Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ПМР-спектр присоединения

    В работах [5, 6] показана возможность исследования микроструктуры полиизопренов по спектрам ЯМР С, в которых сигналы, относящиеся к цис- и гранс-1,4-звеньям, хорошо разрешены. Известно также применение спектров комбинационного рассеяния [7], методов пиролитической деструкции полиизопрена с последующей идентификацией димеров [8]. Комплексное использование известных спектроскопических и химических способов не только позволяет определять типы полимерных структур, в том числе и циклические [9, 10], но и дает весьма ценную информацию о последовательности присоединения звеньев [И, 12]. [c.203]


    Определение состояний окисления соединений олова из МБ-спектров не столь строго, как в случае соединений железа. Величины 6 ниже 2,65 мм/с часто обусловлены оловом(1У), а большие величины — оло-вом(П). Известны и исключения. Изомерные сдвиги некоторых четырех-и шестикоординационных соединений олова (IV) значительно меняются в зависимости от средней электроотрицательности по Полингу Хр-групп, присоединенных к атому металла. Известно [17] о существовании следующих корреляций  [c.301]

    Метод пиролиза был использован при исследовании смолистых отложений на алюмо-кобальто-молибденовом катализаторе [21]. Пиролиз проводился в специальной пиролитической ячейке, присоединенной к ионному источнику масс-спектрометра МХ-1303. Температура пиролиза повышалась с постоянной скоростью 10° С в 1 мин. от 20 до 500° С масс-спектры снимались через каждые 2—3 мин. По полученным масс-спектрам определяли состав продуктов пиролиза в каждый момент времени, а интегрированием интенсивностей пиков во времени — суммарный состав продуктов пиролиза и интегральную кривую газовыделения. Эти дв аппара-турно-методических варианта анализа смолисто-асфальтеновых веществ представляются перспективными [21, 22]. [c.170]

    Как показали данные ЯМР Н соединений, полученные вещества являются продуктами 1,4-присоединения. В спектрах не обнаружены протоны карбоциклической структуры. [c.37]

    Альдегиды и кетоны. Строение карбонильной группы. Изомерия и номенклатура. Способы получения. Химические свойства. Реакции нуклеофильного присоединения. Реакции замещения и окисления. Функциональные производные оксосоединений ацетали, оксимы, гидразоны, азины. Альдольная и кротоновая конденсации. Дикарбонильные соединения. Непредельные альдегиды и кетоны. Кетены. УФ и ИК спектры альдегидов и кетонов. [c.170]

    При угловой структуре радикала спектр ЭПР в зависимости от общего числа электронов в системе и анизотропии образца имеет характерный вид, позволяя определять спиновую плотность на центральном атоме и оценивать валентный угол. Так, например, для радикала NO2 было получено значение валентного угла 133°, совпадающее в пределах ошибок с установленным прямыми экспериментальными методами (134°). В ион-радикале СО2" идентифицированном методом спектроскопии ЭПР в облученном формиате натрия, локализация неспаренного электрона на оказалась больше сравнительно с N в NO2 , что соответствует большему значению валентного угла (ближе к 180°). Эти выводы согласуются с особенностями реакционной способности этих частиц большая склонность ион-радикала O2 к димеризации, присоединение водорода к атому углерода, а не к кислороду, как в радикале NO2, и т. д. [c.69]


    Спектр механизмов электрофильного присоединения, отличающихся степенью разделения зарядов, довольно широк. При этом моле-куля )ный и полярный (ионный) механизмы рассматриваются как пре- [c.59]

    Для BAO аминного типа, а иногда и фенольного, снимают электронные спектры в области 250—350 нм, где поглощают ароматические кольца использованных для модификации низко-молекулярных антиоксидантов, которыми обычно являются производные вторичных ароматических аминов или пространственно-затрудненных фенолов. Если исходный полимер не поглощает в указанной области длин волн, то модифицированный полимер (ВАО) будет иметь максимумы поглощения за счет присоединенных низкомолекулярных антиоксидантов, причем положение максимумов поглощения практически не меняется. Это позволяет использовать спектрофотометрический метод [c.32]

    Таким образом, оказывается, что влияние двух видов растворителей на оптические свойства различно, что по влиянию на спектры флюоресценции они группируются так же, как и по их способности к образованию продуктов присоединения. [c.254]

    Атомы азота азогруппы, также имеющие электронные пары, обладают более низким протонным сродством, чем метилированная аминогруппа. Они протонируются только в сильнокислой среде, сильно понижая хромофорные свойства, т. е. вызывая гипсохромный сдвиг первой полосы поглощения. Существует общее правило, согласно которому Н" , являющийся сильнейщим ауксохромом, присоединенный на периферию хромофора, углубляет окраску, сдвигая полосы поглощения в видимой области батохромно (в красную сторону спектра). Присоединение протона в центр хромофора понижает окраску, фактически как бы разрывая хромофор на две половинки, и вызывает сдвиг видимых полос в синюю часть спектра. [c.272]

    Изготовлена система эталонирования на рубинах. Сконструирована ампула для повышения чувствительности системы. К спектру присоединен цреобразователь храфиков Ф014 для автоматического преобразования спектра в дискретный вид для перфоленты. [c.75]

    Присоединение серы, селена, солей металлов. Сера легко присоединяется к циклическим эфирам трехвалентного фосфора, особенно при нагревании . В зависимости от природы заместителя в положении 2 легкость присоединения умень-шается " в ряду R2N>SR>0R. Наличие заместителей в кольце на эту реакцию существенно не влияет. По данным ИК-спектров, присоединение серы не сопровождается тион-тиольной изомеризацией . Описано присоединение серы к 2-фенил-3-метил-1,3,2-оксаза-фосфолану при обработке последнего изотиоцианатом . [c.652]

    Спектр протонного магнитного резонанса аддукта 1 1 трет-С409Ы с бутадиеном в бензоле (рис. 10, а) свидетельствует о том, что в растворе присутствуют исключительно 1,4-продукты присоединения в цис- и гране-форме [88]. Сигналы при химическом сдвиге около т 5,4, относящиеся к уводородному атому, позволяют приписать этим соединениям а-аллильную структуру  [c.128]

    При присоединении второй и последующих молекул бутадиена к комплексам XV и XVI на каждой стадии вновь воспроизводится первоначальная структура концевого звена. Одновременно с этим в спектрах появляются сигналы отошедших от металла мономерных фрагментов, представляющих собой в основном 1,4-звенья. Образование 1,4-полимеров бутадиена можно представить как результат присоединения молекулы бутадиена по связи литий—юс-углеродные атомы комплексов XV и XVI. Однако образование заметных количеств 1,2-звеньев, особенно на более ранних стадиях присоединения, не согласуется со структурой этих литийаллильных аддуктов. [c.128]

    Для количественного исследования микроструктуры полиизо--пренов в настоящее время используются главным образом ИК- и ЯМР-спектры полимеров (рис. 1, 2). Метод ИКС особенно удобен для определения 1,2- и 3,4-присоединений. В этом случае анализ ведется по интенсивным и хорошо разрешенным характеристическим полосам поглощения в области деформационных колебаний винильной и изопропенильной групп при 909 и 887 см". Раздельное определение цис- и транс-1,4-звеньев из-за специфики ИК-спектров полиизопренов проводят по нехарактеристическим полосам поглощения при частотах 595—570, 730—750, 840, ИЗО— 1150 или 1300—1330 см [3]. В области валентных колебаний группы С—Н для этой цели пригодна полоса асимметричных колебаний СНз-групп при 2965 см . Точность известных методов анализа 1,4-полиизопренов по ИК-спектрам из-за малой интенсивности указанных полос, значительного наложения их друг на друга и сдвига частот максимумов поглощения в результате внутримолекулярных взаимодействий цис- и транс-1,4-структур невысока и, как правило, не превышает 2—5%- [c.201]

    Результаты исследования ЯМР-спектров живых цепей олигомеров изопрена [36] и бутадиена [37] в бензоле привели к заключению, что изопропенил- и бутадиениллитий существуют в двух формах, соответствующих цис-1,А- и транс-присоединению мономера. Протпвоион — литий локализуется у концевой метиленовой группы, а у третьего углеродного атома имеется лишь незначительный заряд, который увеличивается в присутствии тетрагидрофурана. По данным работы [38] в полярных растворителях (эфирах) преобладающей является л-аллильная структура активных центров, в которой отрицательный заряд делокализован между тремя углеродными атомами. [c.210]


    С другой стороны, спектры ядерного магнитного резонанса протонов тяжёлых фракций коксования не содержат пиков, характерных для протонов, присоединенных непосредственно к атомам углерода двойной связи, несмотря на достаточно большие йодные числа и на относительно большой объем сульфируемой части образца. Таким образом, методика, сочетающая метод ЯМР и масс-спектрометрию для анализа количества олефиновых углеводородов в тяжёлых фракциях вторичного цроисхоадения не может быть создана ввиду отсутствия пиков олефиновых протонов в спектрах ЯМР этих цродуктов. [c.18]

Рис.2. Зависимость парамагнетизма (I), величины йодных чисел (2) и количества протонов, присоединенных к згглеродвнм атомам с двойными связями по спектрам ЯМР (3 от температуры кипения фракции коксовагтая гудрона западносибщ1ской товарной нефти. Рис.2. Зависимость парамагнетизма (I), величины йодных чисел (2) и <a href="/info/361276">количества протонов</a>, присоединенных к згглеродвнм атомам с <a href="/info/7215">двойными связями</a> по спектрам ЯМР (3 от <a href="/info/1455147">температуры кипения фракции</a> коксовагтая гудрона западносибщ1ской товарной нефти.
    В насыщенных сераорганических соединениях атом серы с непосредственно присоединенными к нему одним или двумя атомами углерода, играет роль хромофорной группы, вызывающей на краю ближней ультрафиолетовой области сравнительно слабое поглощение в виде крыла интенсивной полосы, лежащей в шумановской области вакуумного ультрафиолета. В основе небольших вариаций спектров соединений, отличающихся строением насыщенной углеводородной части молекулы, лежит, очевидно, ауксохромное действие насыщенных углеводородных радикалов, присоединенных к основному хромрфору. [c.161]

    Лучше это можно проследить на соединениях, содержащих ароматические радикалы, так как их спектры лежат в области доступной обычным спектральным приборам, и они лучше изучены. Пока атом серы отделен от ароматического хромофора несколькими насыщенными углеводородными звеньями, спектр почти количественно является суммой спектров поглощения алкилсульфида и алкиларила. При непосредственной связи атома серы с ароматическим радикалом тонкая структура спектра, характерная для последнего, исчезает, интегральная интенсивность поглощения резко возрастает. В большинстве случаев изменяется не только форма и интенсивность полос поглощения, но и их положение относительно соответствующих параметров монофункциональных соединений (насыщенных соединений серы и ароматических или непредельных углеводородов). Отсутствие аддитивности в ультрафиолетовых спектрах непредельных (в.том числе ароматических) органических соединений двухвалентной серы свидетельствует о наличии более или менее значительного взаимодействия 1г-связей с неподеленными Зр-электронами атома серы, осложненного, вероятно, влиянием Зй-орбиталей серы. Фрагмент структуры, состоящий из ненасыщенного элемента с присоединенной к нему серой становится новым хромофором, с характерным для него спектром, а присоединенные к нему углеводородные насыщенные радикалы действуют на спектр поглощения как ауксохромы. Вопрос же о характере взаимодействия электронной оболочки атома серы с тг-электронами ненасыщенных хромофоров в настоящее время еще не решен, теория явления стала предметом оживленной дискуссии, по-видимому, еще далекой от завершения. [c.162]

    Еще больше взаимодействие тс-системы фенила и Зр-электронов серы, когда атом серы присоединен непосредственно к фениль-ному радикалу. Спектр в этом случае совершенно не похож ни на спектры поглощения алкилбензолов, ни на спектр поглощения ал-килсульфидов. 3 нем наблюдается одна широкая полоса погло- [c.173]

    Спектр поглощения 1-(Г-нафтил)-3-фенил-2-тиапропана-соеди-нения, содержащего различные арил-радикалы и присоединенную к ним сульфидную группу, измерен авторами в хлороформе, следовательно только с 250 нм. В описанной части спектра обнаруживается широкая полоса с максимумом на длине волны 287 нм и напоминает полосу поглощения алкилнафталинов, смещенную в длинноволновую область, т. е. как и у соединений, содержащих сульфидную группу и нафтильный радикал, поглощение определяется нафтилом, а роль фенила оказывается незначительной. [c.180]

    Циклоалкилтиофены (конденсированные). Конденсированные насыщенные циклы, присоединенные к тиофеновому кольцу, оказывают на спектр поглощения тиофенового хромофора то же влияние, что и алкилзаместители максимум также смещается в сторону больших длин волн с уменьшением числа незамещенных атомов водорода у тиофена. Из соединений этого ряда изучено несколько 4,5,6,7-тетрагидротианафтенов (табл. 9). [c.182]

    Алкилзаместители смещают спектр поглощения бензотиофена, на несколько нанометров в длинноволновую область. Величина этого смещения колеблется с изменением положения заместителя, но из-за недостатка материала трудно определить, есть ли разница в действии алкила на спектр, когда он присоединен к тиофеновому или бензольному кольцам. [c.184]

    Анализ УФ-спектров дает возможность классифицироваль соединения по их структуре, так как каждый тип соединенш поглощает в своей области спектра. Так, методами УФ-спект-роскопии трудно изучать алкапы и пафтеиы, поскольку их полосы поглощения лежат в области 150—200 им. В остальной части спектра эти вещества прозрачны. Наибольший интерес вызывает анализ ароматических углеводородов. Моноциклические ароматические углеводороды имеют ряд полос в области 250—290 нм. Боковые цепи, присоединенные к ароматическому ядру, могут вызывать батохромный или гинсохромный сдвиг. Часто вследствие малых сдвигов невозможно количественно установить содержание компонентов в смеси, и метод оказывается неэффективным. Однако смеси ароматических углеводородов с различным числом бензольных колец могут рассчитываться, так как изменение числа колец существенно сдвигает полосы. [c.56]

    С (более высокая температура недопустима из-за опасности разложения) в присутствии активного катализатора, например никель на кизельгуре. Так как катализатор легко отравляется, для получения исчерпывающего гидрирования операцию приходится повторять несколько раз, меняя катализатор на свежий. О достижении исчерпывающего гидрирования можно рудить по прекращению присоединения водорода, но лучше Ло совпадению анилиновых точек, определенных непосредственно и найденных по графику (фиг. II) или же по величине удельной дисперсии, представляющей разность показателей преломления для линий спектра С и С, дел 1тую на уд. вес все измерения делаются при одной и той же. температуре. [c.185]

    В данной работе реакцией присоединения к фуллерену ветвей поли-N-винилпирролидона (ПВП) (степень полимеризации п=40 и 70) через концевую аминогруппу были получены звездообразные водорастворимые производные фуллерена Сбо с различным числом ветвей. Ковалентное связывание ПВП с фуллереновым ядром было подтверждено соответствующими изменениями УФ спектров и спектров фотолюминесценции. Двух- и четырехлучевые образцы ПВП-Сбо, содержащие 7.4 и 2 вес. % фуллерена, были охарактеризованы методами молекулярной гидродинамики, оценены их молекулярные массы ММ и гидродинамические размеры в водных растворах. Было установлено, что в сравнении с образцами ПВП линейного строения той же ММ, не содержащими фуллерена, образцы ПВП-Сбо обладают более компактными размерами и большей трансляционной подвижностью, что может быть немаловажным фактором для мембрано-нроникающих способностей новых производных Сб . [c.90]

    Основную долю публикаций по изучению строения производных фуллеренов методами колебательной спеироскопии составляют данные по ИК-спектрам [6]. Присоединение заместителей существенно понижает симметрию исходного фуллерена и запрещенные симметрией колебания становятся активными. Появляется широкий набор неэквивалентных двойных [7] и ординарных [8] связей, что приводит к вариации силовых постоянных и размытию контуров полос. По мере увеличения числа заместителей или реализации низкосимметричных региоизомеров полосы в ИК-спектрах теряются на фоне полос заместителей. По этой причине ИК-спектроскопия является малоинформативной для [c.7]

    Наблюдаемые различия в поведении циклопентановых и ццклогексановых углеводородов прн электронном ударе согласуются со стереохимией алицнклических соединений [106]. Присутствие в масс-спектре циклобутапа ионов (СНз)" также указывает на возможность изомеризации молекулярного иона в структуру типа (СНз—СН—СНа—СНо) Ю7], ее образование связано с расщеплением цикла и миграцией атома водорода к одному из конечных углеродных атомов. Вероятность этого процесса подтверждается исследованием дейтернрован-ного циклобутана. Изомеризация молекулярного иона нафтеновых углеводородов конкурирует с процессом разрыва двух связей в нафтеновом кольце и образованием стабильного радикала или молекулы, а возможно и с процессом отрыва радикала, присоединенного к кольцу. Вероятность этих процессов зависит от структуры кольца и характера заместителя [108-110]. [c.56]

    Анализ ароматических углеводородов нефти. Исследование масс-спектров высокомолекулярных алкилбензолов, конденсированных и других типов ароматических соединений показало, что диссоциативная ионизация их молекул проте кает весьма селективно, вместе с тем опи, как правило, характеризуются высокой устойчивостью к электронному удару. Благодаря этому качестве аналитических могут быть использованы как пики молекулярных, так и осколочных ионов. Методом молекулярных ионов получают сведения о количестве насыщенных колец, присоединенных к ароматическому ядру. По масс-спектрам сложных смесей ароматических углеводородов суммированием высот пиков молекулярных ионов гомологических рядов от СпНгп-о до H2 i8 могут быть идентифицированы различные типы соединений и оценены их относительные количества. Однако чтобы сделать метод достаточно специфичным с точки зрения структурной идентификации, исследуемый образец должен быть предварительно подвергнут адсорбционному разделению на узкие фракции, содержащие преимущественно моно-, би-, три- или полицик-лические ароматические углеводороды. [c.168]

    Процесс присоединения экстралигандов сопровождается сдвигом полос поглощения относительно исходного ванадилпорфирина. На рис.22 приведен типичный спектр ванадилпорфирина до и после обработки растворами реагентов. Из представленных данных видно, что в спектре обработанного ванадилпорфирина наблюдается гипохромный эффект (уменьшение эффективности полосы поглощения) и батохромный сдвиг этой полосы (сдвиг поглощения в сторону более длинных волн), что характерно для явления экстракоординации [111]. [c.144]

    Образование ковалентной связи между протоном и одним из атомов углерода, входящего в ароматическую систему, при возникновении а-комплекса подтверждено спектром ПМР, полученным при смешивании 9,10-диметилантрацена с эквпмоль-ными количествами трифторуксусной кислоты и трифторида бора. Между сигналами ароматических протонов и протонов алкильных групп был обнаружен отсутствующий в непротони-рованном углеводороде пик в виде хорошо разрешенного квадруплета, в то время как пик протонов метильной группы расщепился на дублет. Этот факт свидетельствует о присоединении к атому С-9 протона, который вступает в спин-спиновое взаимодействие с протонами метильной группы, связанной с этим же атомом углерода, [c.320]

    Гибридные состояния углерода и 5р. Строение и особенности двойной и тройной связи. Изомерия и номенклатура этиленовых и аце тиленовых у1 леводородов. Геометрическая цис-, транс-) изомерия Способы получения. Физические и химические свойства алкенов и ал кинов. Реакции присоединения. Правило В. В. Марковникова. Исклю чение из этого правила (Хараш). Реакции окисления. Полимеризация Свойства ацетиленового водорода. Классификация и получение диено вых углеводородов. Физические и химические свойства. Эффект сопря жения. 1,4-Присоединение, Диеновые синтезы. Полимеризация диено вых углеводородов. Каучуки синтетические и натуральные. УФ и ИК спектры этиленовых и ацетиленовых углеводородов. [c.169]

    Представления о я-связи и р -гибрндизации. Цис-транс-изомерия. п-Комплексы при присоединении к кратной связи. Понятие об энергетике реакции, переходное состояние, энергетическая кривая, энергия активации. Гомо- гетеролитический разрыв связи. Индуктивный эффект. Объяснение правила Марковннкова, пероксид-ный Э(]х[)ект Хараша. Нуклеофильность и электрофильность атакующей частицы. Спектры (ПМР, ИК, УФ) олефинов. [c.249]

    Электронные представления об ацетиленовой связи и, < р-гибридизации. Кислотность ацетиленового атома водорода. Реакция Кучерова. Механизм гидратации тройной связи. Правило Марковннкова. Реакция присоединения ацетилена к карбонильным соединениям. Димеризация ацетилена. Спектры (ПМР, ИК, УФ) ацетиленов. [c.249]

    Взаимное влияние кратных связей в зависимости от их расположения в молекуле. Эс х(х кт сопряжения, 1,4- и 1,2-присоединение. Теория напряжения Байера. Вращение вокруг простой связи. Типы конформаций. Энергии перехода. Конформации циклогексана. Спектры (ИК, УФ и ПМР) полиеновых и цнклоалкановых углеводородов. [c.250]

    Ароматичность, правило Хюккеля. Электрофильные и нуклеофильные реакции. Электронодонорность и электроноакценторность заместителей. Индуктивный эффект и эффект сопряжения. Теория замещения, ориентанты I и И рода. Реакции электрофильного и нуклеофильного замещения, реакции присоединения. Переходные состояния. Согласованная и несогласованная ориентация. Спектры (ПМР, ИК и УФ) ароматических соединений. [c.250]


Смотреть страницы где упоминается термин ПМР-спектр присоединения: [c.199]    [c.39]    [c.324]    [c.324]    [c.329]    [c.233]    [c.455]    [c.126]    [c.188]    [c.403]    [c.16]    [c.250]    [c.225]    [c.37]   
Органическая химия (1974) -- [ c.180 , c.183 , c.184 , c.185 , c.187 , c.193 ]




ПОИСК







© 2024 chem21.info Реклама на сайте