Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Относительная специфичность действия

    Ферменты характеризуются высокой специфичностью как в отношении субстратов, так и катализируемых ими реакций. Кроме стереохимической, выделяют абсолютную и относительную специфичность действия ферментов. [c.60]

    В то же время высокая специфичность действия ферментов ограничивает их использование, поскольку мн. синтетические Р., не встречающиеся в живой природе, не подвергаются воздействию ферментов. Др. недостаток этого метода - относительно высокая стоимость ферментов. Тем не менее расщепление Р. с использованием иммобилизованных на нерастворимом носителе ферментов реализовано в пром. произ-ве оптически активных а.минокислот. [c.200]


    В зависимости от механизма действия различают ферменты с относительной (или групповой) и абсолютной специфичностью. Так, для действия некоторых гидролитических ферментов наибольщее значение имеет тип химической связи в молекуле субстрата. Например, пепсин в одинаковой степени расщепляет белки животного и растительного происхождения, несмотря на то что эти белки существенно отличаются друг от друга как по химическому строению и аминокислотному составу, так и по физико-химическим свойствам. Однако пепсин не расщепляет ни углеводы, ни жиры. Объясняется это тем, что точкой приложения, местом действия пепсина является пептидная —СО—КН-связь. Для действия липазы, катализирующей гидролиз жиров на глицерин и жирные кислоты, подобным местом является сложноэфирная связь. Аналогичной групповой специфичностью обладают трипсин, химотрипсин, пептидазы, ферменты, гидролизующие а-гликозидные связи (но не 3-гликозидные связи, имеющиеся в целлюлозе) в полисахаридах, и др. Обычно эти ферменты участвуют в процессе пищеварения, и их групповая специфичность, вероятнее всего, имеет определенный биологический смысл. Относительной специфичностью наделены также некоторые внутриклеточные ферменты, например гексокиназа, катализирующая в присутствии АТФ фосфорилирование почти всех гексоз, хотя одновременно в клетках имеются и специфические для каждой гексозы ферменты, выполняющие такое же фосфорилирование (см. главу 10). [c.142]

    СП < п] незначительные изменения или отсутствие таковых для кинетических параметров, если СП > п возможность непродуктивного связывания с ферментом субстратов с СП < п. Теория позволяет связать специфичность действия фермента и структуру его активного центра в данном случае важную роль играет число сайтов и расположение каталитического участка активного центра относительно сайтов, обеспечивающих фермент-субстратное взаимодействие. [c.61]

    Рестриктазы — ферменты ДНК-азного типа действия, катализируют деполимеризацию ДНК в строго определенных участках молекулы. Рестриктазы обладают высокой специфичностью действия относительно азотистых оснований, расположенных рядом с расщепляемой связью. Они используются для расшифровки последовательности нуклеотидных остатков в ДНК фагов и вирусов, а также находят широкое применение в генетической инженерии для получения рекомбинантных ДНК (гл. 31). [c.424]

    Необходимо подчеркнуть, что специфичность действия выражена у различных ферментов в неодинаковой степени. Принято говорить о существовании ферментов, обладающих относительной и абсолютной специфичностью действия. В первом случае речь идет о ферментах, под влиянием которых изменяется ряд близких по химическому строению веществ, во втором — о ферментах с очень узким диапазоном действия. К числу первых относятся, например, многие протеолитические ферменты желудочно-кишечного тракта (пепсин, трипсин, химотрипсин и др.). Представителем вторых является, например, уреаза (см. стр. 137) — фермент, расщепляющий мочевину на СОа И ННз. [c.124]


    Относительная специфичность фотодинамического действия красителей, приводящая к окислительному разрушению определенных гетероциклических оснований, сохраняется при проведении реакции на уровне полинуклеотидов 259-261,270 Однако скорость деградации звеньев гуанозина при облучении ДНК видимым светом в присутствии метиленового синего почти на порядок меньше, чем в случае мономерного нуклеозида [c.682]

    Многие ферменты обладают групповой специфичностью. Они катализируют расщепление связей, образованных определенными -функциональными группами (например, эфирную связь). Такая групповая специфичность может быть абсолютной или относительной. Ферменты с абсолютной групповой специфичностью действуют только на один род функциональных групп. Ферменты с относительной групповой специфичностью действуют преимущественно на один тип связи, например амидную, но при этом могут действовать и на другой тип связи (например, эфирную). Примером последнего типа может служить фермент пищеварительного тракта — трипсин. [c.346]

    Конечно, в книге, посвященной химии веществ, основной особенностью которых является их биологическая специфичность, нецелесообразно обходить молчанием основные биологические и медицинские данные относительно этих веществ. Исходя из этих соображений, мы считали необходимым помимо изложения химии антибиотиков, касающейся изучения состава, строения, свойств и синтеза этих соединений и их аналогов, а также путей и приемов их химического исследования, кратко затронуть и те важнейшие биологические особенности рассматриваемых веществ, которые обусловливают их исключительную практическую ценность. Поэтому при рассмотрении отдельных антибиотиков излагается в предельно сжатой форме их микробиологическая и токсикологическая характеристика, а также возможности их клинического применения. Это необходимо еще и потому, что тем самым создается возможность более полно рассмотреть и те вопросы, в которых химические и биологические исследования наиболее тесно переплетаются друг с другом, а именно вопросы относительно механизма действия антибиотиков и зависимости их биологического действия от строения их молекул. Наконец, исследователям, работающим в области антибиотиков, часто бывает весьма [c.11]

    Другая возможность связана с тем, что природные гидролитические или протеолитические катализаторы, как, например, ферменты, могут взаимодействовать с белками [55 г], образуя с общим атомом металла клешневидное кольцо, замкнутое координационными связями концевых атомов цепи. Если в каталитически активной молекуле фермента имеется заряженная группа, находящаяся в определенном положении относительно подобных замыкающих групп, то близость заряда к молекуле белка при образовании промежуточного клешневидного комплекса, может способствовать притяжению Н+ или ОН в определенных местах. Таким образом, специфичность действия ферментов можно объяснить на основе стерических соображений, а та особая связь в [c.290]

    Табл. 9 позволяет сделать вывод о том, что родовая специфичность действия микроорганизмов на стероиды весьма относительна. Можно лишь [c.43]

    Некоторые группы ферментов обладают относительной специфичностью. Это главным образом гидролитические ферменты. Примерами могут служить эстеразы, действующие на обширный ряд эфиров карбоновы.х кислот, фосфатазы, действующие на эфиры фосфорной кислоты, и пептидазы, расщепляющие пептиды. Но и среди них имеются ферменты с высокой специфичностью, папример фосфолипаза (из группы эстераз), а также некоторые фосфатазы и пептидазы. [c.131]

    Действие некоторых протеолитических ферментов на окисленную В-цепь бычьего инсулина показано на рис. 6.2. Расщепление ферментами пепсином, химотрипсином или трипсином носит ограниченный характер и относительно специфично по сравнению с фактически беспорядочным частичным кислотным гидролизом. [c.179]

    Специфичность действия ферментов состоит в том, что фермент может катализировать превращение определенного субстрата или действовать на один из типов химических связей в нем. Благодаря этому в клетке множество химических реакций протекает одновременно в строго определенном порядке. Различают ферменты с абсолютной, относительной, сте-реохимической и групповой специфичностью. Абсолютная специфичность фермента проявляется в том, что он катализирует превращение молекул только одного субстрата. Например, фермент аргиназа способен катализировать распад только аргинина на мочевину и орнитин, а ферменты сахараза, мальтаза, лактаза способны расщеплять только соответствующие дисахариды. Относительной специфичностью действия обладают ферменты, которые катализируют разрыв определенного типа химической связи в молекулах разных веществ. Для них строение молекулы субстрата не имеет решающего значения. Относительная специфичность характерна для пептидаз пищеварительного тракта (пепсина, трипсина, химотрипсина), которые расщепляют пептидную связь в различных белках и пептидах, а также фосфатаз, липаз, которые расщепляют эфирные связи в молекулах различных веществ. Стереохимическая субстратная специфичность — самая высокая специфичность действия ферментов. Ферменты действуют только на один из нескольких изомеров субстрата. Так, например, ферменты гликолиза катализируют превращение только О-изоформы глюкозы и не влияют на ее Ьизоформу. Групповая специфичность характерна для ферментов, которые действуют на субстраты с одинаковым типом связи и подобным строением молекул. Так, например, холинэстеразы расщепляют эфирную связь во многих субстратах, которые содержат остаток холина. [c.95]


    Эти два соединения отличаются друг от друга лишь стереохимически Однако гидролитический распад их (отщепление метильной группы) катализируется двумя различными ферментами а-глюкозидазой и р-глюкози-дазой. Соответственно этому существуют а-глюкозидазы, катализирующие гидролиз различных а-глюкозидов, и р-глюкозидазы, катализирующие гидролиз р-глюкозидов. Каждая из этих глюкозидаз, в свою очередь, может обладать и относительной специфичностью действия. Так, например, Р-глю-козидаза с различной интенсивностью катализирует гидролиз различных Р-глюкозидов. [c.172]

    Еще Вертело пытался ускорить реакцию между этиленом и серной кислотой, применяя в качестве катализаторов соли ртути. Фритцше [38] считал, что этилсерная кислота сама по себе достаточно акти1 ный катализатор. Это было подтверждено в работе [39]. В дальнейшем были изучены многие катализаторы [40, 41], причем наиболее эффективными оказались соли серебра, железа, меди и окислов ванадия. Действие солей в болынинстве случаев не зависит от аниона, но поскольку мы имеем дело с серной кислотой, рекомендуе -ся употреблять сульфаты (несколько отличаются друг от друга по действию соли одно- и двухвалентной меди). Иногда специфичность действия приписывается аммиачным солям [42] и циановым комплексам металлов [43], но, по нашему мнению, главная роль во всяком молекулярном комплексе принадлежит металлу (например, железу в соли Мора и ферроциановых соединениях). Различие может заключаться лишь в неодинаковом физическом состоянии катализатора в серной кислоте и в последующем изменении состояния с превращением части молекул серной кислоты в молекулы этилсерной кислоты или с введением влаги в серную кислоту. Сравнение действия различных катализаторов может привести к одним и тем же выводам кривые относительной интенсивности действия в ряду каталитических добавок приблизительно одного порядка. Абсолютные значения каталитического действия здесь не важны, поскольку они зависят от условий эксперимента. [c.22]

    Я. р. небелковой природы. Среди этих в-в обычно вьще-ЛЯЮ7 3 фуппы 1) обладающие выраженной специфичностью действия и относительной общностью элементов структуры (напр., алкалоиды)-, 2) обладающие менее выраженной специфичностью действия, но большей универсальностью для растит. мира (напр., гликозиды, в первую очередь - гликозиды сердечные и сапонины)-, иногда в эту фуппу включают терпе-ноиды, флавоноиды и орг. к-ты 3) остальные токсичные соед. растит, происхождения, обладающие разнообразием Сфук-турных типов и механизмов действия и практически не поддающиеся классификации. [c.530]

    Рассматривая промежуточный обмен углеводов в печени, необходимо также остановиться на превращениях фруктозы и галактозы. Поступающая в печень фруктоза может фосфорилироваться в положении 6 до фруктозо-6-фосфата под действием гексокиназы, обладающей относительной специфичностью и катализирующей фосфорилирование, кроме глюкозы и фруктозы, еще и маннозы. Однако в печени существует и другой путь фруктоза способна фосфорилироваться при участии более специфического фермента—фруктокиназы. В результате образуется фруктозо-Ьфосфат. Эта реакция не блокируется глюкозой. Далее фруктозо-Ьфосфат под действием альдолазы расщепляется на две триозы диоксиацетонфосфат и глицеральдегид. Под влиянием соответствующей киназы (триокиназы) и при участии АТФ глицеральдегид подвергается фосфорилированию до глицеральдегид-З-фосфата. Последний (в него легко переходит и диоксиацетонфосфат) подвергается обычным превращениям, в том числе с образованием в качестве промежуточного продукта пировиноградной кислоты. [c.555]

    Яды специфичны для различных катализаторов, как и для различных реакций, в которых катализаторы принимают участие. Например, водород действует как яд при образовании воды на сплавах благородных металлов и железа, а кислород отравляет синтез воды на сплавах из благородных металлов и никеля [238] Вода при высокой концентрации отравляет сжигание окиси >тлерода иа различных катализаторах [56]. Соединения мышьяка являются сильными ядами для катализаторов, применяемых в контактном процессе получения серного ангидрида. Мышьяковистый ангидрид — сильный яд для каталитической гидрогенизации с платиной вследствие восстановления его в арсин. Тот же самый яд оказывает относительно слабое действие на активность платины при разложении перекиси водорода. Таким образом, некоторые вещества могут действовать как яды для определенных каталитических реакций, в других случаях совсем не действуя они могут даже действовать как промоторы в некоторых каталитических реакциях. Висмут, сильный яд для железа при каталитической гидрогенизации, является одним из наиболее активных промоторов для же леза при каталитическом окислении аммиака в окись азота. Подобным образом фосфат кальция является промотором для никеля в каталитической гидрогенизации, между тем как фссфор или фосфин сильные яды. Никель, отравленный тиофеном, не гидрогенизирует ароматический цикл, в то время как его способность гидрогенизировать олефины не нарушается [130, 161]. Сера или сульфиды, которые обычно действуют как яды, при каталитическом восстановлении бензоилхлорида и гидрогенизации смол могзт действовать как катализаторы [184]. Сероуглерод действует как ускоритель в процессе растворения кадмия в соляной кислоте [226]. Есть случаи, когда вещество, взятое в маленьких количествах, остается неактивным, но при применении в большом количестве действует как яд. Например, в реакции нафталина с японской кислой землей хлороформ неактивен в малом количестве и не оказывает никакого отравляющего действия, но взятый в большом количестве вызывает уменьшение количества смолы, образующейся с нафталином под влиянием земли. Хлористоводородная кислота, образующаяся из хлороформа, взятого в больших количествах, уменьшает каталитическую активность [134]. [c.392]

    Наиболее активными комплексами в пероксидазном действии при окислении изученных субстратов являются пероксоаммиакаты. Здесь наблюдается некоторая специфичность действия относительно субстрата, например, для VII относительно пирогаллола, для VIII относительно KJ и для IX относительно бензидина. [c.77]

    Очевидно под понятием коррозионностойкие сплавы надо в общем понимать конструкционные металлические сплавы, которые в наиболее употребительных в технике средах повышенной коррозионной агрессивности, имеют достаточную стойкость и могут быть использованы без специальных средств противокоррозионной защиты. Так как наиболее характерными агрессивными средами в большинстве практических случаев являются среды кислого характера при повышенных температурах, то понятие коррозионностойкие сплавы часто отождествляется с понятием кислотостойкие сплавы. Однако, при этом необходимо принимать во внимание не только кислотность раствора, например, определяемую величиной pH, но и специфичность действия различных анионов, которые могут либо сильно ускорять коррозиоиный процесс (как например, С1 , Р",, Вг ), либо в некоторых условиях, сильно его тормозить (N0 , N02 , РО "). Необходимо также учитывать характер разрушения питтпнг, щелевая коррозия, или межкри-сталлитное коррозионное растрескивание могут вывести конструкцию из строя при относительно малых общих потерях. Таким образом, следует рассматривать стойкость конструкционного материала в смысле сохранения не только основной массы сплава, но и выполнения прямых функций самой металлической конструкции. [c.122]

    Реакция, осуществляемая альдолазой, представляет собой конденсацию альдольного типа. Альдолаза, по-видимому, полностью специфична по отношению к фосфодиоксиацетону, но она способна действовать с рядом альдегидов, например с О- и Ь-фосфоглицери-новым альдегидом и О-эритрозофосфатом. Эта относительная специфичность могла бы привести к ресинтезу асимметрично меченной гексозы. Альдолаза обычно действует на фосфорилированный сахар, у которого 3-й и 4-й атомы углерода имеют ОН-группы в транс-положении. Альдолаза из растений отличается от альдолазы из мышц тем, что она не ингибируется тяжелыми металлами, а от альдолазы из дрожжей тем, что не ингибируется цистеином. [c.123]

    Обратимое превращение аспарагиновой кислоты в щавелевоуксусную было рассмотрено в гл. И1. Процессу окисления углеродного остова аспарагиновой кислоты, наблюдаемому в опытах с тканевыми препаратами крысы [10], вероятно, предшествует переаминирование. Аспарагиновая кислота декарбоксилируется различными специфическими декарбоксилазами с образованием либо а-аланина, либо р-аланина (стр. 208). Были рассмотрены также роль аспарагиновой кислоты в образовании аргининоянтарной кислоты в процессе синтеза мочевины (стр. 339) и использование а-аминогруппы аспарагиновой кислоты в биосинтезе пуринов (стр. 283, и [11]). L- и D-изомеры аспарагиновой кислоты не дезаминируются со сколько-нибудь заметной ско-)остью под действием общих аминокислотных оксидаз. Однако -аспарагин оки-сляется оксидазой змеиных ядов, а относительно специфичные оксидазы, найденные в почках животных различных видов, катализируют окисление D-аспарагиновой кислоты (стр. 187). Биосинтез аспарагина был рассмотрен в гл. Ill этот вопрос нуждается в дальнейшем изучении [12]. В организме животных, по-видимому, возможен синтез аспарагина. Имеются [c.311]

    Общими для двух ферментов являются также следующие их характеристики 1) локализация 2) скорость синтеза 3) характер активности (оба фермента являются эндопептидазами). Что касается последнего пункта, то большая часть соображений, высказанных относительно механизма действия химотрипсина, приложима в равной мере и к трипсину. Главное различие между трипсином и химотрипсином касается их субстратной специфичности. [c.427]

    Полинуклеотиды. Специфичность действия гидроксиламина и относительно мягкие условия реакции с ним дают возможность избирательно модифицировать урацильные ядра в составе рибополи-нуклеотидов и РНК Оптимальные условия модифика- [c.470]

    Для ферментативного определения Ы-концевых групп иногда применяют и аминопептидазы — ферменты, которые последовательно отщепляют аминокислоты с Ы-конца полипептидной цепи. Наиболее хорошо изученным и часто применяемым ферментом является лейцинаминопептидаза, выделяемая из почек свиньи. Этот энзим был использован для изучения Ы-концевой последовательности инсулина и рибонуклеазы. В опытах на синтетических пептидах и амидах аминокислот было показано, что весьма медленно отщепляются те Ы-концевые аминокислоты, рядом с которыми стоят лизин, аргинин И ароматические аминокислоты. Эта относительно узкая специфичность действия энзима затрудняет его применение специфичность действия других аминопеп-тидаз изучена недостаточно. [c.75]

    Мы провели определение активности 5-нуклеотидаз (ТМФ, дЦМФ, УМФ, дУМФ) в радиочувствительных тканях (селезенка, тонкий кишечник) и относительно радиорезистентной ткани печени через 3,24 и 72 часа после гамма-облучения крыс дозой 850 р. Было показано, что эти ферменты обладают (в нормальной печени) следующей активностью по отношению к нуклеоти-дазе ТМФ, активность которой условно принимается за 100% нуклеотидазы дЦМФ, УМФ и дУМФ — 70, 140 и 140% соответственно. Приблизительно те же соотношения наблюдались в тонком кишечнике и селезенке. Можно отметить некоторую специфичность действия 5-нуклеотидаз на разные субстраты. Нуклеотидазы, дефосфорилирующие уридиловые нуклеотиды, особенно активны. [c.138]

    Фосфорорганические соединения являются ядами нервного действия, подавляющими активность ферментов, участвующих в передаче нервного возбуждения. Как всякие ферментные яды, фосфорорганические соединения характеризуются высокой специфичностью действия соответственно специфичности и многообразию строения и функций ферментных систем живых организмов. Следовательно, имеется возможность изыскания строго специфических, избирательно действующих инсектицидов, которые прн их высокой токсичности для вредных насекомых являлись бы мало токсичными или, в идеальном случае, совершенно не токсичными для человека и теплокровных животных. Работы в этом направлении уже привели к определенным результатам, и в настоящее время найдены соединения, высокотокснчные по отношению к насекомым и относительно малотоксичные по отношению к теплокровным животным, т. е. соединения, обладающие благоприятным хемотерапевтическим индексом. К их числу относятся прежде всего соединения типа карбофос и метильный аналог тиофоса—мэгафэс [О,О-диметнл-О-(4-нитрофенил)тиофосфат]. По нашим данным, для кошек и белых мышей метафос примерно в 7—8 раз менее токсичен, чем тиофос. Еще меньшей токсичностью для теплокровных обладают соединения типа карбофос. [c.93]

    Специфичность действия каждого регулятора определяется типом гормона. Для каждого класса соединений можно назвать несколько наиболее характерных эффектов. Пока нет единого мнения относительно того, насколько важен этилен и каковы его положение в системе ростовых веществ растений и роль в биорегуляции. Это соединение постоянно образуется в растениях и выделяется из них в виде газа. Казалось бы, излишне описывать в данном случае химические реакции в различных частях растения, но, чтобы показать влияние этилена, необходимо коснуться и этой области. Этилен даже в чрезвычайно малых количествах влияет на многие процессы в растении. С начала 60-х годов он получает все более широкое признание. Многие исследователи полагают, что влияние как природных, так и синтетических регуляторов роста растений опосредовано их действием на образование и (или) активность этилена. [c.13]

    В настоящее время известно немало химических соединений, способных вызывать полиплоидию, но ни одно из них не может заменить колхицин, который по своим полиплоидизирующим качествам остается на первом месте, главным образом благодаря хорошей растворимости в воде, относительно невысокой токсичности и наибольшей специфичности действия. [c.75]

    В согласии с этим выводом, полученным на основании спектроскопического и электрохимического исследования модельных соединений и растущих цепей, находятся кинетические данные по полимеризации в системах, в которых равновесие (П-28) имеет существенное значение. Один из примеров — процесс полимеризации стирола в тетрагидропиране под действием патрийнафталинового комплекса в присутствии буферного агента, исключающего диссоциацию ионных пар. Для этого случая установлен нелинейный ход кривой Аррениуса, ветвям которой (рис. П-5) отвечают заметно различающиеся значения энергии активации реакции роста (2 ккал/моль в области более высокой и 7 ккал/моль в области более низкой температуры). Нет сомнения, что причина этого обусловлена специфичностью действия каждого из компонентов равновесной системы (П-28), относительные концентрации которых чувствительны к температуре. [c.65]

    Специфичносгь действия ферментов. Ферменты обладают также характерным свойством ярко выраженной специфичности их действия. Каждый фермент действует на определенный тип химической связи в молекуле субстратов. Незначительные изменения в химической структуре вещества исключают иногда возможность проявления действия фермента. По характеру специфичности различают ферменты с абсолютной и относительной специфичностью. Большинство ферментов обладает, по-видимому, первой из них, т. е. фермент может действовать только на один или два субстрата. К ним относятся прежде всего дегидрогеназы, киназы и синтетазы. [c.131]

    Наряду с абсолютной специфичностью, различают и относительную спе-цифичность действия ферментов. Липаза — фермент, катализирующий гидролиз жиров, действует с различной интенсивностью на гидролиз различных жиров. Основываясь на приведенном примере, можно говорить о том, что специфичность действия ферментов является не абсолютной, а относительной. [c.172]

    Высокая монохроматичность лазерного излучения позволяет осуществлять избирательное возбуждение определенных колебательных подуровней в молекулах. Прежде всего это влияет на энергетически-конформаци-онное состояние отдельных участков макромолекул белков и нуклеиновых кислот. В литературе описывается лазерная активация каталазы, сопряжения дыхания с фосфорилированием, иммунологических реакций. Следует, однако, заметить, что вопрос о биологически значимом специфичном действии лазерного излучения и его связи с первичными механизмами взаимодействия света с веществом еще очень далек от сколько-нибудь однозначного разрешения. Очевидно также, что подобная специфика лазерного воздействия на биологические процессы будет проявляться прежде всего при относительно слабых мощностях, не приводящих к глубокой термической деструкции биосубстрата. [c.363]

    При разработке катализатора необходимо учитывать, что каталитическое действие твердой фазы определяется ее селективностью, удельной активностью и удельной поверхностью, а также влиянием специфичных ингибиторов. Поэтому для относительно простого процесса (например, полное гидрирование ненасыщенной молекулы) выбирается металл, дающий наивысшую активность (с учетом его цены). Этот металл наносится на носитель таким образом, чтобы получить возможно большую его поверхность. Для реакции гидрирования может быть подобран носитель с развитой поверхностью, который проявляет некоторую активность в этой реакции, например СГ2О3. Однако активные металлы обладают настолько более высокой удельной активностью, что носители лучше рассматривать как средство создания наиболее развитой поверхности первичного катализатора. [c.31]

    Большинство приведенных примеров показывает, что в основе механизма действия самоуничтожающихся ингибиторов ферментов лежит отщепление протона. По этой причине пиридоксальзависи-мые ферменты являются наиболее вероятными объектами такого ингибирования. Б будущем можно ожидать появления еще большего числа ингибиторов пиридоксальзависимых ферментов, механизм действия которых основан на инактивации функциональной группы, обусловленной карбанионной природой промежуточных соединений [315]. Весьма вероятно, что именно создание более селективных ингибиторов активного центра продвинет вперед разработку самоуничтожающихся ферментативных ингибиторов, или инактиваторов. По сравнению с рассмотренными ранее специфичными к активному центру необратимыми ингибиторами преимущество самоуничтожающихся ингибиторов состоит в том, что, будучи относительно нереакционноспособными, они становятся активными после взаимодействия с остатками в активном центре фермента. Активная форма зависит от каталитических особенностей конкретного активного центра. Таким образом, ингибирование катализируется самим ферментом. Однако оба типа ингибирования позволяют вводить метку и идентифицировать группы активного центра и функциональные группы ферментов. [c.458]

    Вторая особенность ферментов заключается в том, что часто они резко изменяют свою активность в зависимости от кислотности или основности раствора. Это свидетельствует о том, что в каталитическом процессе важную роль играют кислотно-основные реакции. Третья особенность ферментов заключается в их высокой специфичности, т.е. в способности катализировать определенную реакцию, не оказывая воздействия на другие реакции, или даже катализировать конкретную реакцию только относительно одного соединения. Степень специфичности ферментов может изменяться в широких пределах. Например, ферменты, называемые карбоксипептида-зами, обладают довольно обшим действием. Они катализируют гидролиз полипептидов с образованием аминокислот  [c.451]

    Попытка обобщить данный материал сделана в настоящей книге, которая представляет собой логическое продолжение первой части, опубликованной ранее отдельным томом и посвященной анализу специфичности и кинетических аспектов действия ферментов на относительно простые субстраты, такие как алифатические и ароматические спирты и альдегиды, производные карбоновых кислот, замещенные аминокислоты и их производные (не выше ди- или три-пептидов). Главное внимание в первой части книги уделялось характеру фермент-субстрат ных взаимодействий на достаточно ограниченных участках активного центра и кинетическим проявлениям этих взаимодействий. В основе первой части книги лежит экспериментальный материал, полученный при изучении специфичности, кинетики и механизмов действия цинк- и кобальткарбоксипеп-тидазы, химотрипсина и трипсина из поджелудочной железы быка, алкогольде-гидрогепаз нз печени человека и лошади и пенициллинамидазы бактериального происхождения. Итогом первой части книги явились обобщение и формулировка кинетико-термодинамических принципов субстратной специфичности ферментативного катализа. [c.4]

    Среди ферментов, обнаруженных в живых организмах к настоящему времени, имеется несколько сотен деполимераз, основная функция которых заключается в деградации полимерных субстратов вплоть до мономеров или до фрагментов с относительно малой степенью полимеризации. Эти ферменты различаются по типу катализируемой ими химической реакции (гидролиз, перенос определенных химических групп, дегидратация, изомеризация и т. д.), по способу действия, специфичности к природе мономерных остатков полимера, специфичности к типу связей, соединяющих мономерные остатки и т. д. По-видимому, самая большая группа деполимераз в современной номенклатуре ферментов представлена 0-гликозидгидролазами, которые к тому же наиболее изучены по сравнению с другими ферментами с точки зрения их деполимераз-ного действия, а также строения протяженных участков их активного центра. [c.34]

    Равновесие смещают отгонкой ацетона. Реакция идет в очень мягких условиях и очень специфична в отношении альдегидов и кетонов, так что в молекуле могут содержаться связи С = С (включая сопряженные со связями С = 0) и многие другие функциональные группы, которые при этом не восстанавливаются [238]. То же справедливо и для ацеталей, поэтому одну из двух карбонильных групп в молекуле можно специфично восстановить, если другую предварительно превратить в ацеталь. -Кетоэфиры, -дикетоны, а также другие кетоны и альдегиды, для которых характерно относительно высокое содержание енольной формы, не вступают в эту реакцию. Разновидность этого метода используется для селективного восстановления альдегидов действием изопропилового спирта или диизо-пропилкарбинола в присутствии дегидратированного оксида алюминия [239]. [c.358]

    Обретение биологией универсального атомно-молекулярного фундамента живого, если судить по конечным результатам, пока не оказало заметного влияния на состояние многих важнейших для человека областей медицины. По-прежнему не найдены радикальные средства лечения многочисленных форм рака и заболеваний сердечно-сосудистой системы. Нет качественных сдвигов в фармакологии. Действия подавляющего большинства современных лекарств слабоизбирательны, отягощены многочисленными нежелательными побочными эффектами и, как правило, направлены не столько на ликвидацию причин заболеваний, сколько на устранение их следствий, более легко наблюдаемых внешних патологических проявлений болезненных симптомов. Любой фармакологический справочник может свидетельствовать о том, что среди великого множества предлагаемых лекарств практически отсутствуют препараты, наделенные абсолютной специфичностью, т.е. оказывающие благотворное воздействие с точностью, присущей, например, многим ферментам, гормонам и рецепторам. Вот уже около 15 лет медики и биологи многих стран пытаются, пока без видимого успеха, найти защиту от вируса иммунодефицита человека или хотя бы приостановить распространение этой чумы XX в. Если и можно говорить о наметившейся тенденции к улучшению, то она связана прежде всего с профилактикой заболевания, а не с его излечением. В чем же причина существенного разрыва между современным уровнем развития биологии и относительно скромным прогрессом научной медицины Почему наши знания о протекающих в организме человека процессах жизнедеятельности оказываются столь неадекватными нашим возможностям в исправлении этих же процессов при отклонении от нормы Почему между двумя близкородственными областями знаний (биологией и медициной) так неэффективно [c.544]


Смотреть страницы где упоминается термин Относительная специфичность действия: [c.27]    [c.172]    [c.408]    [c.95]    [c.40]    [c.427]    [c.314]    [c.240]   
Биохимия Издание 2 (1962) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте