Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние химической реакции на скорость процессов переноса

    Влияние химической реакции, следующей за переносом электронов, проявляется лишь в тех случаях, когда скорость самого переноса электронов (в прямом и обратном направлениях) очень высока, т. е. при процессах с обратимой электрохимической стадией. У процессов с медленной собственно электрохимической реакцией общая скорость (при отсутствии диффузионных ограничений) определяется скоростью переноса электронов, так что последующая химическая реакция не оказывает влияния на кинетику электродного процесса в целом. [c.198]


    ВЛИЯНИЕ ХИМИЧЕСКОЙ РЕАКЦИИ НА СКОРОСТЬ ПРОЦЕССОВ ПЕРЕНОСА [c.226]

    Как это ни парадоксально, но при расчете химических реакторов жидкость — жидкость или жидкость — газ гораздо чаще приходится сталкиваться с обычной физической массопередачей, чем с массопередачей, осложненной химической реакцией. Этот факт является следствием физической природы и механизма влияния химической реакции на скорость процессов переноса. [c.226]

    Протекание химических процессов в реальных условиях часто осложнено наличием таких факторов, как турбулентный характер течения реагирующих потоков и пространственная неоднородность состава реагирующей смеси и полей скоростей и температур. В настоящее время известно, что знание только средних значений таких флюктуирующих величин, как температура и концентрации реагирующих компонент, недостаточно дпя полного описания сложных процессов химического превращения в условиях неизотермичности и турбулентности даже в тех случаях, когда влиянием химической реакции на гидродинамические характеристики системы можно пренебречь [147]. Необходимость учета флюктуаций температуры и концентраций реагентов и их взаимных корреляций обусловлена тем, что средняя скорость элементарного акта химического превращения в условиях неизотермического турбулентного смешения реагирующих компонент не определяется в виде закона Аррениуса при средних значениях этих величин. Кроме того, наличие флюктуаций приводит к существенному изменению коэффициентов переноса, значения которых определяются в этих случаях не только свойствами реагирующих газов, но и свойствами самого течения [86, 97, 127]. [c.178]

    Гетерогенные процессы, сопровождаемые химической реакцией, могут быть трех типов 1) когда реакция протекает на поверхности раздела фаз, этот тип характерен для процессов с участием твердой фазы Т — Ж Т—Г Г — Ж — Т и др. 2) когда реакции протекают в объеме одной из фаз после переноса в нее вещества из другой такие процессы наиболее распространены и могут идти с участием любых фаз в системах Г — Ж, Ж — Ж (несмешивающиеся), Т — Ж, Г — Ж—Т и др. 3) когда реакция происходит на поверхности вновь образующейся фазы этот тип возможен для процессов взаимодействия твердых фаз. Если гетерогенный процесс идет в кинетической области, то для первых двух указанных типов справедливы законы кинетики гомогенных процессов. При этом скорость процесса лимитируется скоростью химических реакций, описывается кинетическими уравнениями реакций, порядок которых зависит от числа и природы реагентов. Для кинетики гетерогенных процессов в диффузионной области характерны следующие особенности а) сравнительно малые величины условной энергии активации б) сравнительно малое влияние температуры на скорость процесса, что видно хотя бы из значений температурных коэффициентов диффузии, которые для жидкостей и газов колеблются в пределах 1,1—1,5 (если только повышение температуры не меняет фазового состояния реагентов) в) большое влияние турбулизации системы (перемещивания) на скорость процесса. [c.153]


    Кинетика абсорбции, сопровождаемой химической реакцией (хемосорбция). Химическая реакция, сопровождающая процесс абсорбции, может оказывать существенное влияние на кинетику процесса. При этом скорость процесса абсорбции определяется не только интенсивностью массопереноса, но также и скоростью протекания химической реакции. Если реакция идет в жидкой фазе, то часть газообразного компонента переходит в связанное состояние. При этом концентрация свободного (т. е. не связанного с поглощенным газом) компонента в жидкости снижается, что приводит к ускорению процесса абсорбции по сравнению с абсорбцией без химического взаимодействия фаз, так как увеличивается движущая сила процесса. В общем случае скорость хемосорбции зависит как от скорости реакции, так и от скорости массопереноса между фазами. В зависимости от того, какая скорость определяет общую скорость процесса переноса массы, различают кинетическую и диффузионную области процессов хемосорбции. [c.53]

    В литературе по ионообменным процессам рассматриваются многочисленные случаи кинетики внутреннего переноса в зернах ионитов при влиянии не только диффузионного переноса, но и переноса за счет электродиффузионного потенциала, с учетом влияния двойного электрического слоя на внешней границе зерна, с заметной ролью внешнедиффузионного сопротивления и т. д. Многочисленность кинетических вариантов здесь определяется тем обстоятельством, что для различных структур ионитов и разнообразных условий проведения процесса возможны различные комбинации существенно влияющих на суммарный процесс эффектов, а те или иные эффекты могут быть приняты пренебрежимо малыми. Действительно, только при чисто диффузионной определяющей кинетике возможны режимы, когда заметное влияние на суммарную скорость процесса оказывает только сопротивление внутренней диффузии в других случаях скорость процесса ионного обмена определяется суммарным сопротивлением наружного и внутреннего переноса компонента, а в иных случаях определяющим фактором может стать одно только наружное сопротивление в различных комбинациях могут рассматриваться обратимые или необратимые химические реакции, комплексообразования и т. д. Так, при [c.251]

    При выполнении таких расчетов обычно следует принимать во внимание одновременный перенос тепла и массы путем вынужденной конвекции под влиянием химической реакции как в газовой, так и в жидкой фазе. Решение такой задачи, безусловно, связано с большими трудностями, особенно из-за очень сложной геометрии поверхности раздела газ — жидкость. Эта геометрия зависит от формы элементов насадки, которые с целью повышения скоростей переноса массы и тепла делаются такими, чтобы увеличивалась поверхность раздела и усиливалась турбулизация потока. Поскольку точный математический анализ процесса поглощения газа в насадочной колонне невозможен, необходимо создать модель, которая будет адекватно аппроксимировать перенос тепла и вещества в насадочном газовом абсорбере. [c.231]

    В процессах химического превращения вещества, протекающих в реакторах, скорость собственно химической реакции не всегда определяет скорость превращения. Часто химической реакции сопутствуют теплообмен, перенос массы (диффузия),гидродинамические процессы (движение потоков, их взаимное перемешивание). Эти физические явления, как было уже сказано, в определенных условиях могут оказывать даже решающее влияние, и, следовательно, для правильного выбора технологических условий ведения процесса и его аппаратурного оформления необходимо знание основных факторов, влияющих на скорость химического превращения вещества. К таким факторам относятся прежде всего температура, давление и концентрация исходных продуктов. [c.465]

    Уравнение (VII, 10) дает наиболее общий и вместе с тем самый простой способ вычисления оптимальных температур этот способ применим, однако, лишь в пределах области химической кинетики, когда процессы переноса не оказывают существенного влияния на скорость реакции. Если это условие не выполняется, то надо учитывать изменение степени использования внутренней поверхности катализатора. С повышением температуры степень использования внутренней поверхности катализатора уменьшается, что приводит к понижению оптимальных температур по сравнению с найденными для области химической кинетики. [c.240]

    На рис. IV.2, а показано изменение локальной скорости конденсации по длине начального участка трубы при различном составе газа на входе. Равновесному составу соответствует весовая концентрация р4о=0,000137 (температура 87 °С). С увеличением неравновесности скорость конденсации увеличивается. Этот эффект объясняется существенным влиянием на процесс выделяемой теплоты химических реакций и диффузионного переноса тепла. На рис. IV.2, б показано изменение различных составляющих теплового потока в газовой фазе на поверхности конденсации. Замороженный тепловой поток практически одинаков для всех вариантов. Величина реакционного теплового потока, как следует из формулы (IV.76), зависит от соотношения между концентрациями в объеме и на поверхности 1-го и 4-го компонентов. [c.142]


    Известно, что зависимость скорости контактной реакции от процессов переноса вещества определяется соотношением скоростей подвода реагентов активной поверхности катализатора и химического превращения на этой поверхности. Изменение влияния макрокинетических факторов с изменением температуры в настоящее время подробно изучено [1, 16, 18—20]. Меньше исследована зависимость макрокинетики от давления [11]. Влияние же процессов переноса вещества на скорость гетерогенных каталитических реакций в зависимости от соотношения реагирующих веществ экспериментально исследовалось совсем мало, хотя теоретическое рассмотрение вопроса было проведено во многих работах [17, 21]. [c.121]

    Реальные каталитические процессы, как отмечалось выше, проводятся с участием частиц катализатора, имеющего развитую внутреннюю пористую структуру. При правильно организованном процессе химическая реакция должна происходить во всем объеме зерен катализатора. Если предположить, что внешние условия у наружной поверхности частиц не оказывают влияния на общую скорость процесса, то основными факторами, определяющими интенсивность химического превращения, будут диффузионный перенос реагента, от концентрации которого зависит скорость химической реакции, и перенос теплоты. [c.160]

    В целом, говоря о влиянии различных факторов на скорость процесса химического превращения вещества, можно отметить следующее. Это влияние будет зависеть от фазового состояния реагирующих веществ и наличия между ними поверхности раздела фаз. Чем однороднее фазовый состав реагирующих веществ, тем меньшее число факторов будет оказывать влияние на скорость процесса. В гомогенных системах такими факторами будут давление, температура и состав реакционной смеси. В гетерогенных системах это влияние сложнее. На скорость процесса большое влияние будут оказывать также физические процессы переноса вещества и тепла (тепло- и массообмен в системе). Влияние будет тем значительнее, чем выше скорость собственно химической реакции. Безусловно, в этом случае следует учитывать и гидродинамический режим в системе, так как явления переноса движения, тепла и массы (гидродинамика, тепло- и массообмен) тесно связаны между собою. [c.17]

    Диффузионный напор здесь достаточно велик, и влияние гидродинамического режима на интенсивность процесса сопоставимо с влиянием температуры, т. е. скорость суммарной реакции зависит примерно в равной степени как от скорости переноса реагирующего компонента к новерхности частицы, так и от скорости химической реакции. Скорость внутренней диффузии в этой области равна нулю. [c.181]

    Теоретическое рассмотрение такого сложного процесса, основанное на изучении его детального механизма, кинетики химических реакций с учетом влияния различных факторов, осложняющих процесс (испарение, перенос тепла и реагирующих веществ), трудно осуществимо. Приходится прибегать к построению упрощенных моделей процесса горения. В теории горения широкое распространение получила упрощенная модель, основанная на представлении о том, что скорость химической реакции горения лимитируется медленно протекающими физическими процессами — испарения распыленного топлива, смесеобразования, теплообмена и т. п. ( физическая модель процесса горения) [144]. Данная модель предполагает, что химические закономерности горения могут быть сведены к физическим закономерностям. [c.112]

    На первом уровне рассматриваются процессы, протекающие в единичном структурном элементе — поре — с учетом ее реальных геометрических характеристик и их влияния на процессы переноса. Элемент характеризуется коэффициентами переноса, константами скорости химических реакций, адсорбции, энергиями активации, условиями возникновения межфазных границ и т. д., для него должны быть определены внешние условия — температура, давление, концентрации исходных веществ и продуктов и др. В средах с неоднородной пористой структурой, характеризующейся распределением пор по размерам, учитывается также влияние неравномерности распределения размеров пор на характер протекающих в них процессов. [c.141]

    Выше были перечислены пять групп факторов, которые оказывают влияние на работу гетерогенного реактора. (Очевидно, что скорость и направление процессов каждой из групп зависит от скорости п направления всех остальных процессов. Однако наиболее типичной для химического реактора является взаимосвязь химических и массообменных процессов. Для того чтобы наглядно показать тесную связь химического взаимодействия и процессов межфазного переноса в гетерогенных реакторах для систем жидкость — жидкость пли жидкость — газ, рассмотрим простейшую реакцию первого порядка по переходящему компоненту в изотермическом реакторе идеального (полного) вытеснения. [c.13]

    Вследствие относительно большого размера частиц катализатора, значительное влияние на скорость химических превращений в зернистом слое оказывают процессы переноса вещества и тепла внутри твердых частиц. Процессы на изолированном зерне катализатора изучались в главе III знание макроскопической скорости реакции на отдельном зерне в зависимости от концентраций реагентов и температуры потока в данной точке слоя — необходимый элемент математического описания процессов в зернистом слое. Другим [c.213]

    При моделировании химических процессов размеры печи не сказываются на скорости химического превращения, если процесс определяется только скоростью химической реакции. Однако химическая реакция приводит к изменению состава реагируемой смеси и температуры. Следствием этого является возникновение процессов переноса вещества и теплоты, на скорость которых существенно влияет характер концентрационного и температурного полей в печи, В свою очередь состав смеси и температура существенно влияют на скорость химического превращения. В результате этого протекание химического процесса в целом находится в полной зависимости от размеров печи, так как с изменением масштаба меняется структура или соотношение между его составными частями, химическими стадиями и стадиями процессов переноса вещества и теплоты. В связи с вышеизложенным невозможно сохранить одинаковое влияние физических факторов на скорость химического превращения в печах разного масштаба, кроме тех случаев, когда химическая реакция протекает с большей скоростью, чем процессы переноса. [c.130]

    Как мы уже знаем, гомогенные процессы характеризуются взаимодействием веществ в одной фазе. В гетерогенных реакциях, наряду с химическими превращениями, имеются стадии переноса веществ. Их влияние на процесс в целом зависит от условий его протекания. Если наиболее медленной стадией является химическая реакция, то говорят, что процесс протекает в кинетической области, если же, наоборот, звеном, тормозящим процесс в целом, служит перенос веществ, то говорят о диффузионной области. Что является лимитирующей стадией — взаимодействие или транспорт вещества,— можно установить по температурной зависимости скорости реакции в первом случае она гораздо чувствительнее к температуре, чем во втором. [c.103]

    Совместное влияние скоростей переноса массы и химической реакции на общую скорость процесса [c.375]

    К этой группе относятся различные процессы в зависимости от степени влияния на их общую скорость скоростей химической реакции и переноса массы. Параметры трех типов процессов данной группы приведены на рис. ХП1-3. Разберем их в порядке замедления химической реакции, т. е. начиная с процессов, характеризующихся очень высокими скоростями реакций, аналогичных тем, которые были проанализированы выше, и переходя затем к процессам с более медленными химическими реакциями. [c.375]

    Влияние масштаба реактора на структуру его модели. Кинетическая модель реактора не зависит от масштаба, поскольку размеры реакционной системы не сказываются на скорости собственно химического превращения. Однако химическая реакция приводит к изменению состава реагирующей смеси и температуры. Следствием этого является возникновение процессов переноса вещества и тепла, на скорость которых существенно влияет характер концентрационного и температурного полей в реакторе. Указанные поля зависят от формы и размеров реакционной системы. В свою очередь состав и температура очень сильно влияют на скорость химического превращения. В результате этого протекание химического процесса в целом находится в сложной зависимости от размеров аппарата. [c.465]

    Отсутствие подобия объясняется тем, что невозможно сохранить одинаковое влияние физических факторов на скорость химического превращения в реакторах разного масштаба. Лишь в предельном случае, когда химическая реакция протекает с большей скоростью, чем процессы переноса и поэтому не влияет на суммарную скорость процесса (как, например, при абсорбции газов, быстро реагирующих с поглотителем, или в каталитических реакторах в области внешней диффузии), критерии химического подобия выпадают, и теория подобия становится применимой. [c.466]

    Твердофазовые реакции протекают очень медленно и практически никогда не доходят до конца. В отдельную группу они выделены потому, что характер их во многом специфичен и отличен от характера реакций в жидкостях и газах. Реакции в твердой фазе сопровождаются не только химическими, но и разнообразными физическими и физико-химическими процессами. Например, еще до начала химического взаимодействия или одновременно с ним могут протекать такие процессы, как спекание, рекристаллизация, полиморфные превращения и т. п. С того момента, когда в результате химического взаимодействия появляются твердые продукты реакции, пространственно разделяющие исходные вещества, дальнейшее течение процесса начинает определяться диффузией через слой продуктов реакции. В подавляющем большинстве реакций, происходящих в твердых телах, химическое взаимодействие на межфазовой границе при повышенных температурах протекает достаточно быстро, скорость же суммарного процесса определяется процессами переноса и диффузией. Явления диффузии, спекания, рекристаллизации оказывают существенное влияние не только на ход реакций, НО и на свойства и количество конечных продуктов химического взаимодействия в твердых телах. [c.204]

    Гетерогенными называются реакции между веществами, находящимися в различных контактирующих фазах, например окисление металлов, травление металлов и полупроводников жидкими травителями, горение твердого и жидкого топлива и т. д. Особенность этих процессов — сложность и многостадийность, В них есть стадии переноса веществ. Сначала переносятся реагирующие вещества к поверхности раздела фаз. Вторая стадия — сама химическая реакция, третья — отвод продуктов реакции из реакционной зоны. Так как скорости всех стадий пропорциональны поверхности раздела фаз, то скорость гетерогенной реакции зависит от отношения поверхности к объему. Общая скорость определяется скоростью наиболее медленной стадии. Если же скорости отдельных стадий близки друг к другу, то более быстрые стадии могут оказывать влияние на скорость более медленной. [c.60]

    Существуют три параллельных механизма воздействия химической реакции на скорость массопередачи. Во-первых, наличие в системе химической реакции, как правило, оказывает влияние на установление равновесного распределения переходящего компонента между фазами и тем самым иа движущую силу процесса массопередачи независимо от способа ее выражения. Во-вторых, химическая реакция оказывает влияние на величину коэффициента массопередачи независимо от способа его выражения, т. е. независимо от способа выражения движущей силы процесса. Взаимное влияние химической реакции и процессов переноса рассматривается термодинамикой необратимых процессов. Общий подход к вопросу разработан Де Гроотом и Мазуром [1], которые рассмотрели процесс теплопередачи в системе с химической реакцией. Вопросы взаимного влияния массопередачи и химической реакции с позиций термодинамики необратимых процессов рассматривались Оландером [2], а также Фридлендером и Келлером [3]. Хотя количественные результаты были получены 13] лишь для области очень малых отклонений от химического равновесия, однако качественно было показано, что наличие объемной реакции приводит к увеличению потока массы. [c.226]

    Малое время контакта и, следовательно, малая величина бж позволили высказать предположение [5] о несущественной роли турбулентных пульсаций. Указанное предположение в значительной степени оправдано для сравнительно неинтенсивных режимов движения. При существенной турбулизации потока влияние турбулентности на скорость процесса переноса вещества можно учесть в соответствии с А. Д. Рейнольдсом [16], используя для этого два формальных альтернативных варианта, основанные на анализе уравнения раснространеиия вещества в турбулентном потоке [16, 17]. С учетом протекания химической реакции указанное уравнение молено записать применительно к пограничному диффузионному слою в виде [c.15]

    Для расчета реакторов целесообразно подразделить реакции в жидкостях на две группы 1) очень быстрые реакции, скорость которых на поряд.чи превышает скорости процессов переноса, имеющих место в жидкостных системах 2) реакции, протекающие со скоростями, сравнимыми со скоростями указанных процессов. К первой группе относятся реакции между неорганическими молекулами, диссоциированными на ионы, ко второй — практически все реакции органических соединений. Скорость реакций первой группы не может быть лил1итирующей для всего реакторного процесса. Казалось бы, вид кинетического уравнения и значения самой скорости несущественны для расчета реактора. Действительно, это справедливо для достаточно грубых расчетов, не учитывающих влияния химической реакции на формальные значения коэффициентов массопередачи. Однако прп более точных расчетах, где указанные эффекты учиты- [c.27]

    Рутил, титановые шлаки, лопарит хлорируют в виде брикетов с нефтяным коксом на скорость хлорирования оказывают влияние состав и помол шихты, размеры брикета, пористость и т. д. Основные стадии этого сложного гетерогенного процесса а) подвод хлора к поверхности брикета б) диффузия хлора внутрь брикета в) химическая реакция. Первый процесс обусловлен молекулярной диффузией и переносом хлора к поверхности брикета вследствие движения газов. Диффузия хлора через поры внутрь брикета сопровождается химической реакцией, в результате которой образуется зона хлорирования, имеющая некоторую протяженность. С течением времени зона хлорирования перемещается к центру брикета, вместо нее образуется зона непрохлори-рованного огарка . Глубина зоны хлорирования зависит от температуры. При 400—450° ее глубина превышает радиус брикета, поэтому концентрация хлора во всех точках брикета практически одинакова, и реакция протекает во всем объеме брикета (кинетическая область). С повышением температуры константа скорости реакции возрастает быстрее коэффициента дис х()узии, процесс переходит в диффузионную область, глубина зоны хлорирования уменьшается. Переходу в диффузионный режим соответствует линейная скорость" хлорирования Кр= (1 -7- 4)-10 см/с. Глубина хлорирования брикета удовлетворительно описывается уравнением [c.261]

    Влияние среды на химические реакции, сопряженные с переносом заряда, легче продеыонстриров гь, чем влияннс среды на перенос заряда. Например, прн изменении среды скорости химических реакций мохут изменяться на несколько порядков. Поскольку скорость переноса заряда у органических соединений высока, общая скорость электрохимического процесса чаще всего лимитируется скоростью сопряженной химической реакции Вследствие очень большого влияния среды на кинетику химических реакций понятно, почему при изменении среды возможно нолное изменение пути реакции. [c.85]

    Анализ излагается на основе общего подхода, разработанного Ма-цуда [162]. При этом для простоты изменениями концентраций, имеюшихся в избытке реагирующих веществ, пренебрегают, причем концентрации включают в константы скорости и равновесия. Влияние химической реакции учитывают введением соответствующих выражений для скорости химической реакции в уравнения закона Фика обычным для проблем такого типа способом и при помощи преобразований Лапласа находят выражения для поверхностной концентрации, которые затем подставляют в уравнения для абсолютной скорости процесса переноса электрона. Это неизбежно приводит к системе интегральных уравнений с решением, из которого можно извлечь компоненты первой (и более высоких) гармоники [163, 164]. [c.326]

    Интересен также анализ массопередачн с химической реакцией, когда скорость суммарного явления стадий 2—4 лимитирует процесс. Поэтому в книге главным образом проводится анализ взаимного влияния этих трех стадий, которые протекают совместно в фазе 2 под действием общей движущей силы, обусловленной тем, что один или несколько реагентов непрерывно переносятся из фазы 2 в фазу 1. Предполагается, что в любом случае вклад явления массопереноса в общее сопротивление массопереноса в пределах фазы 1 учитывается отдельно. [c.13]

    В главе V показано влияние процессов переноса массы на скорость превращения, селективность и выход для реакций, проводимых в гетерогенных системах. Так как круг вопросов, относящихся к одновременному протеканию химической реакции и явлений физического переноса, очень широк, авторы ограничились рассмотре-Hnejt лишь нескольких пз нпх, необходимых для дальнейшего изучения проблемы. [c.12]

    Как уже отмечалось, при больших размерах зерен катализатора, больших скоростях химической реакции, высоком адиабатическом разогреве с.л1ееи возможны ситуации, когда необходимо учитывать процессы переноса внутри пористого зерна катализатора. Это может произойти, например, тогда, когда нарушаются условия (3.10) —(3.11). Существенное влияние на характеристики фронта может оказывать и величина теплопроводности скелета слоя катализатора с увеличе1нием значения максимальная температура во фронте уменьшается. Также уменьшается и скорость движения фронта. [c.93]


Смотреть страницы где упоминается термин Влияние химической реакции на скорость процессов переноса: [c.207]    [c.37]    [c.267]    [c.226]    [c.139]    [c.12]    [c.243]    [c.111]    [c.75]    [c.295]   
Смотреть главы в:

Методы расчета многофазных жидкостных реакторов -> Влияние химической реакции на скорость процессов переноса




ПОИСК





Смотрите так же термины и статьи:

Влияние процессов переноса на скорость реакции

Процесс скорость

Процессы переноса и скорость реакции

Скорость процесса реакции

Совместное влияние скоростей переноса массы и химической реакции на общую скорость процесса

Химические реакции скорость

Химические скорость



© 2025 chem21.info Реклама на сайте