Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

РНК расщепление метод структура

    Взаимное расположение звеньев в макромолекуле бутадиенового каучука может быть определено методом озонирования. При расщеплении озонида структуры 1,4 должны образоваться янтарная кислота и янтарный альдегид [c.322]

    Обменное расщепление или другая тонкая структура (см. ниже) в спектре РФС должна быть проанализирована самым тщательным образом. К соединениям со смешанной валентностью относится также [(NHз)5Ru (пиразин) Ки(Ь"Нз)5] , описанный в гл. 10. Это соединение было также исследовано методом РФС [59]. Как сообщалось, в спектре РФС наблюдаются два ионизационных пика, обусловленные двумя неэквивалентными ионами переходного металла. Следует отметить, что пики Ь-углерода находятся в том же спектральном диапазоне, что и ионизационные пики металла, и вывод сделан исходя из результата вычитания пиков углерода из спектра. Метод РФС характеризуется шкалой [c.352]


    Действие сил растяжения вдоль оси молекулярной связи К1—Кг проявляется в ослаблении кажущейся энергии ее образования и, таким образом, способствует увеличению вероятности разрыва связи. Если ослабление кажущейся энергии связи существенно, то механическое воздействие можно считать основной причиной деструкции цепи. Поскольку разрыв цепной молекулы сопровождается образованием органических радикалов, а последующее появление неспаренных свободных электронов регулируется механическими силами, то изучение процесса образования радикалов и их реакций дает необходимую с точки зрения молекулярной теории информацию относительно сил, действующих па цепь. Исследования свободных радикалов методом парамагнитного резонанса усиленно развивались в течение последних 30 лет [1, 2]. С тех пор данный метод успешно применялся для объяснения механизма образования свободных радикалов в химических реакциях и под действием облучения видимым и ультрафиолетовым светом, рентгеновским и 7-излучением и облучением частицами [1, 3]. Дополнительно изучались величина фактора спектроскопического расщепления магнитное окружение неспаренного спина свободных электронов и структура свободного радикала. Во всех этих случаях спин свободного электрона действует как зонд, который, по крайней мере временно, присоединяется к определенной молекуле, принимает участие в ее движении и взаимодействует с окружающим магнитным полем. [c.156]

    Сведения о текстурных и структурных характеристиках исследованных образцов получены из анализа изотерм адсорбции азота и диоксида углерода, а также методом сканирующей электронной микроскопии. Обнаружено, что при термическом расширении происходит расщепление графитовых пластин на более тонкие слои. Полученные образцы обладают развитой микропористой структурой, представленной в основном щелевидными микропорами с преобладающим размером щелей 0,71-0,92 нм. Суммарный объем микропор составляет 0,114-0,330 см /г и зависит от способа приготовления углеродного материала. [c.122]

    Зависимость квадрупольного расщепления от температуры связана с различной подвижностью частиц в решетке, т. е. полем сил и соотношением подвижности с характеристическим временем метода. Изменения сверхтонкой магнитной структуры обусловлены релаксационными процессами, т. е. изменением заселенности зеемановских магнитных подуровней в зависимости от температуры. [c.128]


    Обладая неспаренным электроном, свободные радикалы являются парамагнитными частицами. В магнитном поле происходит расщепление зеемановских уровней радикала, что используется для обнаружения радикалов методом ЭПР. Если в составе радикала имеются атомы— носители ядерного спина (например, атомы водорода), то в результате взаимодействия спина электрона с ядерными спинами возникает расщепление линий в ЭПР-спектре. Между ЭПР-спектром и структурой радикала существует определенное соответствие, и это позволяет идентифицировать радикалы определенного строения по их ЭПР-спектру. Радикалы, имеющие в своем составе бензольные кольца, часто обладают интенсивной окраской (например, гальвиноксил, дифенилпикрилгидразил). [c.139]

    Ядерный магнитный резонанс. Ядра атомов обладают механическим моментом количества движения. Благодаря наличию заряда в ядре это вращение вызывает появление магнитного момента отношение магнитного момента к механическому называется гиромагнитным отношением. Ядра, имеющие магнитный момент, ведут себя в магнитном поле аналогично маленьким магнитам, и, следовательно, при этом должно происходить расщепление энергетических уровней. Магнитные моменты ядер невелики, они гораздо меньше магнитных моментов электронов. У водорода (протона) и фтора магнитные моменты ядер больше, чем у других элементов, и поэтому исследования ЯМР часто проводят, изучая поведение ядер водорода или фтора в различных соединениях. Явление ядерного магнитного резонанса позволило сделать очень важные выводы относительно структуры молекул, взаимного влияния атомов в молекуле, действия растворителя на растворенное вещество и т. д. Этот метод относится к самым тонким средствам исследования структуры молекул. [c.65]

    При расшифровке третичной структуры белков решающую роль сыграл рентгенографический метод, который в 1957 г. позволил английскому исследователю Кендрью впервые определить третичную структуру миоглобина. В дальнейшем рентгеноструктурный анализ позволил установить пространственное строение многих других белков и связать его с их биологической функцией. Так, молекула лизоцима — фермента, расщепляющего полисахариды — имеет трехмерную структуру, показанную на рис. 67. Стрелкой показана впадина, представляющая собой активный центр фермента сюда подходит молекула полисахарида, подвергающегося расщеплению. [c.642]

    Изучение строения полихлоропрена методом озонирования не дает возможности установить разницу в строении а-, и ш-полимеров. При расщеплении озонидов водой всегда получается янтарная кислота (до 85%), что указывает на структуру 1,4  [c.327]

    Строение коротких пептидов определяют последовательным отщеплением и идентификацией концевых аминокислот упомянутыми выше методами, а большие пептиды подвергают дополнительному расщеплению с последующими разделением и определением строения. Затем путем сложного сопоставления структуры различных участков пептидной цепи воссоздают полную картину расположения аминокислот в ма- [c.376]

    При вторичных методах переработки нефти происходит изменение структуры углеводородов, входящих в ее состав. Среди этих методов большое значение имеет крекинг (расщепление) углеводородов нефти, проводимый с целью повышения выхода бензина. [c.303]

    В 1973 г. Н. С. Егоровым была установлена полная структурная формула полимиксипа М с применением впервые разработанных методов специфического химического расщепления по остаткам треонина (метод К->0-ацильной миграции и окислительный метод ) [53]. Из смеси продуктов расщепления методом электрофореза выделены три К-Опр-пентида (рис. 3.5). Идентификация С-концевых аминокислот и аминокислотный анализ этих пептидов позволили определить их строение и с учетом ранге полученных данных по частичной структуре полимиксипа М [54,66] порядок их чередования в антибиотике  [c.133]

    Методом ядерного магнитного резонанса была определена длина последовательности синдиотактических блоков в нескольких образцах полиметилметакрилата, синтезированных в различных условиях [34]. Сходные данные (определение изотактических, синдиотактических и стереоблок-компонентов) были получены для других образцов полиметилметакрилата [35]. С помощью спектров ядерного магнитного резонанса были определены количества изотактических и синдиотактических структур в ангидриде поли-метакриловой кислоты [36]. Проведение пиролиза сополимеров при повышенных температурах и исследование продуктов пиролитического расщепления методами хроматографии может дать сведения относительно длины последовательности мономерных звеньев каждого типа [37]. Методом дифференциального термического анализа было показано, что сополимер пропилена со стиролом представляет собой смесь истинного сополимера и полистирола [38]. Теми же методами может быть также получена информация относительно длин последовательностей сомономеров [39]. [c.303]


    Только что описанный метод — изучение кинетики ферментативного гидролиза полинуклеотидов — применяется в основном для определения числа цепей в структуре [296, 297[. Метод основан на том, что одноцепочечная структура будет расщепляться ири гидролизе хотя бы по одной межнуклеотидной связи, в то время как для расщепления двухцепочечной структуры необходимо, чтобы разрыв произошел, по крайней мере, в двух местах. Если предположить, что существование индукционного периода при понижении молекулярного веса не является результатом первоначального разрыва водородных связей в особых участках молекулы, то с помощью кинетики гидролиза можно различить одно-, двух-, трехцепочечные структуры или структуры с большим числом цепей. Далее, результаты, полученные при действии панкреатической ДНК-азы на ДНК из зобной железы теленка, показали, что минимальное число нуклеотидов между разрывами в двух цепях, при котором сохраняется двухтяжная структура, равно примерно шести. Отсюда ясно, что для того чтобы молекулярный вес ДНК уменьшался, ферментативное расщепление каждой из цепей должно происходить внутри участка из шести нуклеотидных пар (рис. 8-26). [c.600]

    В 1958 г. Вайсман получил физические доказательства существования ионных пар различного типа при изучении ЭПР-спек-тров нафталиннатрия. Образование контактных ионных пар приводило к расщеплению сверхтонкой структуры на ядрах натрия. Однако в силу специфики объекта исследования эти работы не привлекли тогда должного внимания органиков. Пожалуй, общий интерес к исследованиям в этой области вызвала работа, которую провели Хоген-Эш и Смид в лаборатории Шварца. Эти исследователи сообщили о спектральном наблюдении контактной и сольватно разделенной ионных пар 9-флуоренилнатрия в ТГФ, которые обратимо переходили друг в друга при изменении температуры. После этого началось интенсивное изучение различными физическими методами ионных частиц, образующихся в растворах солей анион-радикалов (ароматических соединений и кетонов) и ионизирующихся металлоорганических соединений. [c.6]

    Несомненный интерес представляет цикл работ Со-морджая и сотр. [174—177] по исследованию кинетики различных реакций (в том числе дегидроциклизации) на монокристаллах металлов (Р1, 1г, N1, Ag) с одновременным определением структуры и состава поверхности методом дифракции медленных электронов и Оже-спект-роскопии. Показано, что атомные ступеньки на поверхности монокристалла Р1 являются активными центрами процессов разрыва связей С—Н и Н—Н. Зависимость скоростей реакций дегидрирования и гидрогенолиза циклогексана и циклогексена от структуры поверхности Р1 свидетельствует о существовании изломов и выступов на атомных ступеньках. Такие дефекты структуры являются особенно активными центрами процесса расщепления С—С-связей. Установлено, что активная поверхность Р1 в процессе реакции покрывается слоем углеродистых отложений свойства этого слоя существенно влияют на скорость и распределение продуктов каталитических реакций. Показано, что дегидрирование циклогексана до циклогексена не зависит от структуры поверхности (структурно-нечувствительная реакция). В то же время дегидрирование циклогексена и гидрогенолиз циклогексана являются структурно-чувствительными реакциями. Полученные результаты позволили расширить классификацию реакций, зависящих от первичной структуры поверхности катализатора и от вторичных изменений поверхности, возникающих в процессе реакции. При проведении реакций на монокристаллах 1г показано, что ступенчатая поверхность 1г в 3—5 раз более активна в [c.252]

    Дальнейшим развитием метода тепловых диаграмм является введение операции слияния потоков, принадлежащих одному и тому же температурному интервалу [31]. В результате слияния образуются два суперпотока — горячий и холодный, к которым в дальнейшем применяется операция сдвига. Система теплообмена, полученная в результате такого преобразования диаграммы, позволяет в максимальной степени экономить тепло, однако часто получается более сложной и содержит. большее число теплообменников (рис. 8.9, б). Это вызвано тем, что слияние потоков приводит к их расщеплению. Построение исходной структуры тепдооб-мепной системы производится следующим образом. Тепловая диаграмма может быть разделена на несколько интервалов по оси абсцисс, число которых равно числу монотонных участков на графиках суперпотоков. Для каждого из интервалов выполняется балансовое соотношение и соответствующие потоки могут быть объединены теплообменом. [c.467]

    А. Структура метода. В расчетах используются фактор теплообмена / / н коэффициент ,I сопротивления /у для иде-а ьных пучков, и 1атем вносятся соответствующие поправки в а/ и Ар,-для учета отклорюний, обусловленных разлпч-н , м расщеплением потоков. [c.25]

    Окисление. Различные авторы использовали окисление как для изучения структуры асфальтенов, так и для получения практически важных продуктов [296, 323—327]. Окисление осуществляли азотной кислотой, пероксидом натрия, дихроматом калия, гипохлоритом натрия, перманганатом калия, озоном, кислородно-воздушной смесью, воздухом. В двух последних методах реакции проводятся под давлением. Во всех перечисленных случаях происходит деструктивное окисление, глубина которого зависит от многих факторов реакции. Неглубокое окисление, например, пероксидами натрия, водорода, дихроматом натрия проходит медленно, с небольшим выходом продуктов окпсления и идет по двум направлениям 1) окисление циклоалкановых фрагментов молекул до ареновых и окисление активных метиленовых групп до кетонов, 2) частичное расщепление циклоалкановых и ареновых колец с образованием карбоксильных групп. Окисление воздухом под давлением в водно-карбонатном и водно-щелочных растворах [327, 328] —к большому числу параллельно-последовательных реакций окисления, деструкции, конденсации, уплотнения и ионного обмена. [c.292]

    Гидрирование азокси-, азо- и гидразосоединений с расщеплением молекул по Н=Н-связи часто применяется как аналитический метод для определения структур различных азокрасителей, так как при гидрировании образуются два амина  [c.377]

    Если деградация образца и исследование методами ЭПР происходят при температуре жидкого азота, то скорость реакций радикалов в достаточной степени замедляется и становится возможным прямое определение основных радикалов, полученных путем механической деградации. В подробном исследовании Закревский, Томашевский и Баптизманский [10] выявили схему реакций радикалов для ПА-6 (капролактама, капрона). При температуре 77 К они получили сложный спектр со сверхтонкой структурой секстета, наложенного на триплет. Определяя расстояния между различными компонентами секстета (расщепление) и отношения интенсивностей последних, эти авторы установили присутствие радикала R—СНг—СНг (III). Такой радикал образуется путем разрыва любой связи (с первой по шестую) в звене капролактама  [c.163]

    Следует отмстить, что при всей прогрессивности количественного изучения структуры активных центров карбогидраз, основанного па создании топографической модели активного центра и построении соответствующей математической модели, этим методам присуща принципиальная ограниченность. Дело в том, что в модель активного центра с самого начала закладываются серьезные (и неочевидные) допущения — показатели сродства сайтов аддитивны гидролитические коэффициенты, характеризующие скорость расщепления гликозидной связи в фермент-субстратном [c.74]

    Наиболее близко расположенные уровни энергии атомов и молекул связаны с наличием у атомных ядер собственных моментов (ядерных спинов) Д для этих уровней от 10 до 10 эВ. Соответствующие переходы непосредственно изучают радиоспектроскопическими методами (ЯМР и ЯКР)- В f-peзoнaн нoй, видимой и УФ-областях наличие этих уровней должно приводить к очень малому расщеплению спектральных линий — сверхтонкой структуре. Расщепление линий, обусловленное моментами ядер, наблюдается и в микроволновой области спектра. [c.217]

    Как видно, из спектра ЭПР л особенностей его тонкой и сверхтонкой структуры можно получать важные сведения об электронной конфигураций атомов и ионов, о свойствах атомных ядер. Для химиков ЭПР ценен как один из наиболее чувствительных методов обнаружения и идентификации свободных радикалов, установления их электронной конфигурации и. геометрии. Найда из спектра ЭПР газов, растворов, кристаллов (порошков) значение Н, отвечающее резонансной линии, по (19.15) вычисляют -фактор. Последний используют для идентификации радикалов, чему Ьпособствует вьгявление сверхтонкой структуры спектра. По я-фактору можно судить о симметрии радикала, а также определить энергии отдельных орбиталей. Сверхтонкое расщепление в спектре позволяет определить заселенность. у- и р-орбиталей атома с магнитным ядром в радикале, а отсюда — электронйое распределение и в известных случаях — валентный угол. Так, например, именно метод ЭПР сказал решающее слово в пользу угловой структуры радикала СН2. Метод ЭПР применяется и для исследования комплексных соединений, в частности соединений переходных и редкоземельных металлов. Величина -фак-тора и его зависимость от направления при этом определяются силой И симметрией ло.ия, создаваемого лигандами [к-6]. [c.78]

    При исследовании структуры белков используются эти и другие методы расщепления. Предложен ряд технических приемов для идентификации конечных аминокислот. Один из них широко применяется для идентификации аминокислот, содержащих концевую аминогруппу. Согласно этому методу, проводят реакцию полипептида с 2,4-динитрофторбензолом, при этом свободная аминогруппа превращается в 2,4-динитрофенил-производное (разд. 4.2.2). Последовательный гидролиз полипептидов дает обычные аминокислоты, за исключением конечной N-apилaмииoки лoты, которую можно отделить и идентифицировать хроматографически. [c.297]

    Химическая связь в твердом теле с координационной структурой может быть хорошо описана с позиций ММО. Если при описании простых молекул методы ВС и МО могут быть использованы одинаково широко, то образование твердых тел нельзя интерпретировать методом ВС. Здесь наиболее очевидны преимущества ММО. В рамках этого метода химическая связь между партнерами может осуществляться не только при парноэлектронных (валентных) взаимодействиях, но и при образовании невалентных орбитальных связей. В кристаллах, образовапиых с участием таких связей, электроны делокализованы или в части системы, охватывающей несколько атомов, или во всем кристалле. Например, при образовании металлических кристаллов наблюдаются большие координационные числа (как правило, 8 и 12). В то же время количества валентных электронов в металлах явно недостаточно для образования такого числа парно-электронных связей. При этом химическая связь осуществляется за счет обслуживания электроном большого числа структурных единиц (атомов). Химическая связь такого типа называется многоцентровой связью с дефицитом электронов. Таким образом, в отличие от валентных соединений здесь нельзя выделить отдельные связи, попарно соединяющие между собой соседние атомы. Хотя атомы связаны в устойчивую систему, между ними не существует классически понимаемых химических связей. Специфика взаимодействия большого количества частиц состоит в том, что при образовании ансамбля нрн сближении частиц и их взаимном влиянии друг на друга происходит расщепление атомных орбиталей. На рис. 127 показано расщепление орбиталей щелочного металла, валентный элеткрон которого находится на rts-уровне. [c.307]

    Выше мы обсудили основные типы реакций и методов, используемых для образования связей С-С углеродного скелета ациклических или циклических молекул. Этот набор должен бьггь дополнен еще группой методов, в которых связь С-С подвергается расщеплению. Такие деструктивные методы могут служить очень существенным дополнением к уже рассмотренным конструктивным методам, поскольку во многих случаях целесообразность использования того или иного из конструктивных методов определяется возможностью целенаправленно осуществлять изменение скелета собираемой структуры. [c.257]

    Так или иначе, заслуживает уважения воображение ученых, породившее эти замечательные структуры. Но как их синтезировать Задача представляется устрашающей, особенно потому, что существующий развитый арсенал синтетических методов, превосходно приспособленных для решения задачи создания и расщепления ковалентных связей в структурах почти любой сложности, оказывается бесполезным для сборки молекул того типа, которые представлены на схеме 4.33. Здесь стратегическое существо задачи состоит не в том, чтобы тем или иным способом построить фрагменты, составляющие целевую молекулу, а в том, чтобы заставить их образовать подобные геометрические (или, как их часто, но терминологически некорректно называют, топологические ) связи друг с другом в случае систем типа А и В, или замкнуться в цикл, предварительно завязавшись узлом, в случае типа С, Первоначальные попытки синтезов в этой о иасти основывались на достаточно очевидных и прямолинейных стохастических соображениях. Первые успешные синтезы 34,34-катенана (102) (18е] и ротаксана (103) [18f , [c.420]

    Современные методы определения нуклеотидной последовательности ДНК позволяют в одном эксперименте просеквенировать (от англ. sequen e — последовательность) ее фрагмент длиной в 150—300 нуклеотидных остатков (и.о.). Поэтому исходная молекула ДНК предварительно фрагментируется. Для этого чаще всего ДНК гидролизуют рестриктазами (причем проводится независимое расщепление двумя рестриктазами или более, в результате чего образуются перекрывающиеся фрагменты (рис. 5). Это позволяет после определения нуклеотидной последовательности соответствующих фрагментов реконструировать первичную структуру всей [c.15]

    Теоретическая модель вторичной структуры РНК должна быть далее подвергнута экспериментальной проверке. Прямые методы определения конформации макромолекул — рентгеноструктурный анализ и ядерный магнитный резонанс (ЯМР) — пока применимы лишь для низкомолекулярных РНК (см. следующий раздел). Поэтому в большинстве случаев принадлежность того или иного нуклеотидного остатка РНК (или достаточно протяженных ее участков) к двуспиральному или однотяжевому элементу вторичной структуры оценивается косвенным путем. Основная роль здесь принадлежит методам химической модификации и методам расщепления РНК структуроспецифическими РН Казами. [c.38]

    Идентификация модифицированных нуклеотидных остатков в полинуклеотидной цепи РНК долгое время была задачей особой трудности. С появлением современных методов секвенирования нуклеиновых кислот она существенно упростилась. Модификацию РНК или ее расщепление ферментами ведут таким образом, чтобы (как и при секвенировании) было затронуто в среднем только одно звено на молекулу (в чем есть дополнительный смысл, так как множественная модификация РНК искажает ее структуру). Далее, если изучается РНК небольшого размера или сегмент РНК, примыкающий к одному из ее концов, то этот конец метят радиоактивной меткой и задача идентификации модифицированного основания (после расщепления соответствующего звена) или атакованной нуклеазой межнуклеотидной связи сводится, как и при секвенировании, к определению длины фрагмента по его подвижности в высокоразрешающем электрофорезе в геле. В том случае, когда анализируемый район удален от концов молекулы на расстояние больше 150—200 н. о., используют реакцию обратной транскрипции (см. гл. 13). Для этого синтезируют олигонуклеотид, комплементарный участку РНК, расположенному вблизи от анализируемого района с З -концевой стороны молекулы, и далее используют его как праймер для обратной траискриптазы. Так как этот фермент останавливается на модифицйрованных остатках матрицы (или в том месте, где расщеплена фосфодиэфирная связь), то вновь по длине образующегося фрагмента можно определить положение модифицированного звена в РНК. [c.40]

    Позднее Циглер (1954) разработал эффективный метод непрерывной термической димеризации бутадиена в 1 ис-г ис-циклооктадиен-1,5 и установил, что этот углеводород устойчив и отличается от описанного Вильштеттером соединения, которое очень активно в реакциях присоединения фенилазида, диазометана и дифенилдиазометана. Циглер считал вероятной для этого лабильного диена транс-гранс-конфигурацию, но Коуп (1962) привел несомненное доказательство цис-транс-к.онфи-гурации. Он установил, что продукт первого гофмановского расщепления (II) является 1-диметиламино-г ис-циклооктеном-4, который получается также из п-бромбензолсульфоната циклооктен-4-ола-1 и диметиламина. транс-изомеризация промежуточного соединения II вряд ли могла произойти при втором гофмановском расщеплении, так как в восьмичленном кольце более устойчивой является 1 ис-двойная связь (см. выше). Поэтому для лабильного диена возможна только одна структура, а именно г ис-транс-циклооктадиена-1,5 (III). Промежуточный амин II был разделен на антиподы путем кристаллизации его ( + )-10-камфорсульфокислых солей из диизобутилкетона, а оптически активные амины были превращены в иодметилаты с [аЬ = —14,9° и + 14,3° и в четвертичные основания. Прн гофмановском расщеплении (-(-)-основание дало (-Ь)-г ас-7-ранс-циклооктадиен-1,5 с [а]о=+Л21,3°, а из (—)-основания образовался его энантиомер с Ыб= —120,5°. В этих углеводородах со средними кольцами жесткая циклическая система и водородное взаимодействие препятствуют вращению транс-группиров-ки —СН = СН— по отношению к остальному кольцу и таким образом предотвращают рацемизацию. [c.90]

    Вейганд (1961) разработал удобный метод химического превращения а-аминокислот в соответствующие а-кетокислоты. При взаимодействии аланина с ангидридом трифторуксусной кислоты при 140°С образуется азлактон 2-трифторметилоксазолнн-2-он-5, имеющий, по данным спектра ЯМР, структуру I. Катализирземая кислотой реакция соединения I, вероятно, реагирующего в менее стабильной форме II с этилмеркаптаном, приводит к расщеплению цикла с образованием продуктов III и IV. Гидролизом диэтилтиокеталя III водной уксусной кислотой получают а-кетокислоту V выход достигает 40—50%  [c.731]

    Рибонуклеаза. — Одна из рибонуклеаз была выделена в кристаллическом виде из бычьей поджелудочной железы Купит-цем (1940). Панкреатическая рибонуклеаза гидролизует рибонуклео-тидные связи, в которых пиримидиновый нуклеозид этерифицирован по З -положению сахара. Этот фермент содержит 124 остатка аминокислот и четыре дисульфидные связи. Установление первичной структуры этого фермента Муром и Штейном (1960) явилось важной вехой в химии белка. Последовательность частично была определена на окисленной рибонуклеазе, которая при энзиматическом расщеплении дает 24 пептида. Их размеры позволяют непосредственно определить последовательность химическими и ферментативными методами. Наконец, ферментативный гидролиз нативного белка, разделение содержащих цистин пептидов, окисление их до цистеиновых пептидов и аминокислотный анализ последних позволили выяснить, каким образом восемь по-луци1стинооых о статков связаны друг с другом (рис. 27, стр. 740). [c.739]

    При помощи газовой хроматографии как метода анализа газообразных или испаряющихся соединений нельзя, конечно, исследовать непосредственно нелетучие твердые или жидкие вещества. Ограничения, налагаемые летучестью, можно, однако, обойти, если такие молекулы разлагать полностью или част1 чно с образованием типичных продуктов расщепления, которые из-за их низшего молекулярного веса обладают достаточно высоким давлением пара. Газохроматографический анализ таких продуктов разложения позволяет идентифицировать затем исходные вещества, далее можно определять их чистоту и иногда даже природу примесей в них. Наконец, возможно получить представление об их структуре и (если речь идет, нанример, о сополимерах) о количественном составе. [c.275]


Смотреть страницы где упоминается термин РНК расщепление метод структура: [c.183]    [c.6]    [c.181]    [c.43]    [c.15]    [c.44]    [c.213]    [c.180]    [c.747]    [c.32]    [c.705]    [c.739]   
Генетика вирусов гриппа (1986) -- [ c.52 , c.55 ]

Генетика вирусов гриппа (1986) -- [ c.52 , c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Изучение структуры терпеноидов методами расщепления

Метод структур

Озонолиз. Определение структуры методом расщепления



© 2025 chem21.info Реклама на сайте