Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформационное методы установления

    При структурном анализе органических и биологически активных соединений методом ЯМР плодотворной оказалась вариация растворителей. Растворитель оказывает влияние, в частности, на конфор-мационное состояние молекул, конформационные же эффекты — характерная особенность многочисленных соединений нефтехимического синтеза, биологически активных веществ. При вариации растворителей проявляются новые аналитические признаки в спектрах ЯМР, что представляет несомненный интерес для целей идентификации, установления спектрально-структурных корреляций. Аналогичное заключение можно сделать относительно температуры. [c.7]


    Исследования белка, как экспериментальные, так и теоретические, независимо от конкретных целей и используемых методов, естественным об разом подразделяются на пять фундаментальных задач, составляющих единую проблему Первые две задачи включают изучение химического и пространственного строения белковых молекул Они были рассмотрены в предшествующих томах настоящего издания [1, 2] Третья задача заключается в установлении взаимосвязи между природными аминокислотными последовательностями, нативными пространственными формами и динамическими конформационными свойствами, т е в определении молекулярной структурной организации белков Но прежде чем перейти к обсуждению этой задачи, целесообразно вновь обратиться к уже рассмотренному материалу и подвести некоторые итоги [c.59]

    Основные положения предложенной мною конформационной теории белков были сформулированы в общем виде и имели вначале чисто эвристический характер [40, 41]. Создание расчетного метода требовало их детализации и тщательной проверки. Достоинство теории даже в ее первоначальной, быть мо жет, несовершенной форме заключалось в том, что она позволяла всю необходимую работу с первой и до завершающей стадии заранее представить в виде строго последовательного ряда логически связанных между собой шагов, где каждое продвижение вперед опиралось на результаты предшествующих исследований и предваряло последующее. Иными словами, теория, отражавшая вначале чисто субъективное представление автора о структурной организации белка, в то же время представляла собой достаточно четко ориентированную рабочую программу исследования. Одно из положений теории, а именно предположение о согласованности в белковой глобуле всех внутри- и межостаточных взаимодействий, давало возможность разделить задачу на три большие взаимосвязанные части. Цель первой заключалась в кон-формационном анализе свободных остатков стандартных аминокислот, т.е. в оценке ближних взаимодействий валентно-несвязанных атомов. Идеальными моделями для изучения ближних взаимодействий явились молекулы метиламидов М-ацетил-а-аминокислот (СНз-СОМН-С НК-СОЫН-СНз). Вторая часть общей задачи состояла в выяснении влияния средних взаимодействий, т.е. взаимодействий между соседними по цепи остатками. Объектами исследования здесь могли служить любые природные олигопептиды. Цель третьей, завершающей части - изучение роли контактов между удаленными по цепи, но пространственно сближенными в глобуле остатками и априорный расчет трехмерной структуры белка. В дефинициях нелинейной неравновесной термодинамики эти цели могут быть сформулированы следующим образом. Во-первых, определение возможных конформационных флуктуаций у свободных аминокислотных остатков и выявление энергетически наиболее предпочтительных. Во-вторых, нахождение возможных конформационных флуктуаций локальных участков полипептидной цепи и установление среди них бифуркационных флуктуаций, ведущих к структурированию фрагментов за счет средних невалентных взаимодействий. В-третьих, анализ возможных флуктуаций лабильных по средним взаимодействиям участков полипептидной цепи и идентификация бифуркационных флуктуаций, обусловливающих комплементарные взаимодействия конформационно жестких нуклеаций, стабилизацию лабильных участков и, в конечном счете, образование нативной трехмерной структуры молекулы белка. [c.109]


    Низкомолекулярные пептиды, в частности пептидные гормоны, как правило, наделены несколькими функциями. В этом отношении они отличаются от белков, которые, за редким исключением, монофункциональны, физиологическое действие отдельного природного пептида часто проявляется в совершенно различных системах организма и по своему характеру настолько разнообразно, что в такой сложной картине подчас трудно увидеть стимулирующее начало одного соединения и обнаружить между многими активностями пептида какую-либо связь. Несмотря на сложность функционального спектра, механизмы всех физиологических действий пептида совершенны по своей избирательности, чувствительности и эффективности. Поэтому при изучении конкретной функции возникает представление о молекулярной структуре пептида как о специально предрасположенной для выполнения только единичного рассматриваемого действия. Природным олигопептидам присуща согласованность двух на первый взгляд взаимоисключающих качеств - полифункциональности и строгой специфичности. Подход к установлению количественной зависимости между строением и биологической активностью олигопептидов, детально рассматриваемый в следующем юме монографии "Проблема белка", включает решение двух структурных задач, названных автором данной монографии [28] прямой и обратной. Прямая задача заключается в выявлении всех низкоэнергетических конформационных состояний природного олигопептида, которые потенциально, как будет показано, являются физиологически активными. Эта задача требует знания только аминокислотной последовательности молекулы и решается на основе теории и расчетного метода, использованных уже в анализе структурной организации многих олигопептидов. Обратная структурная задача по своей постановке противоположна первой. Ее назначение заключается в априорном предсказании химических модификаций природной последовательности, приводящих к таким искусственным аналогам, каждый из которых имеет пространственное строение, отвечающее конформации, актуальной лишь для одной функции исходного соединения. Конечная цель решения обратной задачи, таким образом, состоит в прогнозировании монофункциональных аналогов, которые бы только в своей совокупности воспроизводили полный набор низкоэнергетических конформаций природного пептида и весь спектр его биологического действия (подробно см. гл. 17). [c.371]

    Сформулированные принципы структурной организации природных олигопептидов являются необходимой основой для решения задачи структурно-функциональной организации этих соединений, обсуждаемой в следующем томе. Сейчас же важно отметить, что установление таких принципов подвело наше рассмотрение непосредственно к самому ответственному моменту исследования одной из фундаментальных задач проблемы белка - завершающему этапу изучения структурной организации белковых молекул и к решению вопроса о возможности априорного расчета их нативных трехмерных структур на основе известной аминокислотной последовательности, предложенной автором теории и разработанного им метода расчета. Перед обсуждением результатов конформационного анализа белков и количественной оценки функций дальних взаимодействий еще раз напомню о роли ближних и средних взаимодействий в структурной организации олигомерной аминокислотной последовательности. [c.403]

    Цель этого обзора состояла в рассмотрении типичных случаев применения спектроскопического метода определения внутримолекулярной водородной связи в стереохимии. Эта задача постоянно расширяется в настоящее время наблюдается уклон в сторону количественного подхода, например определения конформационного равновесия, оценки энергетики водородных мостиков и т. д-Установление конфигурации этим методом стало обычным приемом. [c.166]

    Изучение химического равновесия в ряду замещенных циклогексанов с позиций конформаций молекул представляет большой интерес с двух совершенно разных точек зрения. С одной стороны, рассмотрение равновесия между конфигурационными изомерами может быть сведено к рассмотрению конформационных преимуществ расположения в них атомов и групп в экваториальном и аксиальном положениях. Ряд данных, приведенных в табл. 2-1 и 2-2, получен именно таким путем. С другой стороны, конформационные представления позволяют предсказать положение равновесия между эпимерами, а экспериментально найденное положение равновесия между эпимерами неизвестной конфигурации может быть использовано с учетом этих представлений для установления конфигурации таких соединений. Последний метод наиболее употребителен при установлении конфигурации природных соединений он будет рассмотрен на нескольких примерах в гл. 5. [c.75]

    Общепринято мнение, что применение только химических методов для установления состава смесей при изомерных, а тем более таутомерных превращениях малонадежно и часто приводит к ошибочным результатам. Рассмотрим эту проблему в целом, для чего воспользуемся подробным анализом соотношения скоростей реакций в конформационно-подвижной системе [8] выводы, полученные при этом, справедливы для любой равновесной системы. [c.23]


    Из всех алициклов наибольшее значение для теории конформаций имел циклогексан и его производные. Предположенное еще Заксе существование циклогексана в двух стереоизомерных формах было подтверждено современными методами структурного анализа, для объяснения установленных фактов были выдвинуты теоретические соображения, а для описания тех же фактов предложена специальная терминология. Отчасти одновременно, а отчасти несколько позднее разрабатывалось и учение о зависимости химических свойств циклогексана и его производных от его конформационного состава. Поэтому в нашем изложении мы уделим первое место истории изучения этого алицикла и его в теоретическом отношении наиболее интересных производных. [c.300]

    В настоящее время наука о полимерах претерпевает существенные изменения. Это обусловлено увеличением доли исследований физических свойств полимеров, фронт которых довольно широк. Это и детальное структурное исследование кристаллических и аморфных полимеров, и установление связи механических свойств полимеров с их морфологией, и дальнейшее развитие методов конформационного анализа полимеров и др. Особое внимание в последнее время уделяется изучению молекулярной подвижности твердых полимеров, поскольку это позволяет глубже понять молекулярную природу многих физических процессов. [c.5]

    Работа Хоффмана была первой в потоке работ, посвященных предсказанию геометрии молекул и конформационных энергий, и многие рассматривали ее как очередной триумф квантовой химии. Другие авторы, напротив, считали, что точность предсказаний, даваемая РМХ, слишком мала, во всяком случае она существенно уступает точности модельных методов, использующих атом-атом потенциалы. Последовавшие в дальнейшем хартри-фоковские расчеты конформ аций простых молекул способствовали установлению умеренного отношения к РМХ этот метод полезен для грубых конформационных расчетов, но дает неточные значения конформационных энергий, а в некоторых случаях и неверное отнесение выгодных конформеров. [c.296]

    Рассмотренные выше конформационные превращения в белках, установленные методом рентгеноструктурного анализа, относятся к области относительно крупномасштабных макромолекулярных сдвигов, которые отражают суммарный результат более мелких локальных конформационных изменении. Очевидно, в белковой молекуле существует ряд различных конформационных подсостояний, которые быстро возникают в результате короткоживущих возмущений и флуктуаций основной структуры и между которыми быстро устанавливается равновесие. Напомним, что энергия тепловых колебаний 2 к Дж/моль при 300 К сравнима по величине с высотами барьеров на конформационных энергетических картах биополимеров (см. гл. IX). Это является причиной флуктуаций с изменением взаимного расположения атомов, не связанных валентными связями в основной цепи. Так, флуктуации молекулярного объема у молекул с молекулярной массой до 14000 могут при 300 К составить 0,03-0,04 нм , а флуктуации поверхности — до 0,01 нм , т.е. [c.263]

    Атомы водорода, не поддающиеся локализации при использовании метода рентгеноструктурного анализа, могут быть легко привнесены в найденную трехмерную структуру белка с помощью хорошо известных стереохимических правил. Такая процедура проводится автоматически на ЭВМ. Однако есть случаи, когда знание положений атомов водорода в молекулярной структуре имеет принципиальное значение и должно быть получено опытным путем. Как правило, это касается активных центров ферментов, где установление конкретных систем водородных связей очень важно, поскольку они играют определенную функциональную роль. В решении подобного вопроса необходимо рентгеноструктурный анализ дополнить изучением дифракции нейтронов. Возможность наблюдать положения водородных атомов значительно расширяет круг решаемых кристаллографией задач. Доступными для изучения становятся некоторые динамические аспекты пространственной организации белков, в частности конформационные флуктуации белковых молекул. В этом отношении одной из перспективных областей применения нейтронной техники является получение качественной информации о процессе замещения водорода на дейтерий, атомы которого по-другому проявляют себя в рассеивании нейтронов. [c.165]

    Обзорные данные по конформационным свойствам полипептидов и методам установления этих свойств позволяют лучше понять фундаментальные свойства ациклических молекул. Хотя понимание конформационного поведения этой группы природных соединений существенно при попытке объяснить их биологическую функцию, в частности взаимодействие олигопептидных гормонов с рецепторами и ферментативный катализ (см. гл. 24.1), этот обзор зани- [c.422]

    С появлением конформационного анализа стало возможным истолковать многие из результатов по изучению равновесий с точки зрения относительной термодинамической устойчивости геометрических и структурных изомеров природных соединений, содержащих эпимеризуемые центры. Основной принцип метода может быть сформулирован следуюш им образом наименьшей энергией основного состояния будет обладать лишь та конфигурация и конформация, в которой заслоняюш ий эффект и другие неблагоприятные несвязанные взаимодействия минимальны. Следовательно, основное звено проблемы — выбор конфигурации, удовлетворяющей этому условию. При отсутствии экспериментальных данных выводить ймпирически порядок относительной устойчивости изомеров довольно рискованно. Тем не менее во многих случаях, когда нет оснований опасаться осложнений, изучение равновесной изомеризации может явиться очень надежным, а иногда и самым удобным методом установления стереохимии. [c.668]

    Третьим косвенным методом установления конформационного равновесия является исследование равновесия между оксикис-лотамииих лактонами [106] (см. рис. 2-22). Константа равновесия [c.87]

    В настоящее время метод остановленной струи широко применяется для решения многих задач химической кинетики установление механизмов химической реакции, определение стадий, лимитирующих протекание реакции обнаружение промежуточных комплексов, определение кинетики ферментативных реакций, установление числа и концентрации активных центров фермента, изучение быстрых конформационных переходов в белках и нуклеиновых кислотах. Метод требует быстрой регистрации это единственное существенное ограничение его применимости. Особое внимание при применении метода остановленной струи необходимо уделять тер-мостатированию, так как разница в температурах в кювете наблюдения и растворе смеси реагентов может привести к большим оптическим ошибкам, затрудняющим установление механизма наблюдаемой реакции. Точность определения констант скоростей данным методом примерно такая, как и при обычных спектрофотометрических измерениях кинетики химических реакций. [c.28]

    Осуществлен конформационный анализ большого числа ФОС, в том числе - имеющих нетривиальную структуру, и установлен характер внутримолекулярных взаимодействий в них. Впервые предложены методы функционализации непредельных субстратов с помощью ФОС в координационной сфере переходных металлов. Среди новых ФОС найдены вещества с практически полезными свойствами - инсектоакарициды, фунгициды, гербициды, рострегуляторы, антивирусные препараты, высокоэффективные экстрагенты и аналитические реагенты для определения малых количеств ионов металлов, сорбенты для хроматографии, вещества с жидкокристаллическими свойствами, антикоррозионные агенты, противоиз-носные и смазывающие присадки к буровым растворам и другие. Все эти исследования имеют приоритетный характер, их результаты отражены в многочисленных публикациях в ведущих отечественных и зарубежных изданиях. [c.154]

    СТЕРЕОХЙМИЯ (от греч. stereos-пространственный), отрасль хнмии, исследующая пространств, строение молекул и его влияние на физ. и хим. св-ва. Стереохим. подход применим ко всем мол. объектам, используется во всех разделах химии (орг., неорг., координац. и т.д.). С. состоит из четырех осн. разделов. Статическая, или конфигурационная, С. имеет своей главной задачей определение абс. конфигураций энантиомеров хиральных молекул (см. Конфигурация стереохимическая) и установление зависимости хироптич. св-в (см. Хироптические методы) от структуры. Конформационный анализ концентрирует внимание на внутренней жизни молекул в отсутствие хим. р-ций, исследует конформации молекул, их взаимопревращения и зависимость физ. и хим. св-в от конформац. характеристик. Динамическая стереохимия представляет собой составную часть совр. теории механизмов хим. р-ций, она изучает влияние пространств, строения молекул на скорости и направление р-ции, в к-рых они участвуют. Теоретическая С. имеет дело с осн. понятиями и концепциями, мат. основаниями и описанием формализма стереохим. процессов. [c.433]

    Рассмотренная в разделе 2.1 феноменологическая бифуркационная теория свертывания белковой цепи - лишь пролегомены, самый первый шаг к созданию физической теории структурной организации белка и количественного расчетного метода. Неравновесная термодинамическая модель теории сформулирована в такой общей форме, которая еще не допускает прямой экспериментальной проверки. Значение предложенной теории состоит в том, что она, во-первых, дает принципиальную трактовку всем важнейшим особенностям сфуктурной самоорганизации белка беспорядочно-поисковому механизму сборки аминокислотной последовательности, высокой скорости и безошибочности процесса образования трехмерной структуры и, во-вторых, указывает, как показано ниже, направление дальнейшего поиска и раскрывает его содержание. В частности, принципиальное значение имеет то обстоятельство, что бифуркационная теория впервые позволила представить процесс свертывания белка, не требующий при беспорядочно-поисковом механизме сборки рассмотрения всех мыслимых конформационных состояний белковой цепи. Однако сама по себе термодинамическая теория статистико-детерминистического явления не может привести к такому уровню понимания процесса свертывания белковой цепи, который необходим для количественной оценки всех логических связей между аминокислотной последовательностью, трехмерной структурой и окружающей средой, а следовательно, и для апробации лежащих в основе теории принципов. Задача может считаться решенной только после создания физической конформационной теории н расчетного метода, предсказывающих по известному расположению аминокислот в белковой цепи координаты всех атомов в нативной трехмерной структуре и количественно описывающих механизм сборки последней. Лишь при достижении цели, поставленной именно таким образом, физическая теория структурной организации белка сможет стать основой для решения следующих фундаментальных задач, связанных уже с установлением зависимости между строением и функцией. В этом разделе рассмотрены основные положения предложенной автором структурной теории белка [38 2]. [c.100]

    Рассмотрение пространственного строения пептидов и метода их конформационного анализа начнем с изучения всех возможных конформаций у простейших молекул этих соединений, а именно A -Gly-Gly-NHMe (1) A -L-AIa-Z.-Ala-NHMe (II) и A -L-Val-L-Val-NHMe (III) [110, 111]. Можно полагать, что молекулы с выбранными аминокислотными остатками достаточно полно отражают конформационные возможности основных цепей дипептидов с любыми боковыми цепями стандартных аминокислот. Между тем конформационные задачи этих молекул наиболее просты, поскольку фактически сводятся к установлению оптимальных форм только основных цепей. В качестве переменных были выбраны углы вращения ф , Фг. 2, углы Xi и %2 У молекул II и III отвечали минимумам торсионных потенциалов и имели возможность изменяться при минимизации энергии (рис. 11.27). [c.194]

    В представленном в этом разделе кратком описании расчетных методов нашли отражение основные тенденции развития конформационного анализа пептидов и белков в последнее время. Несмотря на многочисленность и видимое разнообразие новых теоретических разработок, их сближает ряд общих черт принципиального характера, причем тех же самых, что были присущи предшествующим теоретико-методологическим исследованиям. Отмечу лишь три таких особенности. Во-первых, практически все предложенные методы расчета исходят из предположения, что нативная трехмерная структура белка имеет самую низкую внутреннюю энергию. Поэтому конечная цель каждого метода состоит в установлении глобальной конформации молекулы по известной аминокислотной последовательности. Такое предположение, сформулированное более 40 лет назад, до сих пор не встретило каких-либо противоречий со стороны экспериментальных фактов и, следовательно, может считаться оправданным. Во-вторых, в последние годы, как и ранее, во всех случаях предпринимались попытки подойти к расчету глобальной конформации белка путем усовершенствования предсказательных алгоритмов, процедур минимизации и вычислительной техники. Надежды на решение структурной проблемы по-прежнему связываются не с более глубоким проникновением в молекулярную физику белка и разработкой соответствующих теорий, а главным образом с достижением в области методологии теоретического конформационного анализа и развитием компьютерной аппаратуры. Между тем такой подход в принципе не может привести к априорному расчету глобальной конформации белка. В разделе 2.1 уже указывалось, что перебор со скоростью вращательной флуктуации (10 с) всех мыслимых конформационных состояний даже у низкомолекулярной белковой цепи (< 100 остатков) занял бы не менее 10 лет. Следовательно, при беспорядочно-поисковом механизме сборка белка как в условиях in vivo в процессе рибосомного синтеза, так и в условиях in vitro в процессе ренатурации не может осуществляться через селекцию конформации всех локальных минимумов потенциальной поверхности. Реальные же возможности самых совершенных современных методов расчета ограничены независимым анализом тетра- и пентапептидов, рассчитанных четверть века назад. Ни один из существующих теоретических методов не в состоянии проводить конформационный анализ сложных олигопептидов, а тем более белков, без привлечения дополнительной информации - результатов прямого эксперимента, касающегося исследуемого объекта, или статистической обработки имеющихся структурных данных. В-третьих для всех предложенных методов расчета характерно отсутствие классификации пептидных структур, оправданной с физической точки зрения и [c.246]

    Для проверки теории пространственной организации олигопептидов, физической молекулярной модели и расчетной схемы априорного конформационного анализа были использованы два подхода. Первый из них не требует для оценки результатов расчета знания экспериментальных фактов о пространственной структуре молекулы. Он основан на выборе для теоретического исследования таких объектов, расчет которых содержит внутренний, автономный контроль своих результатов. Как показано ниже, можно считать с высокой степенью вероятности, что решение конкретной задачи при наличии подобного контроля доводится до конца только при получении правильных результатов. Во втором случае достоверность метода подтверждается путем сопоставления данных теоретического конформационного анализа олигопептидных фрагментов с геометрией соответствующих участков трехмерной структуры белка, установленной с помощью рентгеноструктурного анализа. Поскольку разработанная автором конформационная теория белковых молекул включает все элементы теории пространственной организации олигопептидных молекул, то полное совпадение расчетной конформации с нативной структурой белка можно считать убедительным доказательствам справедливости теоретического подхода к априорному расчету пространственного строения не только природных полипептидов, но и олигопептидов. [c.290]

    Б. Рост и К. Сандер решение видят в отказе от предсказания конформационных состояний отдельных остатков последовательности в пользу вторичных структур у целых сегментов, используя данные о гомологичном белке, трехмерная структура которого известна [222]. Сравнение 130 пар структурно гомологичных белков с отличающимися аминокислот-яыми порядками показало, что значительное отклонение в положениях и цлинах сегментов вторичных структур во многих случаях может происходить в пределах приблизительно одинаковых пространственных форм свернутых цепей. Иными словами, отличия в двух близких аминокислотных последовательностях в большей мере отражаются на вторичных структурах, чем на третичных. Поэтому, полагают авторы, важна не локализация а-спиралей, -складчатых листов, -изгибов и Р-петель с точностью до одного аминокислотного остатка, а их ориентировочное отнесение, совместимое с нативной конформацией гомологичного белка, установленной экспериментально. Включение информации о белковых семействах ведет к увеличению показателя качества Q3 до 70,8%, что соответствует точности экспериментального определения вторичных структур с помощью спектров КД. Однако в развитом Ростом и Сандером методе упрощение проблемы предсказания вторичных (ГГруктур и на их основе третичной столь велико и бесконтрольно, что грани между благими желаниями авторов, субъективным восприятием полученных результатов и декларируемыми количественными показателями точности становятся неразличимы. [c.519]

    Метод теоретического анализа использован для расчета пространственного строения природных пептидных антибиотиков, гормонов и их синтетических аналогов, содержащих от 5 до 30 аминокислотных остатков. На основе сопоставления теоретических и опытных данных изучены конформационные возможности олигопептидов. Для апробации физической теории структурной организации пептидов и метода расчета их конформационных возможностей использованы три способа. Первый из них связан с прямым сравнением теоретических и опытных значений геометрических параметров молекул. Во всех случаях, где такое сопоставление оказалось возможным, наблюдалось хорошее количественное согласие результатов теории и опыта. Второй способ имеет вероятностный характер и не требует для оценки достоверности результатов расчета знания экспериментальных фактов. Он основан на выборе для теоретического исследования объектов, расчет которых содержит внутренний, автономный контроль. Такими объектами могут служить пептиды, содержащие остатки цистеина, далеко расположенные друг от друга в цепи и образующие между собой дисульфидные связи. Априорное исследование ряда цистеинсодержащих пептидов, аминокислотные последовательности которых включали от 18 до 36 остатков, автоматически привело к выяснению пространственной сближенности остатков ys, отвечающей правильной системе дисульфидных связей. Наконец, третий способ проверки заключался в сопоставлении данных конформационного анализа белковых фрагментов с геометрией соответствующих участков трехмерной структуры белка, установленной с помощью рентгеноструктурного анализа. И здесь были подтверждены достоверность и высокая точность результатов априорного расчета (см. гл. 8-13). [c.588]

    Несомненно, что появление более столетия тому назад стерео-химических представлений глубоко отразилось на развитии органической химии как научной дисциплины. Хотя стереохимия так же стара, как сама органическая химия, она, тем не менее, является удобной вводной темой при знакомстве с современной органической химией. Возникновение конформационного анализа, основные принципы которого были в 1950 г. сформулированы Бартоном [1], возвестило новую эру в развитии органической химии. В течение почти трех десятилетий конформационные идеи и стерсохимйческие концепции в целом способствовали крупным успехам в следующих направлениях 1) в разработке новых подходов к установлению строения молекул, 2) в познании механизма реакции и 3) в разработке новых методов синтеза. В этом коротком введении дан критический разбор новейших концепций в стереохимии, так как они непосредственно касаются структурных аспектов органической химии. Кроме того, в очень сжатой форме рассмотрены некоторые наиболее важные из современных аспектов динамической стереохимии это поможет изложению остальных разделов книги. Краткость введения неизбежно вынуждает нас игнорировать многие важные стереохимическне проблемы в специальных областях. Поэтому с самого начала мы отсылаем читателя к ряду учебников, монографий и обзоров по различным вопросам стереохимии [2—19] в надежде, что он найдет в них сведения, отсутствующие в этой вступительной главе. [c.18]

    Важную группу полисахаридов составляют гликозаминогликаны, к которым относятся гиалуроновая кислота, хондроитинсульфаты и кератансульфат. Было показано, что в ориентированных пленках молекулы этих соединений в зависимости от типа присутствующих катионов могут принимать целый ряд взаимо-превращаемых конформаций [12]. Эти конформации представляют собой группу левых спиралей, упакованных антипараллельно и отличающихся в основном степенью растянутости. Наиболее сжатой является одна из конформаций гиалуроновой кислоты, в которой одна молекула закручена вокруг другой с образованием двойной спирали [13] во всех остальных случаях молекулы упакованы бок о бок . В некоторых случаях удалось детально выяснить строение молекул, что для волокнистых веществ, в отличие от кристаллических, очень трудно сделать удалось даже выявить положение молекул воды и геометрию участков молекул, координированных вокруг катионов [14]. Важными вехами на пути понимания конформационных принципов строения полисахаридных цепей стали а) первый пример установления с помощью, рентгеноструктурного анализа упорядоченной конформации разветвленного полисахарида (внеклеточного полисахарида Е. oli) это позволило предположить, что наличие ветвлений играет важную роль при ориентации боковых цепей антипараллельно основной цепи и стабилизации таким образом конформации молекул полисахарида посредством нековалентных взаимодействий [15] б) первое изучение этим же методом структуры кристаллического гликопротеина, которое показало упорядоченность конформации его углеводной части [16]. Ко времени опубликования работы [16] определение строения (F -фрагмента иммуноглобулина G) не было доведено до конца, однако уже можно было сделать ряд важных выводов, которые будут рассмотрены ниже. [c.283]

    Методы исследования пространственного строения белков и пептидов в растворе. Конформационные состояния белков и пептидов в растворе исследуются различными методами, каждый из которых имеет свои достоинстаа и ограничения. Информацию о вторичной структуре можно получить из ультрафиолетовых спектров поглощения в области ISO — 210 нм как показали исследования регулярных полипептидов (например, полилизина), а-спираль имеет меньшее (гипохромизм), а Р-структура большее (гиперхромизм) поглощение, чем неупорядоченный клубок. В течение долгого времени процентное содержание а-спиральных структур оценивали по кривым дисперсии оптического вращения (уравнение Моф-фита, 1956). В настоящее аремя содержание различных типов аторичных структур определяется из спектров кругового дихроизма (КД) на основе сравнения спектров пептидов и белков с кривыми КД канонических вторичных структур, полученных для регулярных полипептидов (Э. Блоут, 1961) (рис. 64) или выведенных на основе анализа кривых КД ряда белков с установленной пространственной структурой в кристалле. [c.111]

    Значительное число работ было посвящено дитерпеновым алкалоидам, и благодаря усилиям Виснера и др. [392] и Эдвардса с сотр. [106] структура ряда этих алкалоидов сейчас в значительной степени установлена. Эдвардсом [393] был сделан вывод полной стереохимии айяконина и атизина, что является блестящим примером применения конформационного анализа. Чтобы проиллюстрировать этот метод, ниже будет дано краткое описание работы по установлению стереохимии айяконина. [c.688]

    А. Е. и Б. А. Арбузовых, Г. В. Пигулевского, Ю. С. Залкипда, В. Е. Тищенко, И. И. Бардышева. Часть работ этой серии была поставлена с целью разработки промышленного метода получения камфоры из доступного сырья — скипидара. Однако развитие этих исследований наряду с установлением структуры многих терпенов и вовлечением их в различные реакции промышленного назначения привело к важным теоретическим результатам — открытию новых перегруппировок и первым представлениям в области конформационного анализа. [c.80]

    Развитие структурной стереохимии углеводов сопровождалось важными достижениями в физических методах анализа, а в некоторых случая с и обусловливало их. Например, примененный Хадсоном [38] црн выводе правил изоротации принцип оптической сулёр позиции стал определяющим для установления конфигурации при С] в циклических формах сахаров. Позднее Лемье и сотр. [39] сделали вывод о зависимости между величиной константы спин-спиновего взаимодействия протонов при вицинальных атомах углерода в ЯМР-спектрах и величиной торсионного угла между проекциями С—Н-связей. Это обстоятельство ачи теЛьно облегчило развитие конформационного анализа как в химии углеводов, так и в других областях орга нической химии. [c.16]

    Одной из наиболее значительных ранних работ в этой области была работа Кемпа и Питцера (1936 г.) [11—13] (см. также [14]), которые показали, что барьер вращения в этане равен примерно 3 ккал моль. Это дало возможность согласовать экснериментально полученные величины энтальпии и энтронии этана [15] с величинами, вычисленными с помощью методов статистической механики. Установление наличия энергетического барьера вращения в этане можно считать вершиной в истории конформационного анализа ациклических систем. Кроме того, было опубликовано большое число других важных работ, таких, как спектральные исследования Мидзусимы и его сотрудников [9, 10], изучение конформации полипептидов, начатое Полингом и Кори [16] (см. также [17—19]), детальное рассмотрение влияния конформаций на реакционную способность ациклических систем, предпринятое Кёртином [20] (см. также более позднюю работу [21]). Эти работы будут обсуждены в последующих разделах. [c.13]

    Если для установления равновесия между 4- грето-бутилцикло-гексанолами используют смесь алюмогидрида лития и хлористого алюминия (1 4), в равновесной смеси содержится в основном транс-изомер (более 99,5% в эфире при комнатной температуре) [99, 101]. В рассматриваемом случае спирты существуют практически полностью в виде комплексов (возможно, типа В0А1С12) этим, по-видимому, и объясняется изменение положения равновесия по сравнению с приведенным на рис. 2-18, Б, так как образование комплекса по кислороду, а также дополнительная сольватация во много раз увеличивают объем К0Л1Х2 по сравнению с КОН. Для группы 0А1Хг —АС°>3,1 ккал моль. На основании этого был разработан метод определения конформационных свободных энергий алкильных групп [991 (см. рис. 2-20). Очевидно, что наблюдаемая константа равновесия Адпи == А/(Б + Б ) или [c.85]

    Обратимся теперь к современной стереохимии. Рассмотрим в первую очередь ее, если можно так сказать, параметрический аспект. Методы изучения геометрии молекул дали очень много материала по межатомным расстояниям и валентным углам. В связи с этим появились феноменологические обобщения этого материала при помощи эмпирических формул, путем установления зависимостей между этими параметрами и типами и подтипами связей, а также посредством аддитивных схем, построенных на понятиях ковалентного и вандерваальсова радиуса. Те же физические методы исследования позволили установить, например, и строение наиболее устойчивых поворотных изомеров, обусловленных существованием потенциалов торможения вокруг простой С — С- связи, и даже величину этих потенциалов. С другой стороны, те же методы вместе с совокупностью данных, полученных химическими способами исследования, позволили далеко продвинуть вперед учение о конформациях циклогексана, его производных и других алициклов и подготовить почву для введения конформационного анализа, занимающегося изучением Зависимости свойств молекул от строения преимущественных конформаций. Далее, было установлено искажение требуемого классическими или даже электронными теориями копланарного строения многих типов соединений. Сюда относится отступление от копланарности алициклов — циклобутана и циклопентана — и молекул с сопряженной системой связей, причем характер такого искажения,например,в случае дифенила,бензфенантрена,гексаметилбензола и их аналогов неодинаков и обусловлен игрой различных структурных факторов. Характерной чертой, в буквальном смысле слова, современной стереохимии является также изучение пространственного строения органических радикалов и ионов, а также, хотя и в меньшей степени — здесь больше гипотез, и переходных комплексов. [c.353]

    Иногда для установления конфигурации применялись специальные методы. Так, транс-конфигурацию а-метоксициклогексилмеркурхлорида удалось уста-новить 2 сравнивая величины оптического вращения [М]о для а- и Р-изоме-ров, полученные Ромейн и Райтом , с результатом расчета оптического вращения цис- и /пра с-изомеров по методу Брюстера . Одновременно была определена абсолютная конфигурация атомов углерода в этих соединениях и оценена разность конформационной энергии между аксиальным и экваториальным положением группы НеХ .  [c.234]

    Подобные расчеты стали широко применяться в конформационном анализе. В частности, ими было подтверждено установленное другими методами существование р-О-альтропиранозы одновременно в сравни- [c.81]

    Денатурация белка в классическом смысле определялась как любая непротеолитическая модификация уникальной структуры нативного белка, приводящая к определенным изменениям химических, физических и биологических свойств [388]. Из этого определения исключаются изменения состояния ионизации, если только они не сопровождаются конформационными переходами. Денатурация может происходить в результате нагревания, изменения pH и добавления неполярных растворителей или некоторых специфических денатурирующих реагентов, например мочевины или солей гуанидина. Она также может быть вызвана восстановительным или окислительным разрывом дисульфидных связей, которые стабилизуют нативные конформации некоторых белков. Денатурация, как правило, сопровождается уменьшением растворимости белка. Это можно легко понять, так как гидрофобное взаимодействие, стабилизующее нативную конформацию, приводит к межмолекулярной агрегации, если полипептидные цепи принимают вытянутые конформации. Другим характерным последствием денатурации является раскрытие реакционноспособных групп, которые расположены внутри третичной структуры и становятся доступны воздействию реагентов при разрушении этой структуры. К числу наиболее пригодных методов наблюдения за процессами денатурации принадлежат спектроскопические измерения, измерения оптической активности и определение каталитической активности ферментов или биологической активности гормонов. Конформационные переходы при денатурации включают ряд процессов, которые в различной степени могут сказываться на каждом из наблюдаемых изменений, и поэтому понятие степени денатурации бессмысленно, если не будет установлен критерий, с помощью которого денатурация измеряется. Эта точка зрения иллюстрируется рис. 44, на котором изображено изменение оптической активности, поглощения света и ферментативной активности рибонуклеазы [389]. [c.136]

    Вначале полипептиды исследовались в виде ориентированных тек-стурированных пленок и волокон с помощью рентгеноструктурного анализа и поляризованных инфракрасных спектров. Изучались структуры образцов в свободном и растянутом состояниях, при различных температуре и влажности. Образцы получались путем осаждения полимера из раствора с последующей прокаткой (метод Ханби [97]). Было показано, что природа растворителя, из которого выделялся образец, может существенно влиять на структуру твердого полимера. Основные результаты, полученные в начальный период конформационных исследований синтетических полипептидов, были отмечены в разделе 1.2. Последующий за ним период характеризуется большим разнообразием изучаемых полипептидов, рассмотрением их структур не только в твердом состоянии, но и в растворах и, наконец, использованием многих физико-химических и прежде всего спектральных методов анализа. Основные направления исследования синтетических полипептидов касались установления структуры и выяснения влияния на ее стабильность аминокислотного состава и последовательности, длины пептидной цепи, агрегатного состояния и внешних условий — природы растворителя, концентрации, ионной силы, pH и температуры. [c.29]


Смотреть страницы где упоминается термин Конформационное методы установления: [c.310]    [c.271]    [c.77]    [c.388]    [c.474]    [c.446]    [c.688]    [c.7]    [c.491]    [c.312]    [c.77]   
Конформационный анализ (1969) -- [ c.9 , c.75 , c.90 ]




ПОИСК





Смотрите так же термины и статьи:

Конформационные



© 2024 chem21.info Реклама на сайте