металлов весьма четко различается. Для нахождения распределения электронной плотности были использованы следующие методы дипольные моменты [97], спектры ЭПР (константы сверхтонкого расщепления) [98], ЯМР (химические сдвиги) [99], ЯКР (константы ЯКР) [100], эффект Мессбауэра (изомерные сдвиги) [101], спектры поглощения рентгеновских лучей [102], данные атомной спектроскопии о константах спин-орбитального взаимодействия [103], измерение магнитной восприимчивости [104] и данные об изменении параметров межэлектронного отталкивания для комплексов по сравнению с параметрами для иона в газовой фазе [105]. [c.101]

    В резонансном поглощении или резонансном рассеянии участвуют два состояния ядра. Каждое состояние взаимодействует с внеядерными полями посредством своих электрического монопольного, [магнитного [дипольного. и электрического квадрупольного моментов. Это взаимодействие может быть описано гамильтонианом, содержащим большое число координат. Даже если предположить, что ядро представляет собой твердое тело, мы сталкиваемся с вычислительной проблемой, решение которой находится вне возможностей современной теории, и для того, чтобы сделать какие-либо предсказания, необходимы аппроксимации. Очень полезным оказывается метод разделения переменных. Процедура состоит в сведении задачи к решению уравнения с угловыми переменными, которые описываются операторами угловых моментов, и уравнения с радиальными переменными, которые практически трактуются как полуэмпирические константы. Эта процедура известна как формализм спинового гамильтониана [1, 2]. Она с успехом применяется для интерпретации сверхтонкой структуры спектров в твердых телах. В рамках этого формализма имеется угловой момент 5, называемый эффективным спином и связанный с электронными координатами. Для свободных ионов или ионных решеток, в которых эффекты кристаллического поля очень слабы , 5 представляет собой полный угловой момент J. Однако для наиболее тяжелых атомов, доступных мессбауэровской спектроскопии, вырождение, связанное с J, снимается (частично или полностью) путем взаимодействия с лигандами (обычно через ковалентные связи), и основное состояние, как правило, является синглетом или дублетом. Квантовомеханическое описание этого основного состояния как линейной комбинации базисных состояний в 1 /, Лi )- или [c.399]

    Наряду с приведенными выше методами весьма надежными оказались некоторые физические методы установления конфигурации, например измерение дипольных моментов и температур плавления, инфракрасная и ультрафиолетовая спектроскопия, а также спектры ядерного магнитного резонанса. Эти методы мы рассмотрим в следующем разделе. [c.315]

    Линии в спектрах ЯМР твердых тел имеют довольно большую ширину (порядка 10—10 эрстед), поэтому этот раздел спектроскопии часто называют ЯМР широких линий . Метод позволяет изучать диполь-дипольное взаимодействие магнитных моментов ядер., относительную ориентацию ядер и расстояние между ними. [c.285]

    За последнрге годы различными авторами и особенно Далем и его сотрудниками структура некоторых карбонилов металлов была установлена при помощи рентгеноструктурного анализа. По ходу обсуждения материала в настоящем разделе будут приводиться данные, полученные другими физическими методами (инфракрасная спектроскопия, измерение дипольных моментов, мес-сбауэровская спектроскопия, ядерпы11 магнитный резонанс, определение магнитной восприимчивости и т. д.), которые позволяют получить ценные сведения о структуре различных соединений. [c.43]

    Из физико-химических (инструментальных) йй-бдов исследования, применяемых для установления молекулярной структуры органических веществ, наиболее часто используются оптическая спектроскопия (в ультрафиолетовой, видимой и инфракрасных областях спектра), спектроскопия ядерного магнитного резонанса (ЯМР), хроматография, метод дипольных моментов молекул, рентгеноструктурный анализ, молекулярная масс-спектроскопия и др. С помощью этих методов получают ценную информацию о взаимном расположении атомов в молекуле, их взаимовлиянии, внутримолекулярных расстояниях, поляризуемости связей, валентных углах и распределении электронной плотности и т. д. [c.123]

    Для современной органической химии при решении структурных проблем все большее значение приобретают физические методы исследования. Теплоты сгорания, парахор, дипольные моменты, изучение кинетики, магнитная проницаемость, метод меченых атомов, константы хроматографии и электрофореза, скорость осаждения при центрифугировании, люминесцентный анализ, нефелометрия, по-ляриметрия, масс-спектроскопия, рентгеноструктурный анализ, но особенно, — спектроскопия в видимой, инфракрасной, ультрафиолетовой областях, изучение спектров электронного парамагнитного и ядернОго магнитного резонанса открыли необыкновенно широкие возможности для решения задач установления строения молекул. Физические исследования все чаще оказываются решающими для понимания структуры соединения. [c.19]

    Среди факторов, определяющих величину константы экранирования протонов, в начале разд. 1 упоминалось и влияние растворителя. В общем можно полагать, что все эффекты, которые мы до сих пор обсуждали как внутримолекулярные, проявляются также и на межмолекулярном уровне. Например, установлено, что резонансные сигналы веществ, растворенных в ароматических растворителях, проявляются в более сильном поле, чем в растворителе алифатической природы. Этот эффект был приписан диамагнитному кольцевому току бензола и его производных. Подобное же влияние соседних молекул, связанное, однако, либо с экранированием, либо с дезэкранированием, может проявляться в результате магнитной анизотропии кратных связей или влияния электрического поля молекул с большими дипольными моментами. Эффекты растворителя становятся особенно значительными, если межмолекулярные взаимодействия в растворе приводят к образованию специфических комплексов. За счет диполь-дипольных или вандерваальсовых взаимодействий некоторые взаимные пространственные ориентации взаимодействующих молекул становятся более предпочтительными, чем другие. В результате могут наблюдаться специфические изменения резонансных частот отдельных протонов растворенного вещества. Их в свою очередь можно использовать для получения сведений о строении таких комплексов. Поэтому спектроскопия ЯМР оказалась важным методом исследования межмолекулярных взаимодействий. Изменения химических сдвигов под влиянием растворителя обычно меньше 1 м. д. Мы уже рассмотрели в гл. П1 их специальные применения и последствия для резонансных частот эталонных веществ. Для избежания осложнений, вызванных влиянием растворителя, рекомендуется использовать такие инертные растворители, как тетрахлорид углерода или циклогексан. Можно исключить, кроме того, и концентрационные эффекты, если провести измерения при нескольких концентрациях вещества и экстраполировать данные к бесконечному разбавлению. Измерения в газовой фазе, где межмолекулярные взаимодействия сводятся к минимуму, стали осуществимы и для веществ с высокой упругостью паров только после развития импульсных Методов с фурье-преобразованием. [c.109]

    Эти выводы теоретического анализа находятся в хорошем согласии данными экспериментальных исследований, которые были специально поставлены нами для проверки результатов расчета монопептидов. К изучению пространственного строения представительного ряда метил-а идов Ы-ацетил-а-аминокислот и их Ы-метильных производных, перечисленных ниже, были привлечены методы инфракрасной спектроскопии, ( рерного магнитного резонанса, дисперсии оптического вращения, кругового дихроизма, а также дипольных моментов и газожидкостной осмо- Стрии [88]  [c.163]

    Решение ряда принципиальных теоретических проблем органической химии связано с исследованием строения и свойств ароматических соединений. Здесь в первую очередь следует выделить проблему строения бензола. Всестороннему исследованию связи между строением и свойствами ароматических соединений способствовало широкое применение методов физико-химического эксперимента электронной спектроскопии в видимой и в ультрафиолетовой области, потенциометрического титрования, дейтерийобмена, рентгено-и электронографии, дипольных моментов, ядерного магнитного и электронного парамагнитного резонанса и др. [c.407]

    Наиболее точным методом определения дипольных моментов является микроволновая спектроскопия. Если поместить газ в электрическое ноле, происходит расщепление чисто вращательных линий на шгарковские компоненты, причем величина расщепления зависит от напряженности электрического поля и дипольного момента. Эффект Штарка в электрическом поле совершенно аналогичен эффекту Зеемана в магнитном поле, и в обоих случаях расщепление возникает потому, что пространственное вырождение уровней энергии снимается при наложении электрического или магнитного поля. Отдельные штарковские компоненты можно наблюдать в полях с напряженностью в несколько тысяч вольт на сантиметр, а расщепление можно измерить с большой точностью. Напряженность электрического поля определяется обычно калиброванием по молекулам с известными дипольными моментами. Поскольку исследуемое вещество находится в газовой фазе и при низком давлении, здесь отсутствует влияние растворителя, а взаимодействие между полярными молекулами сведено до минимума. Не влияет на результаты и наличие примесей, если только можно проанализировать сложный спектр смеси. Кроме того, в благоприятных условиях можно найти значения дипольных моментов каждой из изотопных молекул в отдельных колебательных состояниях. Этот метод пригоден только для простых молекул с высоким давлением паров, но сейчас уже имеется довольно много надежных количественных данных по дипольным моментам молекул, которые можно интерпретировать, основываясь на представлениях об электронной структуре молекул. [c.244]

    Как уже подчеркивалось при обсуждении комплексов металлов с ди- и олигоолефиновыми лигандами, для определения структуры комплексов в основном используют рентгеноструктурный анализ, методы спектроскопии и измерение магнитных и дипольных моментов. Ниже рассмотрены результаты таких исследований комплексов металлов с аллилами в качестве лигандов. [c.195]

    Методы, использованные при структурных исследованиях, обозначены следующими символами X — рентгенография, Е — дифракция электронов, ИК—ИК-спектроскопня, К. Р. — комбинационное рассеяние, Д — дипольный момент, М. С. — микроволновая спектроскопия, М. В. — магнитная восприимчивость. [c.383]

    Химики-органики обычно довольствуются экспериментально найденными значениями указанных величин, для надежного определения которых в распоряжении исследователей есть ряд методов — различные виды спектроскопии, диэлкометрия (определение дипольных моментов), хироптические методы, ядерный магнитный резонанс (особенно часто). При этом следует отчетливо представлять себе возможную точность получаемых результатов [5]. Так, для грубой оценки констант конформационного равновесия, имеющих значения порядка 50—100, надо проводить интегрирование площади сигналов в спектрах ЯМР с точностью до 1 %, что очень трудно. Лучше обстоит дело с конформационной энергией при точности интегрирования, равной 5 %, ее определяют с точностью около 0,1 кДж/моль. [c.156]

    Для окончательного решения вопроса о природе изменения интенсивностей валентных и деформационных колебаний и магнитного экранирования протона при образовании водородного мостика необходим последовательный расчет при помощи достаточно точной многоэлектронной волновой функции. При этом следует вычислить продольную и поперечную составляющие дипольного момента системы А-Н - - В и их производные по г с учетом полярности связей, неподеленных электронов и изменения гибридизации (соответствующие расчеты для молекулы воды см. в работах [379, 421, 407]). Такой расчет позволил бы количественно согласовать данные инфракрасной спектроскопии и ЯМР, в частности, пропорци-ональное изменение величин Ду и Да. [c.34]

    Ниже приводятся литературные ссылки на оригинальные работы по рефрактометрии и плотностям [1—9], по спектрам поглощения в ультрафиолетовой области [10—25], ИК-спектрам [19а, 23, 25—42], по раман-спектроскопии [29—491, микроволновой спектроскопии [41,50—52], электронному [53—55] и ядерному магнитному резонансам [25, 42, 56—62], масс-спектрам [63—68], рентгеноструктурному анализу [69—876], магнето-химическим исследованиям [88—92], по измерению диэлектрической постоянной и дипольному моменту [5, 32, 89—108], по электропроводности [109—114], полярографии (см.. гл. XVII), по определению парахора [115, 116], измерению упругости пара низших алкильных соединений [3, 101, 117—121], электронографическому исследованию молекулярной структуры [122, 123], измерению теплот сгорания и образования, теплоемкости и свободной энергии [3, 22, 116, 121, 124—136], а также скрытой теплоты возгонки [117, 137]. [c.11]


Смотреть страницы где упоминается термин ЯМР-спектроскопия магнитный дипольный момент: [c.289]    [c.252]    [c.47]    [c.587]    [c.107]    [c.359]    [c.281]    [c.47]    [c.252]    [c.587]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.309 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.309 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольный момент

Магнитная спектроскопия

Магнитный момент



© 2025 chem21.info Реклама на сайте