Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный уровень организации

    Молекулярный уровень организации материи является лишь одной из форм упорядочения вещества, с которыми приходится иметь дело химику. Эти уровни таковы атомный, молекулярный, макромолекулярный, межмолекуляр-ный. Каждому уровню присущи особенности действующих сил, вызывающих упорядоченность материи. [c.95]

    МОЛЕКУЛЯРНЫЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИВОЙ МАТЕРИИ [c.13]

    Молекулярный уровень организации организма представлен многочисленными химическими соединениями, специфическими для отдельных клеток и тканей. Эти соединения имеют разный химический состав, сложную структуру и свойства, а также выполняют конкретную биологическую роль в функционировании организма в целом. Только молекулы живого вещества способны к самовоспроизведению, преобразованию энергии, могут осуществлять процесс движения и многие другие функции в организме. [c.8]


    На схеме ( ) приведены последовательные этапы усложнения химической организации материи (естественно, что приведенная схема является одновременно и фрагментом общей структ ы организации материи, т. е. продолжением схемы ). Из схемы (2) видно, что молекулярные ассоциаты образуются из гомоядерных или гетеро-ядерных молекул, в то время как атомные ассоциаты образуются из атомных частиц, минуя второй, молекулярный уровень. Образование атомных агрегатов может происходить уже по двум независимым механизмам либо непосредственно из атомных частиц (минуя два уровня), либо за счет взаимодействия атомных ассоциатов. Наиболее характерными примерами атомных агрегатов являются атомные и металлические кристаллические решетки  [c.9]

    Топологический уровень организации полимера представляет собой вид его молекулярно-массового распределения (ММР) и характеризуется функцией ММР, а разветвленный и сетчатый полимер — еще и функцией участков цепей между узлами разветвления или сетки. Таким образом, этот уровень характеризует связность элементов структуры полимера и может быть количественно описан различными способами, в том числе и в виде графов. Это описание отвлекается от конкретного химического строения макромолекул и пространственного расположения их элементов. [c.298]

    Ничем подобным, как по ширине функционального спектра, так и специфичности и эффективности реализации любой функции этого спектра, не обладает ни один класс искусственных, синтезированных человеком соединений. Таким образом, из всего того, что составляет молекулярный уровень биосистем, только белки (или прежде всего белки) могут быть ответственны за фундаментальные особенности живого - великое разнообразие органического мира, избирательность и эффективность процессов жизнедеятельности, наличие активного начала и удивительной целесообразности в организации живой материи. Количество различных белков, участвующих в функционировании организма, определяет его морфологическую и физиологическую сложность, а следовательно, и положение в иерархической организации живой природы. Чем же могут быть обусловлены столь необычные как по своему характеру, так и разно- [c.50]

    В [1] для описания этого уровня организации полимеров предлагается ввести термин топологическая структура , под которым подразумевается тот уровень организации молекулярных цепей полимера и связи между их элементами, который можно выражать в виде графа без учета конкретного химического строения элементов. При таком описании полимер представляют в виде пространственной системы нитей, абстрагируясь от химической природы молекул полимера. С топологической точки зрения под сетчатыми, или трехмерными полимерами следует понимать такую полимерную систему, молекулы которой могут достигать макроскопических размеров и характеризоваться наличием большого числа разветвлений и циклов разного размера, т. е. могут представлять собой бесконечный циклический граф [1]. [c.54]


    Все параметры, характеризующие молекулярный уровень структурной организации линейного полимера, могут быть однозначно связаны с условиями синтеза. Их определение является одним из важнейших вопросов при исследовании кинетики и механизма процессов образования полимеров. С другой стороны, можно проследить связь между указанными параметрами и теми или иными свойствами полимера. Однако эта связь уже оказывается далеко не однозначной. Свойства полимера определяются не только молекулярным уровнем его структурной организации. Важным фактором, определяющим свойства линейных полимеров, являются характер межмоле-кулярного взаимодействия макромолекул и степень упорядоченности в их взаимном расположении. Таким образом, мы приходим к понятию надмолекулярного уровня организации полимерной системы, отражающего характер ее упаковки. В настоящее время четко установлено, что все полимеры, от аморфных до кристаллических, обладают той или иной степенью упорядоченности, определяемой как молекулярной структурой полимера, так и способами его получения и переработки, т. е. его термической и силовой предысторией . [c.5]

    При большой разнице в степени организации выясняется, что собственно нет необходимости в полном сохранении всех подсистем более сложные обладают новым механизмом стабилизации, не требующим безусловного сохранения свойств подсистем. Систе.мы высших рангов оказывается легче моделировать, так как в них меньше сказывается зависимость от особенностей, характеризующих молекулярный уровень. [c.37]

    Под уровнем структурной организации пленок следует понимать молекулярный (взаимодействие определяется индивидуальными свойствами молекул) фибриллярно-глобулярный или фазовый (взаимодействие агрегатов молекул) микро- и макроуровень. Хотя на всех уровнях наблюдаемый морфологический эффект является следствием межмолекулярных взаимодействий, автономия поведения отдельных молекул с повышением уровня организации уменьшается и сильнее проявляется кооперативный эффект. Макроуровень (геометрические размеры и характеристики формы пленок) практически всегда одинаков, и рассмотрение его важно лишь при формовании волокон или волокнисто-пленочных полимерных связующих (см. гл. 3). Разумеется, каждый последующий уровень организации структуры включает в себя предыдущие. В основу классификации уровня структурной организации положен физический метод, с помощью которого этот уровень может быть оценен. Степень организации определяется степенью упорядоченности (кристалличность, аморфность) и степенью гетерогенности (пористости) данного уровня структуры пленки. В табл. 1.2 приведены данные о степени организации структуры пленок на разных уровнях в зависимости от осаждающей способности ванн. Рассмотрение [c.57]

    Каждый уровень организации организма имеет свои биологические особенности, поэтому изучается разными биологическими дисциплинами. Так, молекулярный и клеточный уровень является предметом изучения биохимии, морфологию клеток, органов и организма в целом изучает анатомия, функции различных систем организма — физиология. [c.8]

    Кибернетические системы - сложные системы, сами состоящие из подсистем (А, В. .. на рис. 10.1), между которыми тоже имеются связи. Эти подсистемы, в свою очередь, также могут состоять из еще более простых кибернетических систем, то есть организация кибернетических систем иерархическая. Каждому уровню иерархии соответствует определенный уровень организации. Живой организм тоже иерархическая система. Биофизика разделяется по уровням организации (иерархиям) живого организма на молекулярную, клеточную, органную и сложных систем. [c.222]

    Место биохимии как молекулярного уровня биологических исследований иллюстрирует рис. В.1. Уровни исследования являются отражением уровней структурной организации биологических систем, образующих иерархический ряд от наиболее простых систем (молекулы организмов, молекулярный уровень) до предельно [c.11]

    СЛОЖНОЙ земной биологической системы (биосферный уровень). Действительные связи между отраслями биологии гораздо сложнее, чем можно представить с помощью таких простых схем, как на рис. В.1. В частности, каждый более простой уровень организации живых систем (и, соответственно, уровень их исследования) является частью более сложных уровней. Самый первый уровень — молекулярный — уникален в том отношении, что он является составной частью систем всех других уровней биологии. Соответственно этому выделяют такие разделы биохимии, как, например, молекулярная генетика, биохимическая экология. Высший уровень — биосферный — включает в себя все другие уровни. [c.12]

    САВ представляют собой сложную многокомпонентную исключительно полидисперсную по молекулярной массе смесь высокомолекулярных углеводородов и гетеросоединений, включающих, кроме углерода и водорода, серу, азот, кислород и металлы, такие как ванадий, никель, железо, молибден и т. д. Выделение индивидуальных САВ из нефтей и ТНО исключительно сложно. Молекулярная структура их до сих пор точно не установлена. Современный уровень знаний и возможности инструментальных физико-химических методов исследований (например, n-d-М-метод, рентгеноструктурная, ЭПР- и ЯМР-спектро-скопия, электронная микроскопия, растворимость и т. д.) позволяют лишь дать вероятностное представление о структурной организации, установить количество конденсированных нафтено-ароматических и других характеристик и построить среднестатистические модели гипотетических молекул смол и асфальтенов. [c.45]


    Таким образом, со структурной точки зрения под сетчатыми полимерами следует понимать такую полимерную систему, молекулы которой могут достигать макроскопических размеров и характеризуются наличием большого числа разветвлений и циклов самого разнообразного размера, т. е. могут представлять собой бесконечный циклический граф. Далее мы будем характеризовать структурную организацию сетчатых (как и всех прочих) полимеров тремя уровнями, различающимися по сложности, причем каждый последующий уровень является более сложным и генетически в значительной мере определяется предыдущим. Методы исследования молекулярной структуры сетчатых полимеров и ее связи с условиями синтеза принципиально не отличаются от приемов, развитых для линейных полимеров. То же можно сказать относительно надмолекулярной структуры этих полимеров, хотя большая сложность топологической структуры сетчатого полимера накладывает определенные особенности на надмолекулярную структуру, которые будут обсуждены подробно (в главе 5). Основное внимание в книге будет уделено характеристике топологической структуры полимера, связи ее с условиями синтеза сетчатого полимера и его свойствами. Ясно, что понятие условия синтеза полимера является весьма многозначным. [c.7]

    Скручивание может рассматриваться как третий структурный уровень, в то время как сами сферолиты относятся к четвертому уровню. Конечно, нет оснований предполагать, что перечисленные высшие уровни структурной организации не влияют на различные физические свойства кристаллизующихся полимеров, однако для того, чтобы вести обсуждение в терминах молекулярной теории, совершенно необходимо выяснить внутреннее строение сферолитов. [c.251]

    Рассмотрим несколько иллюстраций применения приведенных понятий и методов расчета в одной из наиболее бурно развивающихся областей молекулярной биологии — в квантовой биохимии. Объектом исследования квантовой биохимии являются электронная структура биомолекул, образующих живое вещество, внутренняя природа взаимодействия между ними, специфика и уровень их организации. [c.50]

    Молекулярная масса полисахаридов колеблется от 10" до 10 . Макромолекулы полисахаридов имеют высокий уровень структурной организации, который во многом не выяснен. Полисахариды в отличие от моносахаридов и олигосахаридов не обладают сладким вкусом, в большинстве случаев не образуют видимых кристаллических форм и не растворяются в воде. Полисахариды как многоатомные спирты образуют в щелочной среде с катионами меди комплексы синего цвета. Однако растворы полисахаридов не дают реакции серебряного зеркала , так как число концевых пиранозных остатков, выступающих в роли восстановителей, невелико в сравнении с размерами самих полимерных молекул. [c.243]

    На молекулярном уровне соотношение энергетической и информационной составляющих взаимодействия зависит от уровня организации системы. По-видимому, среди компонентов живых систем самый высокий уровень молекулярной организации достигнут у полипептидов, что позволяет им выступать Б роли индукторов и реципиентов молекулярной информации. Отдельные фрагменты полипептидов (регуляторные пептиды) могут служить носителями молекулярной информации. [c.85]

    Молекулярный уровень организации полимеров — это элементный состав повторяющихся звеньев макромолекул, их стереохимические характеристики по расположению заместителей у основной цепи полимера или расположению структурных элементов цепи относительно двойных связей, порядок чередования химически и стереохимически различающихся звеньев в макромолекуле, вид их присоединения, характер концевых групп макромолекул и их распределение. Эти параметры определяются условиями получения полимера, механизмом синтеза макромолекул. [c.298]

    А. Г. Гурвичу, НМК представляет собой целые молекулярные ассоциации протоплазмы. Неравновесность их поддерживается непрерывным притоком зпергпи метаболизма. Устойчивость же НМК должна определяться фактором, ограничивающим степень свободы неупорядоченного теплового движения молекул. Этим фактором мог быть вектор поля, действие которого распространялось на молекулярный уровень организации [Гурвич А. Г., 1944]. [c.18]

    Молекулярный уровень структуры линейного полимера отражает химическое строение полимера — элементный состав повторяющихся звеньев полимера, их стереохимическую организацию, распределение длин последовательностей разнородных в химическом и стереохимической смысле звеньев, характер присоединения звеньев друг к другу, тип концегых групп и характер их распределения по макромолекулам. [c.5]

    Итак, вследствие особого (обменного) взаимодействия электронов, принадлежащих таким основным дискретным частицам вещества, как атомы, ионы, радикалы, молекулы, возникают химические связи и образуются самые разнообразные по своему строению, составу и свойствам химические соединения, что и представляет собой универсальный акт химического превращения. Это и есть химическое движение. Следовательно, атомы и образуемые ими вышеуказанные типы материальных частиц с более или менее сформировавшейся электронной оболочкой выступают как материальные носители химической формы движения. Характерным для каждой из этих частиц химического соединения является то, что она представляет единую квантово-механическую систему, устойчивость которой определяется минимумом энергии как функции межатомных расстояний . Кроме атомов, молекул, ионов и свободных радикалов В. И. Кузнецов к числу частиц—носителей химической формы движения правомерно относит молекулярные комплексы, коллоидные частицы, поверхностные соединения, твердые и жидкие фазы постоянного и переменного состава, а также некоторые (относительно долгоживущие) активные комплексы переходного состояния (например, муль-типлетные комплексы) 2. Все вышеуказанные частицы представляют тот уровень организации материи, на кото- [c.29]

    Рассматривая структурную организацию ЭП как набор постепенно усложняющихся подсистем (структурных элементов), обладающих ограниченной автономностью, когда изменение структуры данной подсистемы связано с поведением остальных подсистем [3], целесообразно выделить следующие уровни структурной организации молекулярный, топологический, надмолекулярный [1] и микроуровень (коллоидно-дисперсный уровень организации системы [4, 5]). Для каждого уровня характерны свой набор элементов структуры, относительное взаимное их расположение и характер взаимодействия, а следовательно, свой характер тепловой и других форм движения [6]. Поэтому описание полимеров на всех уровнях структурной организации не может быть полным без учета подвижности соответствующих структурных элементов, что связано с их классификацией по стабильности [6]. Это особенно важно при рассмотрении надмолекулярной структуры. Для некристаллических (аморфных) состояний (а именно это — состояние, свойственное ЭП) характерно возникновение структур флукту-ационного характера, т. е. термодинамически неустойчивых, с ограниченным временем жизни т (т — мера кинетической стабильности флуктуационных структур). Кинетически стабильными можно считать те структурные элементы, время жизни которых превышает длительность исследуемого процесса [6]. Структурные элементы, способные перемещаться, получили название кинетических единиц. [c.38]

    Из имеющейся информации о природных белках очевидно, что структурными формами (а- и р-структурами), описанными в предыдущих разделах, нельзя охарактеризовать все аспекты их молекулярной организации. Спиральные участки для большинства белков являются лишь частью их макромолекулы и в большинстве случаев могут объяснить только малую долю ее конформации. Вместе с тем макромолекулы белка имеют ясно выраженную пространственную конфигурацию, которая не менее строго определена, чем конфигурация высоко спиральных систем. Этот уровень организации белковой молекулы, включающий в себя вторичную структуру полипептидных цепей, как мы уже упоминали, в настоящее время принято называть третичной структурой. Для пояснения напомним, что молекулы глобулярных белков представляют собой сверхклубки , состоящие из спиральных и аморфных сегментов. Последние наделяют полипептидные цепи достаточной гибкостью и позволяют им свернуться в компактную глобулу, которая стабилизируется различного рода связями. Вот эта пространственная упаковка чередующихся спиральных и аморфных участков первичной цепи в компактное и симметричное тело и составляет третичную структуру макромолекулы белка. [c.115]

    В соответствии с типом и способом осуществления регулятор- пых функций И. И. Шмальгаузен [18] и Н. В. Тимофеев-Рессов-ский [20] различают следующие уровни организации биологиче- vN ских систем. Молекулярный уровень — уровень осуществления обратимых каталитических и автокаталитических химических (ферментативных) реакций веществ, необходимых для построения клеточных структур. Регуляторные функции здесь осуществляются за счет изменения скоростей реакций в общем цикле синтез — распад — ресинтез. Клеточный уровень — уровень образования клеточных структур, необходимых для осуществления процессов роста и деления клетки. Регуляторный механизм на этом уровне определяется передачей наследственной информации, регулирующей в условиях активной связи клетки со внешней средой, физиологическое восстановление ее компонентов и весь процесс самовоспроизведения клетки в целом. [c.17]

    Еще одна причина, по которой нервную клетку следует рассматривать как главный объект нейробиологии, состоит в том, что нервная клетка — это некоторый промежуточный уровень организации (рис. 1.6). Более низкий уровень организации — эта органеллы клетки, еще более низкий — молекулярные процессы,, управляющие взаимодействием клеток. Более высокий уровень организации—мультинейронные сети, в которые организованы отдельные клетки с целью выполнения определенных функций,, таких, как зрительное восприятие или пищевые реакции. Еще более высокий уровень организации — это многочисленные пере крывающиеся сети, которые оказываются задействованными в поведении целостного организма, например в таких процессах, как сон, эмоции и мышление. [c.31]

    О иеыаследовании признаков, приобретаемых организмами в индивидуальном развитии. На протяжении ие одного столетия вопрос о наследовании признаков, приобретаемых организмами в процессе юитогеиеза (адаптивных онтогенетических изменений организма),. был наиболее сложным и дискуссионным. Споры по нему продолжаются и в настоящее время. Но сейчас совокупность теоретических и экспериментальных данных позволяет утверждать, что проблема наследования признаков, приобретаемых организмами в индивидуальном развитии, реально в науке не существуе она относится к числу мнимых проблем. Как в физике нет проблемы вечного двигателя, в математике нереальна квадратура круга, так в биологии не существует проблемы наследования признаков, приобретаемых организмами в онтогенезе. Оно невозможно в связи с тем, что признаки не передаются по наследству. Б воспроизводящих половых и вегетативных клетках нет никаких зачатков или зародышей признаков организма, и все они исчезают вместе с его. смертью. Развитие признаков в каледом новом поколении организмов происходит заново на основе передачи наследственных молекулярных структур — генов. Но гены ие представляют собой зачатков каких-либо признаков. На их основе внутри клетки слагается особый молекулярный уровень биологической организации, отвечающий задачам функционирования и самовоспроизведения управляющих систем в виде генетического кода. Первичная структура ДНК, в которой записаны генетическая программа, генетический код, не испытывает изменений в процессе индивидуального развития и сохраняется на всех этапах онтогенеза. Ее в состоянии изменить только мутации структурных и регулярных генов. [c.309]

    Полисахариды имеют большую молекулярную массу. Им присущ характерный для высокомолекулярных веществ более высокий уровень структурной организации макромолекул. Наряду с первичной структурой, т. е. определенной последовательностью мономерных остатков, важную роль играет вторичная структура, определяемая пространственным расположением макромолеку-лярной цепи. [c.414]

    Ядерный хроматин содержит ДНК, гистоновые и негистоновые белки, небольшое количество РНК. В пространственной организации хромосом можно вьщелить несколько уровней. Первый уровень — нуклеосомный. Нуклеосом-ная нить образуется при взаимодействии ДНК с белками-гистонами. Гистоны представляют собой простые белки с молекулярной массой 14—20 kDa, в аминокислотном составе которых преобладают аргинин и лизин, глицин и цистеин. Преобладание лизина и аргинина придает гистонам щелочной характер и обеспечивает их способность взаимодействовать с кислотными группами ДНК. Во всех типах эукариотических клеток обнаружено 5 классов гистонов [c.182]

    Используются следующие три основные метода поиска по химическим файлам а) поиск по фрагментным кодам, которые заранее генерируются специальной программой и постоянно хранятся в отдельном файле б) поиск комбинаций символов в ЛСО и (или) других параметров, например молекулярной формулы в) поатомный поиск таблицы связи, генерируемой в момент начала поиска. Принцип, положенный в основу такой организации поиска, состоит в том, что каждый уровень поиска может действовать как сито, так что последующий поиск ведется лишь среди соединений, отобранных на предыдущем уровне. Для реализации поиска этими методами в системе ROSSBOW для каждого соединения должны храниться следующие данные 1) ЛСО 2) фрагментный код, охватывающий 152 возможных фрагмента и хранящийся в виде 152-битового двоичного слова 3) молекулярные формулы длиной в 3— 18 символов. [c.450]

    Сложность и разнообразие химического строения смолисто-асфальтеновых веществ, а также отсутствие единой методологии не только анализа, но п интерпретации экспериментальных данных, затруднила появление единых взглядов на многие структурные характеристики. Современный уровень знаний о смолисто-асфальтеновых веществах позволяет с большой долей вероятности определить количество структурных единиц, содержащихся в усредненном продукте, выделенном из нефти определенного месторождения, но говорить о взаимном их расположении можно только предположительно. Однако наглядность в представлении экспериментальных результатов и необходимость упорядочения логических выводов приводила всех исследователей к необходимости построения гипотетических моделей молекул смол и асфальтенов [8], которые, будучи по сути дела научной абстракцией, являлись в определенной степени проверкой правильности определения структурной организации и оптимальной ее систематизации. Сергиенко [33, 36], Хиллмеи и Барнетт [28], основываясь на молекулярной Массе, элементном анализе и структурно-групповых характеристиках, предложили следующие модели молекул смол и асфальтенов  [c.85]

    Олигоуретанметакрилаты с молекулярной массой менее 1000 образуют кристаллы из развернутых цепей, при этом плотность упаковки макромолекул и уровень надмолекулярной организации кристаллов тем выше, чем. меньше молекулярная масса олигомерного блока и больше жесткость цепей. Плотная упаковка цепей в низкомолекулярных кристаллических олигоуретанметакрилатах с развернутой конформацией макромолекул препятствует формированию пространственной сетки. Полимеризация таких олигомеров наблюдается только при температурах, значительно превышающих температуру плавления кристаллов. С уменьшением молекулярной массы олигоуретанметакрилатов и повыщением уровня надмолекулярной организации кристаллов увеличивается температура их плавления и снижается глубина полимеризации. [c.66]

    Приведенные данные свидетельствуют о том, что. изменяя. молекулярную массу олигомеров регулярного строения, можно получать аморфные и кристаллические олигомерьг. Синтез кристаллических олигомеров является весьма важным для создания порошковых композиций. Однако для получения покрытий с высокими физико-механическими показателями, адгезионной прочностью и другими эксплуатационными характеристика.ми необходимо, чтобы пространственная сетка покрытий из таких композиций состояла из однородных по размеру, морфологии и уровню над.молекулярной организации структурных элементов. При включении в пространственную сетку отдельных кристаллов или образующихся при их разрушении более простых структурных элементов возрастает структурная неоднородность и дефектность пленок. Это сопровождается уменьшением скорости и глубины полимеризации олигомеров, что приводит к ухудшению физико-механических и других эксплуатационных свойств покрытий. В связи с этим молекулярная масса до.пжна регулироваться таким образом, чтобы достигались оптимальный уровень надмолекулярной организации кристаллов, их однородность по размеру, морфологии и структуре. Это позволяет уменьшить температурный интервал плавления, увеличить скорость и глубину полимеризации и получать покрытия с однородной упорядоченной структурой. [c.70]

    Представления о физико-химическом механизме кислородного эффекта наиболее тщательно разработаны в связи с исследованиями, проводящимися на молекулярном уровне. Полученные выводы часто используются авторами для объяснения механизма кислородного эффекта на клеточном и организменном уровнях. Но с усложнением организации системы появляются новые факторы, активно влияющие на чисто физико-химические процессы. Так, многие радиобиологи, анализируя кривую Грэя, приходили к ошибочному выводу о непосредственной зависимости между содержанием кислорода в среде (например, в атмосфере воздуха) и радиочувствительностью биологических объектов. Предполагалось, что кислород беспрепятственно дифундирует в клетку и его концентрация в ней равна содержанию кислорода в окружающей среде. Однако в настоящее время хорошо известно, что любой животной клетке присущ градиент кислорода и его стационарное состояние в клетках и тканях существенно отличается от содержания кислорода во внешней среде. Содержание кислорода в клетках может сильно варьировать от густоты клеточных суспензий известна также роль биомембран в регуляции транспорта кислорода кроме того, концентрация кислорода определяется не только его поступлением, но и потреблением в клетках. При изучении гипоксии у млекопитающих необходимо изучать также комплекс факторов, определяющих уровень кислорода в клетках, объем и скорость кровотока, артериально-венозную разницу, температуру тела, кровоснабжение разных органов, характер потребления кислорода и т. д. [c.263]

    Среди многочисленных компонентов биосистемы молекулярного уровня белкам принадлежит исключительная роль в процессах, протекающих в клетках и организме. Поэтому 1юлучаемая с помощью рентгеноструктурного анализа информация о строении белков оказывает огромное влияние на развитие подавляющего большинства направлен-ний молекулярной биологии. Давно стало очевидно, что без знания пространственной структуры белков нельзя понять природу и специфичность их взаимодействий, представить и количественно описать механизмы процессов жизнедеятельности. Рентгеноструктурное изучение белков превратилось в неотъемлемую составную часть биологических исследований оно определяет их научный уровень и значимость получаемых результатов. Данные о расположении атомов в нативных конформациях белков служат незаменимой экспериментальной основой всех поисков решений таких фундаментальных проблем молекулярной биологии, какими являются проблемы структурной и структурно-функ-циональной организации белковых молекул. Первая из них заключается в установлении связи между аминокислотной последовательностью и ее пространственной физиологически активной формой и динамическими конформационными свойствами. Следовательно, она включает в себя [c.54]

    Миозин является белком многих качеств. В сокращении скелетных, сердечных и гладких мышц и во внутриклеточных движениях он одновременно выполняет, по крайней мере, три ключевых функции - структурную, аллостерическую и ферментативную. Наиболее полезная информация о функциях миозина была получена при исследовании поперечнополосатых скелетных мышц, сокращающихся произвольно, а также аналогичных тканей беспозвоночных, прежде всего летательных мышц насекомых. Электронно-микроскопическое изучение продольных и поперечных тонких срезов скелетных мышц, впервые проведенное в 1953 г. X. Хаксли, выявило высокий уровень их структурной организации [439]. Уже в следующем году X. Хаксли вместе с Дж. Хенсоном предложили так называемую модель скользящих нитей, которая имела основополагающее значение для понимания природы и молекулярного механизма мышечных сокращений [440]. Скелетные мышцы - это пучки мышечных волокон, наиболее крупным повторяющимся структурным элементом которых является миофибрилла - цилиндрическая нить диаметра 1-2 мкм (1000-2000 А), идущая от одного конца клетки до другого. Миофибрилла, в свою очередь, содержит белковые филамен-ты двух типов толстые и тонкие. Основной белок толстых нитей - миозин, тонких - актин. Миозиновые и актиновые филаменты в миофиб-рилле строго упорядочены. Функциональной сократительной единицей миофибриллы является саркомера, имеющая длину около 2,5 мкм и разделяющаяся на I- и А-диски (рис. 1.31). Толстые филаменты (длина 1,6 мкм и толщина 0,015 мкм) тянутся от одного края А-диска до другого, а тонкие (длина 1,0 мкм и толщина 0,008 мкм) идут от [c.120]


Смотреть страницы где упоминается термин Молекулярный уровень организации: [c.545]    [c.88]    [c.6]    [c.93]    [c.111]   
Биология с общей генетикой (2006) -- [ c.16 ]




ПОИСК







© 2025 chem21.info Реклама на сайте