Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение метода МО к координационным соединениям

    Из всех областей, в которых нашли применение методы магнетохимии, область координационных соединений, особенно ионов переходных металлов, является, несомненно, наиболее благодарной. Это связано с тем, что одним из важных аспектов магнетохимии является рассмотрение эффектов, обусловленных наличием незаполненных электронных оболочек, которые, по крайней мере в первом приближении, можно рассматривать как изолированные друг от друга эти условия выполняются наиболее строго в комплексных соединениях переходных и лантанидных элементов. В этой главе мы изложим сначала наиболее очевидные применения магнетохимии для определения валентности и типа связи в комплексных соединениях, а затем рассмотрим более подробно в пределах, допускаемых объемом, экспериментальные методы магнетохимических измерений. В заключение мы сделаем попытку изложить теорию, на которой основываются наиболее современные и наиболее точные применения магнетохимии к координационной химии. Более подробное изложение магнетохимии в применении к координационным соединениям можно найти в ряде руководств и статей по этому вопросу [14, 89—91, 106, 111, 116]. [c.370]


    Рассмотренная выше общая схема метода МО ЛКАО в применении к координационным соединениям позволяет выяснить [c.138]

    Трудности неэмпирических расчетов породили еще более простые (чем методы НДП) чисто полуэмпирические методы расчета, из которых наибольщее распространение в применении к координационным соединениям получил метод МВГ. Первоначальная идея, предложенная Вольфсбергом и Гельмгольцем [138], сводилась к тому, чтобы в секулярном уравнении метода МО ЛКАО (V. 8) диагональные элементы Нц заменять соответствующими потенциалами ионизации, взятыми с обратным знаком. [c.149]

    III. 5. ВОЗМОЖНОСТИ и ОГРАНИЧЕНИЯ МЕТОДА МО ЛКАО В ПРИМЕНЕНИИ К КООРДИНАЦИОННЫМ СОЕДИНЕНИЯМ СРАВНЕНИЕ С ТЕОРИЕЙ КРИСТАЛЛИЧЕСКОГО ПОЛЯ [c.87]

    Сравнение методов МО ЛКАО в применении к координационным соединениям. Знаки + и — отмечают сравнительное преимущество и недостаток методов [c.90]

    Среди титриметрических методов, основанных на реакциях комплексообразования, наибольшее значение имеют реакции с применением комплексонов. Устойчивые координационные соединения с комплексонами образуют почти все катионы, поэтому методы комплексонометрии универсальны и применимы к анализу широкого круга разнообразных объектов. Рабочие растворы устойчивы. Для установления точки эквивалентности имеется набор цветных индикаторов и разработаны физико-химические методы индикации потенциометрические, амперометрические, фотометрические, термометрические и др. Точность титриметрических определений составляет 0,2...0,3%. Методы комплексонометрического титрования непрерывно совершенствуются. Синтезируются новые типы комплексонов, обладающих повышенной селективностью, и новые индикаторы. Расширяются области применения комплексонометрии. [c.245]

    Наиболее важно применение эффекта Фарадея, а именно магнитного кругового дихроизма, в относительно высокосимметричных системах, таких, как координационные соединения, ароматические соединения и биологически активные соединения. Этот метод имеет значительные преимущества перед методом электронных спектров поглощения. Однако слишком еще преобладает эмпирический подход в анализе экспериментальных данных. Необходимо дальнейшее развитие теории метода. [c.262]

    Применение метода МО к координационным соединениям [c.187]

    Вопрос о строении комплексных соединений можно обсуждать с электростатической точки зрения, при помощи теории кристаллического поля, используя модели донорно-акцепторных и дативных связей в методе валентных схем или метод молекулярных орбиталей (МО). Идеи и выводы каждого из методов с успехом применяются в характерных для них сферах химии координационных соединений, но приближенный характер методов ограничивает их применение. [c.17]


    В настоящее время природу координационной связи можно описать тремя методами методом валентных связей, теории кристаллического поля и методом молекулярных орбиталей. Суть двух из них была изложена в общем виде в гл. 6 Химическая связь . Здесь мы остановимся на применении этих теорий к объяснению связи в координационных соединениях. [c.378]

    Рассмотрим применение метода ВС для описания структуры и некоторых свойств координационных (комплексных) соединений, простейшим примером которых является ион аммония NHi, который образуется, если к молекуле NHg экзотермически присоединяется катион водорода Н+  [c.271]

    За последние два десятилетия -теоретико-графовые и топологические представления приобретают все возрастающую по своей важности роль в разнообразных областях химических и биомедицинских исследований. Топологические методы нашли применение if химической документации [1], при различении изомеров и описании разветвленности молекул [2, 3], перечислении изомеров, соответствующих определенной эмпирической формуле [4], определении структурного сходства и различия однотипных соединений [5], при описании перегруппировок в полиэдрических координационных соединениях [6, 7], расчете квантовохимических параметров [8], при исследовании корреляций структура — свойство [8] и химическая структура — биологическая активность [9, 10]. Молекулярные структуры фактически являются графами, в которых атомы [c.206]

    Исследование изомерии позволило химикам-органикам предсказать в прошлом веке формы органических молекул аналогично существование изомерии и выяснение ее природы позволили Вернеру прочно обосновать его идеи о строении координационных соединений. Третья глава книги посвящена этому вопросу в его современном состоянии. Четвертая и пятая главы посвящены спектроскопии комплексных соединений. Спектры поглощения в видимой и ультрафиолетовой области составляют экспериментальную основу для применения теории кристаллического поля к координационной химии, а спектроскопия в целом оказалась важнейшим методом для суждения о строении. Последняя глава посвящена магнетохимии комплексных соединений, имеющей огромное значение в исследовании комплексов переходных металлов. Эта область, которая в течение ряда лет казалась установившейся, начала внезапно очень быстро развиваться. Об этом существенном развитии и идет речь в гл. 6. [c.9]

    Даже беглое ознакомление с химической литературой указывает на огромный рост интереса к координационной химии после второй мировой войны. Эффективное исследование комплексных соединений требует глубокого знания ряда физических методов. Однако мы обнаружили, что в литературе нет удовлетворительного изложения этих экспериментальных методов и лежащих в их основе теоретических представлений, особенно в применении к координационной химии. Предлагаемая книга написана с целью восполнить указанный пробел. [c.10]

    В 1948 году Г. Б. Бокий [60] опубликовал работу, где указал на возможность применения кристаллооптического метода для определения конфигурации координационных соединений. Сущность его сводится к сопоставлению экспериментальных показателей преломления изучаемых соединений с показателями преломления, вычисленными для всех возможных их изомеров. [c.26]

    Применению метода полярографии для исследования координационных соединений посвящено большое количество работ. [c.126]

    Магнитные методы находят широкое применение в решении проблем химии, металлургии и геологии. Магнитные измерения используются для решения самых различных вопросов, например для определения молекулярной структуры, состояния окисления, строения координационных соединений, нри разработке теории кристаллического состояния, коллоидной химии, свободных радикалов, при изучении структуры сплавов, диаграмм состояния, в геофизических исследованиях. [c.7]

    Книга написана на современном научном уровне. Авторы рассматривают координационные соединения в свете теории молекулярных орбит, в частности метода ЛКАО (линейной комбинации атомных орбит), и широко используют представления теорий кристаллического поля и поля лигандов. Авторы стремились в доступной студентам первого курса форме изложить применение указанных выше теорий для объяснения различных свойств комплексов и явлений, связанных с образованием координационных соединений, ионов, главным образом элементов первого переходного ряда (семейства М). Книга посвящена различным вопросам химии координационных соединений номенклатуры комплексов, их устойчивости и методов приготовления, кинетики образования комплексов и реакции с их участием, каталитического действия комплексов и т. д. [c.5]


    Применение теории кристаллического поля позволяет разработать более подробную классификацию, нежели простое деление комплексов на инертные и лабильные . Этот метод основан на сравнении энергии расщепления кристаллическим полем координационного соединения и его активного комплекса (вспомним, что под активным комплексом понимают конфигурацию исходных молекул, которая обеспечивает течение реакции без добавления энергии). [c.166]

    На многочисленных примерах авторы стремились показать, насколько существенными могут быть выводы корреляционного анализа для выяснения особенностей механизма различных реакций, строения реагирующих соединений и переходных состояний реакции. Отдельные разделы посвящены изложению количественной теории электронных эффектов заместителей, основанной на методах корреляционного анализа применению корреляционных уравнений к описанию реакционной способности многоядерных, гетероциклических, элементорганических и координационных соединений корреляционным соотношениям в биохимии и др [c.2]

    Хроматографические методы используют для аналитических целей, а также при исследовании механизмов реакций, получении чистых неорганических соединений, изучении свойств неорганических соединений в водных растворах и в решении проблем стереохимии. Разделение геометрических изомеров [Со(МНз)4 (N3)2 на окиси алюминия [7] стимулировало применение хроматографии в химии координационных соединений (см. обзоры [8, 9]). Ледерер и сотр. [10] показали возможность использования хроматографии для изучения комплексов металлов. [c.321]

    При гомогенных жидкофазных реакциях, протекающих в хроматографических колонках, условия должны быть даже проще, чем для гетерогенных каталитических газовых реакций, и эффективность применения импульсных методов для их исследования очевидна, например, при изучении механизма образования газами в растворах координационных соединений или при исследовании микрогетерогенных ферментативных процессов. Нет препятствий и для применения жидкостной хроматографии при изучении каталитических реакций. К сожалению, таких работ пока в литературе очень мало. [c.4]

    О механизмах реакций. Другими словами, считалось, что неорганическая реакция дает мало сведений (если вообще дает таковые ) о механизме. Поэтому несмотря на огромный и все возрастающий интерес к механизмам органических реакций, несмотря на изложенные в 1912 г. и намного опережавшие свое время взгляды Вернера на механизм реакций замещения в химии координационных соединений, опубликовано очень мало работ, посвященных изучению неорганических реакций в растворах. Большинство работ в области комплексов металлов предпринимались из соображений очень далеких от изучения механизмов реакции. В основном в этих работах рассматривались солевые эффекты, оптические свойства комплексов, стереохимические изменения, применение новых или необычных методов для измерения скоростей реакций. [c.12]

    Последние два десятилетия ознаменовались большими успехами химии координационных соединений. В течение ряда лет после работ Альфреда Вернера развитие этого направления химической науки протекало сравнительно медленно затем интерес к химии координационных соединений постепенно начал все более возрастать, причем некоторые теоретические представления и методы исследования претерпели существенное изменение. Ранее основные усилия были направлены на увеличение числа полученных комплексных соединений и на изучение их строения и свойств главным образом химическими методами наряду с привлечением ограниченного числа физических методов, например измерения электропроводности водных растворов. Однако в последнее время фундаментальные исследования в области неорганической химии, связанные с работами по использованию атомной энергии, стимулировали интерес к координационной химии, поскольку большинство соединений переходных элементов, по крайней мере в водных растворах, являются комплексными кроме того, стало совершенно очевидным, что эта область представляет широкое поле ДЛЯ исследований, результаты которых могут найти применение в прикладной, аналитической и фармацевтической химии. Современное развитие координационной химии обусловлено двумя основными обстоятельствами, которые предшествовали работам по использованию атомной энергии. Речь идет о развитии квантовой механики и применении новых физических методов для изучения неорганических комплексных соединений. Эти две области развивались постепенно и взаимно дополняли друг друга. Специалисты по квантовой механике смогли связать стереохимию неорганических соединений с электронной конфигурацией атомов, но в большинстве случаев они вынуждены ограничиваться чисто качественными предсказаниями, а часто—указанием на формы, которые можно было бы приписать той или иной молекуле. Дальнейшее уточнение вопроса о форме молекулы часто может быть проведено на основе рассмотрения физических свойств вещества— [c.245]

    Боразотные соединения в последнее время привлекли к себе внимание многих исследователей. Такой интерес к этим соединениям связан с выявившимися дополнительными возможностями их синтеза и исследованиями, обусловленными применением новых методов техники экспериментальных работ, а также особенностью строения боразотных соединений. Соединения трехвалентного бора способны легко воспринимать электронные пары от доноров электронов, в роли которых выступают азотные соединения. Таким образом получены разнообразные координационные соединения, которые при различных условиях претерпевают более глубокие превращения и образуют многочисленные соединения с ковалентными связями. [c.5]

    Однако нахождение состояний электронов, т. е. точное решение уравнения Шредингера (1.5) для координационного соединения, в настоящее время не представляется возможным, ввиду возникающих на этом пути огромных математических трудностей. Практически приемлемым здесь остается одноэлектронное приближение, в котором предполагается, что каждый электрон можно рассматривать движущимся независимо в некотором среднем эффективном поле, созданном ядрами и остальными электронами.. В этом приближении сложный комплекс описывается одноэлектронными состояниями, -облака которых, вообще говоря, простираются вдоль всей системы и поэтому носят название молекулярных орбиталей. Этот метод в общем виде предложен Хундом и Маликеном [96], а его применением к координационным соединениям мы обязаны Ван Флеку, Оргелу, Грифитсу и др. [см. 1—11]. [c.111]

    Начнем этот раздел с краткого обзора результативной части методов МО ЛКАО в применении к координационным соединениям на примерах конкретных расчетов электронного строения. Наиболее сложны неэмпирические аЬ initio расчеты в приближении ССП МО ЛКАО (метод Рутаана), применение которых к координационным соединениям стали возможны лишь в последние годы благодаря растущей мощности ЭВМ. В табл. V. 9 сведены данные по нескольким известным неэмпирическим расчетам координационных систем (см. обзоры [130—132, 160]). В ней для иллюстрации приведена полная энергия электронов (при фиксированных ядрах), энергия связей (по отношению к металлу в соответствующем состоянии окисления и лигандам или по отнощению к составляющим систему атомам), и формальный заряд на центральном атоме, вычисленный по Маликену [141]. [c.168]

    Развитием метода МО в применении к координационным соединениям мы обязаны Ван-Флеку [56, 57], Оргелу [63], Грифитсу [66, 72] и др. [c.58]

    Успешное использование машинных средств при описании каталитических процессов связано с применением адекватного языка описания химической структуры. В настоящее время для описания химических структур все шире используют теоретико-графовые н топологические представления [54—56], например, при установлении изомеров в описании разветвленных молекул [57, 58] перечислении изомеров, соответствующих эмпирической формуле [59] определении структурного сходства и различия однотипных соединений [60] описании перегруппировок в полиэдрических координационных соединениях [61, 62] исследовании корреляций структура—свойство [63] и химическая структура—биологическая активность [64, 65] расчете квантовохимических параметров [63]. Перечисленные подходы, используя тот или иной способ кодирования структур, основываются на методах иденти-фикацпп, распознавания, логических выводов. [c.91]

    Рассмотренные в разделе методы исследования дают ценнейшую информацию о строении, электронных эффектах и передаче взаимного влияния групп в органических, элементорганических, неорганических и координационных соединениях. Как спектроскопия ЯКР, так и мессбауэровская спектроскопия оказались весьма полезными при изучении некоторых биохимических объектов и проблем, показана перспективность их применения в макромоле-кулярной химии. Получено много интересных эмпирических корреляций параметров, определяемых из спектров ЯКР и ЯГР, с другими физико-химическими характеристиками веществ. Оба метода позволяют исследовать структуру и динамику твердых фаз, фазовые переходы, подвижность молекул в кристаллах и многие другие проблемы. [c.131]

    Комплексы, обладающие невысокой растворимостью в определенных растворителях, могут быть использованы в аналитических целях. Интенсивно окрашенные вещества находят применение в колориметрических определениях. Более высокий молекулярный вес комплекса по сравнению с молекулярным весом исходной простой соли способствует более точному весовому определению элемента. Часто координационные соединения применяют в волюметрических методах для маскировки мешающих анализу ионов (например, в присутствии фторид-ионов воз-М0Ж1Н0 определение меди, находящейся в растворе в смеси с ионами трехвалентного железа), в качестве титрующих агентов [c.15]

    Антипова-Каратаева И. П., Борисова Л. В., Ржевская Н. Д., Ермаков А. Н. Применение новейших фианческих методов к нсследовашпо координационных соединений. Тезисы докладов. Кпшннев, Штиинца , [c.310]

    Для получения макроциклических полиненасыщенных соединений применяются как темплатные, так и нетемплатные методы синтеза. Наиболее часто используют реакции конденсации бифункциональных карбонильных соединений с диаминами. Такие реакции обычно проводят в присутствии темплатных агентов. При этом образуются координационные соединения металлов с полиненасыщенными тетраазамакро-циклическими лигандами. Свободный лиганд обычно можно получить взаимодействием металлокомплекса с НС1 или HjS. Нетемплатные методы синтеза свободных лигандов в основном связаны с использованием активированных производных карбонильных соединений. Применение в качестве исходных неактивированных альдегидов или кетонов приводит к образованию нециклических продуктов. [c.82]

    Важнейшие свойства К. с.— насыщаемость (существование нек-рого предельного числа двухцентровых двухэлектронных связей, образуемых атомом) и направленность, к-рая определяет пртстранств. строение молекул, ионов, радикалов и стереохим. результаты р-ций соединений с К. с. Причины направленности К. с. раскрываются квантовой химией, а осн. принципы хорошо описываются с использованием представлезий о гибридизации атомных орбиталей и теории отталкивания электронных пар валентных орбита-лей. Применение методов и представлений квантовой химии к описанию К. с. привело к значит, обогащению и расширению этого понятия по сравнению с его традиц. содержанием (двухцентровая двухэлектронная связь), в частности к вве-децшо таких понятий, как многоцентровые К. с. (см. Многоцентровая связь), сопряжение связей, координационная связь. в. И. Минкин. [c.264]

    За последние два десятилетия химия координационных соединений благодаря более широкому применению современных физико-химических методов исследования достигла значительных успехов. В качестве примера следует указать на экспериментальные и теоретические исследования поглощения света комплексными соединениями, которые привели к принципиальному решению проблемы их окраски и строения. Проводилось также систематическое изучение равновесий в растворах комплексных ионов, особенно в водных растворах. Различные методы исследования комплексообразования в растворах составляют в настоящее время важную область координационной химии. Развитию этой области в значительной степени способствовали фундаментальные работы Я. Бьеррума, особенно его диссертация Образование амминов металлов в водном растворе , появившаяся в 1941 г. С тех пор были исследованы многочисленные равновесия реакций комплексообразования. [c.7]

    Исследование колебательных спектров (в особенности инфракрасных спектров поглощения ) комплексных соединений является одним из многообещающих источников информации об их строении, в частности, о роде и степени изменений, претерпеваемых лигандом, о симметрии координационной сферы, о прочности связи металл — лиганд. Инфракрасная спектроскопия комплексных соединений принадлежит к числу бурно развцва-. ющихся областей координационной химии. Темп этого развития может быть проиллюстрирован следующим фактом. В монографии Химия координационных соединений [1] методу инфракрасной спектроскопии уделено всего две страницы в книге Применение спектроскопии в химии [2] комплексные соединения упоминаются лишь вскользь, а в изданном спустя четыре года (в 1960 г.) коллективном труде Современная химия координационных соединений [3 ] инфракрасным спектрам комплексных соединений посвящена специальная глава, написанная Коттоном, занимающая более 90 страниц и содержащая обширную библиографию (222 названия). [c.118]

    Для целей неорганической и физической химии, а также для решения задач в области химии координационных соединений нужны спектрометры, которые способны давать информацию о возможно большем количестве атомов, составляющих то. или иное соединение. Такие приборы должны давать возможность, наблюдать ядерный резонанс ядер многих элементов. К таким приборам относится спектрометр, разработанный в СКВ Аналитического приборостроения АН СССР, типа РЯ-2301. Этот спектрометр позволяет наблюдать сигналы ЯМР примерно ста ядер, т. е. исследовать более шестидесяти элементов периодической системы. Другим важным инструментом может служить релаксо-метр Казанского завода математических машин, работающий на принципе спин-эхо. В качестве простейшего прибора, который позволяет ползгчить некоторые основные навыки эксперимента ЯМР и после несложных переделок может быть применен для изучения комплексообразования в парамагнитных растворах методом снятия насыщения Ривкинда [9], может быть рекомендован ядерный магнитометр типа ИМИ-2. [c.211]

    Если к углеводородам определенного строения присоединяются некоторые органические вещества, иногда образуются кристаллические координационные соединения, которые называют также клатратами или аддуктами. Образование клатра-тов с изомерами одного типа позволяет осуществить выделение и разделение изомеров. Ниже рассмотрены основные области применения такого метода. [c.201]

    В последнее время широко распространилось определение строения сложных неорганических молекул при помощи инфракрасных спектров. Наблюдаемый спектр сравнивают со спектром, рассчитанным для принятой модели с применением математически (на основании теории групп) выведенных правил отбора (т. е. это метод проб и ошибок, ср. с разд. 6.1—6.3). Метод инфракрасной спектроскопии применяли, в частности, для определения строения гидридов бора (разд. 2.5), окислов азота, межгалогенных соединений, изомеров координационных соединений и карбонилов металлов. Так, инфракрасный спектр диборана (ВгНб) состоит из восьми полос, причем все они, по-видимому, основные. Если в структуре имеются мостиковые атомы водорода, то правила отбора предсказывают восемь частот колебаний, активных в инфракрасной области. Аналогичные исследования подтвердили, что в некоторых полиядерных карбонилах имеется два типа групп СО концевые карбонильные группы, поглощающие примерно при 2000 и мостиковые карбонильные группы, которые поглощают при ---1800 сж" . На этом основании Ре2(С0)э — карбонил такого типа — имеет структуру, приведенную на рис. 6.17. [c.213]

    Для определения электронной конфигурации ионов металла-комплексообразователя информативным методом является определение статической магнитной восприимчивости полимерных комплексов. Применение маг-нетохнмии в изучении низкомолекулярных комплексов достаточно подробно описано в монографиях и обзорах, посвященных химии координационных соединений [96— 98]. Значительно в меньшей степени этот метод использовали для определения электронной конфигурации ме- [c.148]

    Чрезвычайно важным представляется, например, применение метода к таким проблемам, как проводимость взаимного влияния групп в различных органических, неорганических и элементоорганических соединениях, внутри- и межмолекулярные координационные взаимодействия и комплексообразование. Весьма перспективными могут оказаться исследования в области макромолекулярной химии, в частности в решении задач, связанных с определением структуры, подвижности и упорядоченности взаимного расположения макромолекул. Специальный интерес представляет появляющаяся в настоящее время возможность исследования методом ЯКР проблем прототропии и металлотропии, значение которых трудно переоценить, в особенности для биологических объектов. Несомненно плодотворно применение ЯКР для изучения веществ с особыми электромагнитными свойствами сегнетоэлектриков, антиферромагнетиков и т. п. [c.7]


Смотреть страницы где упоминается термин Применение метода МО к координационным соединениям: [c.166]    [c.264]    [c.82]    [c.5]    [c.352]    [c.604]    [c.5]    [c.9]   
Смотреть главы в:

Химия координационных соединений -> Применение метода МО к координационным соединениям




ПОИСК





Смотрите так же термины и статьи:

Координационные соединени

Соединения координационные



© 2025 chem21.info Реклама на сайте