Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гиббса комплекса

    Если полагать, что процесс формирования граничных смазочных слоев происходит через промежуточную стадию образования переходного комплекса, то последнему, по мнению Камерона, должно соответствовать вполне определенное изменение энергии Гиббса (АС ) и энтропии активации (А5). Тогда состояние поверхностных слоев с учетом законов термодинамики обратимых процессов можно выразить уравнением [c.244]


    Заиисимость константы скорости реакции от электростатической составляющей энергии Гиббса активизированного комплекса выражаете ураинением [c.415]

    Изложенная схема расчета интеграла состояний системы не содержит ограничений на природу и величину потенциальной энергии межчастичного взаимодействия. Это позволяет определить аксиоматику построения математической модели состояния равновесной системы. Равновесный состав должен удовлетворять 1) уравнениям ЗДМ, описывающим образование молекулярных форм, приводящих к эффективному уменьшению экстремума свободной энергии Гиббса [5] 2) максимальному числу линейно-независимых стехиометрических уравнений закона сохранения вещества и заряда 3) уравнению связи измеряемого свойства системы с равновесными и исходными концентрациями составляющих частиц. Термодинамика не дает априорных оценок предельных концентраций компонентов системы, допускающих указанные приближения структуры жидкости. Состоятельным критерием возможности применения модели идеального раствора для комплексов, по-видимому, может служить постоянство констант химических равновесий при изменении концентраций компонентов системы, если число констант, необходимых для адекватного описания эксперимента, не превышает разумные пределы. [c.18]

    Изменение энергии Гиббса при образовании активированного комплекса может быть выражено через энергию Гиббса реагентов, активированного комплекса и растворителя, находящихся в стандартном состоянии. Это позволяет проанализировать влияние растворителя и свойств реагентов на константу скорости реакции. [c.594]

    Положим, что ионная реакция протекает в полярном растворителе (е > 30) прн концентрациях, исключающих ассоциацию ионов. Энергию Гиббса образования активированного комплекса (не следует смешивать с энергией активации в уравнении Аррениуса) можно представить как сумму отдельных вкладов  [c.261]

    Чему равно изменение энергии Гиббса в стандартных условиях лри 25° С для реакции образования этого комплекса из иона Си + ц молекул НзЫ  [c.116]

    Изменения энергии Гиббса для реакций образования аммиа-катного и этилендиаминового комплексов никеля (II) при 30° С составляют  [c.161]

    Определение изменения энтропии при комплексо-образовании в растворе. В соответствии с методикой, изложенной выше, определяют энтальпию образования комплексных соединений, образуемых одной солью с различными лигандами, и устанавливают состав комплексных соединений. На основании полученных результатов и справочных данных по константам нестойкости комплексных ионов вычисляют изменение энергии Гиббса и энтропии при комплексообразова-нии. [c.74]


    Зная константу нестойкости комплекса, можно определить изменение энергии Гиббса в процессе образования комплекса  [c.126]

    Таким образом, в соответствии с современными представлениями, основанными на идеях Гиббса, под фазой следует понимать совокупность телесных комплексов, термодинамические свойства которых одинаково зависят от параметров состояния или, иначе говоря, описываются одним и тем же уравнением фазы, в качестве которого можно взять любое из фундаментальных уравнений Гиббса. [c.195]

    Термодинамическая устойчивость образующихся сольватов определяется величиной энергии Гиббса (Азо О). Так как О = = —ТАзо З, то чем отрицательнее Дз у и положительнее А5о,у5, тем более устойчив сольватный комплекс. Основной вклад В величину вносит которую можно найти из соотношения [c.343]

    Из уравнений (15.18) — (15.21) вытекает, что скорость химической реакции определяется не энергией активации AI7 или ДЯ, а изменением энергии Гельмгольца или энергии Гиббса при переходе исходных молекул в активный комплекс. Кроме энергии активации на скорость влияет энтропия активации AS.  [c.292]

    Л б — изменение АО при образовании активированного комплекса (энергия активации Гиббса) [c.5]

    Потенциометрические кривые могут быть использованы для количественной оценки результатов титрования и для получения физико-химических величин константы диссоциации слабой кислоты, pH при титровании многоосновных кислот с учетом гидролиза, растворимости малорастворимых солей, константы нестойкости комплекса. Используя потенциометрические кривые реакции окисления — восстановления, можно рассчитать стандартные окислительно-восстановительные потенциалы, константы равновесия электродных реакций, энергию Гиббса и т. п. Если проводить потенциометрическое титрование в небольшом интервале температур, то по кривым титрования можно определить температурный коэффициент э. д. с., энергию Гиббса, тепловой эффект и реакции. [c.314]

    В теории переходного состояния в (17.7) и (17.10) выражается двумя способами через статистические суммы реагирующих частиц и активированных комплексов, т. е. через их молекулярные параметры и температуру или через термодинамические характеристики реагирующих частиц и активированных комплексов. Здесь будет использован последний способ. Согласно (14.17) константу равновесия можно выразить через разность стандартных значений Энергии Гиббса активированного комплекса и исходных частиц  [c.270]

    Как для лабильных, так и для инертных комплексов идут только термодинамически возможные процессы. Изменение энергии Гиббса AG связано с константой равновесия реакции К выражением [c.412]

    Закономерности в термодинамической устойчивости. Термодинамическая устойчивость комплексов определяется изменением свободной энергии Гиббса, которая связана уравнением (111.42) с константой равновесия. Для процессов диссоциации комплексной частицы в растворе эта величина называется константой неустойчивости. Например, для процесса [c.273]

    Реакции образования некоторых комплексов серебра (I) в водном растворе (при 25°С) характеризуются следующими значениями стандартной энергии Гиббса  [c.123]

    Концентрационные константы устойчивости позволяют получить значение энергии Гиббса образования комплексного соединения, когда в качестве стандартного состояния выбрано состояние раствора ионной силы /. Константа устойчивости, энергия Гиббса, энтальпия и энтропия образования комплекса составляют термодинамическую характеристику комплексообразования, которая позволяет оЦенить факторы, определяющие устойчивость комплексов. [c.616]

    Энергия Гиббса активированного комплекса выше энергии начального и конечного состояния системы. Таким образом, энергия Гиббса активации — это своеобразный энергетический барьер, который отделяет исходные вещества от продуктов реакции. [c.216]

    Значение Afi° не зависит от катализатора. Следовательно, константа равновесия К° не зависит от катализатора. Константа равновесия реакции (а) К° может быть выражена через отношение констант скоростей прямой fej и обратной реакций К° = kjk . Отсюда вытекает положение о том, что катализатор в одинаковой степени увеличивает (или уменьшает) константы скоростей прямой и обратной реакций. Кинетический критерий реакционной способности AG° представляет собой изменение энергии Гиббса в процессе образования активированного комплекса (Aj — Аг — Х) из исходных веществ и катализатора  [c.619]

    Критический зародыш новой фазы (Гиббс) представляет собой активированный комплекс (переходное состояние) системы. Движение системы через переходное состояние является результатом флюктуации и носит характер Врауновского движения в противоположность инерционному двюкению в теории химических реакций Эйринга. [c.5]


    Энергетика химических превращений. Внутренняя энергия. Энтальпия. Энтальпия образования. Закон Гесса. Термохимические расчеты. Направление химических реакций. Энергетический и энтропийный факторы. Энергия Гиббса, Энергия Гиббса образования. Химическое равновесие. Характеристика глубины протекания процесса. Константа химического равновесия. Смещение химического равновесия. Химическая кинетика. Энергия активации. Активированный комплекс. Механизм химических реакций. Катализ. Управление глубииой и скоростью химического процесса. [c.112]

    Наибольший интерес на современном этапе представляют работы другого теоретического направления , в которых пытаются рассчитать термодинамические и кинетические свойства растворов, исходя из концепции их ионномолекулярной структуры, с использованием общего статистического аппарата Гиббса и метода коррелятивных функций Боголюбова. При статистическом подходе рассматриваются функции распределения вероятностей положений комплексов из одной, двух, трех и т. д. частиц в растворе. Далее для совокупности этих функций составляется система интегро-дифференциальных уравнений, решение которой иногда удается последовательно осуществить применением методов асимптотических разложений по степеням специально подобранного малого параметра. Потенциальная энергия системы взаимодействующих частиц может быть представлена в виде суммы энергий всех парных взаимодействий. Поэтому в данном случае особую роль играет бинарная функция распределения. [c.48]

    Согласно теории сольватации, вокруг частицы растворенного вещества расположены две сольватные оболочки первичная и вторичная. В первичную сольватную оболочку входят молекулы растворителя, совершающие движение в растворе вместе с частичкой вещества. Число молекул растворителя в первичной сольватной оболочке называют координационным числом сольватации. Значение его зависит от природы растворенного вещества и растворителя. Во вторую сольватную оболочку входят молекулы растворителя, находящиеся от частицы растворенного вещества на большом расстоянии. Сольватация сильно проявляется в водных растворах электролитов за счет взаимодействия ионов с полярными молекулами воды (гидратация). Термодинамическая устойчивость сольватов определяется величиной энергии Гиббса (ЛОсол)- Так как А О соя = АН СП.-,—ТА.8 СОЛ, то чем меньше АСсо.ч, тем устойчивее комплекс. Основной вклад в величину ДСсол вносит энтальпия сольватации АНсол, которую находят из соотношения [c.137]

    Кроме собственно энергии связи устойчивость поликомплекса зависит и от других типов взаимодействий, в частности от взаимодействия между удаленными участками матрицы ( объемные взаимодействия). Изменение температуры и (или) природы растворителя влияет на суммарную энергию Гиббса комплексообра-зования и соответственно на прочность комплекса. Так, в стабилизации комплекса полиметакриловой кислоты с полиэтиленгли-колем в водной среде существенную роль играют гидрофобные взаимодействия, поэтому с повышением температуры прочность комплекса возрастает. При переходе от водной к водно-спиртовой среде изменяется характер взаимодействия и зависимость устойчивости поликомплекса от температуры меняет свой ход на обратный. [c.126]

    Термином хелатный э /фект отмечают увеличение устойчивости комплексов с полидентатными лигандами по сравнению с комплексами, содержащими моно-дентатные лиганды. Хелатный эффект обусловлен не эитальпийной, а энтропийной составляющей энергии Гиббса образования комплекса (см. разд. 6.5). [c.402]

    Термодинамическая устойчивость определяется энтальпийной и энтропийной составляющими изменения энергии Гиббса в процессе диссоциации. Увеличение экзотермичности и повышение энтропии этого процесра способствует образованию более устойчивых комплексов. [c.274]

    Степень адсорбции ионов электролитов частицами различных минералов неодинакова. Минералы, в которых между структурными элементами решеток действуют преимущественно близкодействующие ковалентные связи (кварц, глинистые минералы) с небольшой долей ионной составляющей (определяется степенью замещения кремния алюминием в полимерных каркасах, слоях) и с малой плотностью ее, характеризуются меньшей степенью воздействия на ионы электролитов. Наоборот, решетки, в которых связь между ее элементами преимущественно ионная (дальнодействующая) и плотность распределения зарядов по поверхности высокая (Са +СОз -, Мд +СОз - и др.), будут сильнее воздействовать на заряженные частицы электролитов. Таким образом, избирательная способность к ионам солей у известняков (а также у полевых шпатов, гематита) выше, чем у кварца и глинистых минералов. Кроме того, поскольку катионы обычно состоят из одной частички, имеющей малый размер и большую подвижность, а анионы чаще всего являются радикалами (СОз -, 5042") более крупных размеров и меньшей подвижности, на поверхности твердых тел быстрее адсорбируются катионы, чем анионы. Какая-то часть катионов Ыа+, К+, Са +, Mg2+ избирательно адсорбируется (в порядке Мд>Са>ЫаЖ) под действием поверхностной энергии Гиббса в первую очередь на поверхности зерен известняка, полевого шпата, затем кварца, сообщая этим зернам положительный заряд. Под непосредственным воздействием этих ионов на поверхности частиц упорядочиваются молекулы ПАВ и воды, создавая вместе с ионами адсорбционную оболочку вокруг зерен. Наличие положительных зарядов на таких адсорбционных комплексах (известняк —катионы — ПАВ — вода) приводит к тому, что вокруг них ориентируются отрицательно заряженные глинистые частицы и ионы 8042-, НСО3-, тоже предварительно адсорбировавшие на себе молекулы ПАВ и воды. Какая-то часть ионов Ыа+, К+, Mg +, Са2+ и 5042-, НСО3- остается в гидратированном виде в жидкой фазе. Таким образом, в суспензии действуют силы электростатического притяжения и отталкивания крупных адсорбционных комплексов (известняк —катионы —ПАВ — вода), мелких катионов и анионов, дипольные взаимодействия между униполярными комплексами, водородная связь между молекулами воды. Свободная же вода, разделяющая все частицы друг от друга, обеспечивает текучесть суспензии. [c.286]

    Доказано, что при взаимодействии пентахлорида сурьмы и различных соединений, содержащих кислород (РОСЬ, диметилформамид, МезЗОг и др.), наблюдается зависимость между величиной АН и средним расстоянием сурьма — хлор и расстоянием сурьма— кислород. Чем больше АН (точнее энергия Гиббса) у акцепторно-донорного сурьмянокислородного соединения, тем больше в комплексе [c.264]

    По термодинамическим константам устойчивост И находят изменение стандартной энергшг Гиббса в ч1роцессе комплексообразования и далее рассчитывают важнейшую термодинамическую характеристику координационного соединения — его стандартную энергию Гиббса образования из простых веществ. Так, например, изменение стандартной энергии Гиббса при образовании монороданидного комплекса железа (III) в растворе [c.266]

    Кафедра неорганической химии. Получил дальнейшее развитие структурно-термодинамический подход к описанию протолитических равновесий и равновесий комплексообразования в бинарных водно-органических средах, основные компоненты которого составляют А) знание сольватного состояния (стехиометрии и констант образования гетеросольватов) каждого из участников равновесия - комплексообразователя, лиганда, комплекса, протона В) количественные данные об ассоциативных равновесиях между компонентами бинарного растворителя С) использование констант равновесий в унитарной (мольно-долевой) шкале, исключающее из рассмотрения вклад упаковочного члена, характеризующего растворитель, а не процесс в растворе О) использование равновесных данных по сольватному состоянию реагирующих частиц для нахождения энергии Гиббса переноса реагента из реперного растворителя в бинарный, обусловленной изменениями окружения реакционных центров в ходе варьирования состава бинарного растворителя Е) разделение общей энергии Гиббса переноса равновесия (и его участников) на вклад стехиометрической сольватации и структурный вклад, отражающий реорганизацию растворителя вокруг растворенной частицы и образование полости соответствующего размера. [c.151]

    ГИЮ, необходимую для перехода веществ в состояние активированного комплекса, называют энергией Гиббса активаг ии. [c.215]

    Т. с. сформировалась во 2-й пол. 19 — нач. 20 вв. благодаря трудам К. Максвелла, Л. Больцмана, Дж. Гиббса, М. Планка, А. Эйнштейна и др. Ее применяют при решении мн. теор. и прикладных проблем химии для вычисления термодинамич. св-в реальных газов, разбавл. р-ров и др. систем. Понятие статистич. суммы использ. для определения констант скорости хим. р-ций иа основе активированного комплекса теории. [c.567]

    Теория актявярованного комплекса используется для расчета истинной константы скорости элементарной Р. в р. Предполагается, что точно определена форма реагента (хим. субстрат), превращение к-рого приводит к образованию продуктов, причем лимитирующей стадией является не диффузия молекул в клетку р-рителя, а собственно превращение субстрата внутри клетки (кинетич. режим протекания р-ции). Для Р. в р., к-рые протекают при постоянном давлении, осн. соотношение теории связывает константу скорости р-ции к со своб. энергией активации ДО-изменением энергии Гиббса системы при переходе от реагентов к переходному состоянию (ПС)  [c.208]

    Э. ц. составляют основу химических источников тока. Измерения эдс соответствующим образам подобранных Э. ц. позволяют находить коэф. активности компонентов электролитов, числа переноса ионов, произведения растворимости разл. солей, оксвдов, константы равновесия ионных р-ций (константы диссоциации слабых к-т и оснований, константы устойчивости растворимых комплексов, в т. ч. ступенчатые константы). Эдс хим. Э. ц. однозначно связана с изменением свободной энергии Гиббса ДО в ходе соответствующей хим. р-ции Е = -АО/пР (п - число участвзтощих в р-ции электронов Р - число Фарадея), поэтому измерения эдс могут использоваться для расчета АС, причем часто электрохим. метод определения как относительно простой и высокоточный имеет существенные преимущества перед термохим. методами. Применение ур-ния Гиббса-Гельмгольца к Э. ц. при постоянном давлении приводит к соотношению  [c.463]

    Пожалуй, наиболее поучительным примером является теория образования новой фазы. Это — по существу проблема кинетики. В то же время ее peшeниeJ oчeтaeт как термодинамические, так и молекулярно-статистические расчеты. Первые нужны, как показал Гиббс, для вычисления работы образования критического зародыша — понятия, введенного им же [11 ]. Вторые — для расчета вероятности достижения и перехода, через активационный барьер, отвечающий критическому зародышу. Основную трудность представляет расчет этой вероятности. Так, в случае конденсации, например, полный статистический расчет процессов дорастания молекулярных комплексов вплоть до критического зародыша представляет в общем случае невероятно сложную задачу как в силу математических трудностей, так и необходимости знания многочисленных и трудноопределимых констант, характеризующих различные стадии процессов агрегации и дезагрегации молекулярных комплексов. По сути процессы роста агрегатов представляют собой сложно разветвленную цепную реакцию. [c.96]


Смотреть страницы где упоминается термин Гиббса комплекса: [c.324]    [c.221]    [c.116]    [c.243]    [c.351]    [c.315]    [c.95]    [c.568]    [c.210]   
Практические работы по физической химии Изд4 (1982) -- [ c.240 , c.261 ]




ПОИСК





Смотрите так же термины и статьи:

Гиббс

Гиббсит



© 2025 chem21.info Реклама на сайте