Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции углеводородов с двуокисью углерода

    Химические реакции, осуществляемые в процессе создания контролируемых атмосфер из СНГ в смеси с воздухом, весьма разнообразны. Они обязательно сводятся к удалению кислорода. Помимо остаточного кислорода и азота защитные атмосферы в различном соотношении содержат двуокись и окись углерода, водород, пары воды и углеводороды. Дальнейшее изменение состава газовой среды требует специальных реакций. Поскольку двуокись углерода может взаимодействовать с определенными металлами и углеродом, содержащимся в стали, ее содержание в этой атмосфере необходимо снижать или полностью исключать. Для обеспечения взаимодействия между углеродом и поверхностью сплава металла (карбюризация) дополнительно может быть конвертирован пропан, а для нитрирования (азотирования) поверхности стали — введен аммиак. При термообработке стали нежелательно иметь высокую точку росы избыточной влаги, поэтому перед подачей на термообработку газы следует предварительно осушать, а окись углерода удалять во избежание поверхностного науглероживания низкоуглеродистых марок стали. [c.318]


    Процесс частичного окисления основывается на взаимодействии углеводородов с обогащенным кислородным потоком в некаталитическом пламени для получения газа, содержащего водород и окись углерода с небольшими количествами двуокиси углерода, водяного пара и метана. Затем проводят взаимодействие этой газовой смеси с водяным паром над катализатором реакции водяного газа и абсорбцией удаляют двуокись углерода, получая водород концентрацией 90—98%. В зависимости от дальнейшего назначения водорода применяют различные дополнительные операции очистки продукта. [c.182]

    Влияние кислорода при действии излучений на полимеры является вопросом первостепенной важности, особенно в случае биологически важных полимеров (гл. X, стр. 204). В настоящее время оно еще недостаточно исследовано. Ценным вкладом в понимание этого вопроса было бы исследование окисления малых органических молекул, инициированного облучением. Эта область изучена чрезвычайно неполно, но ясно, что в присутствии кислорода подавляются обычные реакции и стимулируется окисление. Так, Линд с сотрудниками [28] нашли, что ири облучении а-частицами смесей метана или этана с кислородом дегидрирование подавляется, и продуктами реакции являются двуокись углерода и вода. В случае более высоких углеводородов происходят обе реакции. Найдено, что инициированное облучением окисление углеводородов и жиров [29] и хлороформа [30] протекает через промежуточные перекиси. [c.69]

    Свойства. Этилен — бесцветный газ, со слабым сладковатым запахом, немного тяжелее воздуха, мало растворим в воде. Вдыхание его вызывает общий наркоз, в связи с чем он применялся в медицинской практике при операциях. В воздухе этилен горит светящимся пламенем, образуя, как и все углеводороды, двуокись углерода и воду. Смесь этилена с воздухом и с кислородом взрывает при поджигании с еще большей силой, чем смесь метана. Для этилена характерны реакции присоединения. [c.202]

    Продукты реакции O2 и Н2О образуются иа аноде, откуда должны выводиться. На катоде образуются ионы С0 , которые двигаются к аноду и участвуют в реакции электроокисления топлива. В катодной реакции участвует двуокись углерода, поэтому часть образующейся на аноде двуокиси углерода необходимо направлять на катод, а для этого надо отделить СО2 от Н2О. Исследования показали, что электрохимические характеристики ТЭ улучшаются при введении в топливо паров воды. Введение паров воды приводит к тому, что в ТЭ происходит внутренняя конверсия углеводорода с образованием водорода [c.160]


    Поскольку для термохимических измерений пригодны только те реакции, которые проходят быстро и до конца, наибольшее значение в термохимии имеют теплоты сгорания. Чтобы быть уверенным в том, что произошло полное сгорание, вещество поджигают электрической искрой в тяжелой стальной бомбе, содержащей кислород под давлением 25 атм. В таких условиях все углеводороды сгорают, образуя воду и двуокись углерода. Проведение некоторых реакций сопряжено с трудностями, так как они идут недостаточно быстро и полно, образуя продукты не вполне определенного состава. Например, теплота сгорания соединений, подобных хлористому этилу, точно не известна, потому что в результате реакции получается смесь продуктов неопределенного состава. [c.31]

    Проведение реакции в отсутствие катализатора обеспечивается температурой горения, равной 1350—1450° С. Для автотермичности процесса при указанных температурах соотношение кислорода к углеводороду несколько повышают по сравнению со стехиометрическим коэффициентом 0,5и, в результате чего в продуктах реакции появляются двуокись углерода и водяной пар. [c.230]

    Для отвода теплоты, выделяющейся в результате экзотермической реакции сульфохлорирования, установлен охлаждающий змеевик. Газы, выходящие из верхнего конца сосуда, а именно непрореагировавший углеводород, двуокись серы и хлористый водород, отводят в промывную башню, в которой они освобождаются от хлористого водорода и двуокиси серы, а углеводород направляют в трубопровод отходящих газов. В процессе реакции четыреххлористый углерод обогащается продуктами реакции. Когда концентрация сульфохлоридов достигнет примерно 20%, то ее поддерживают на этом уровне непрерывным удалением части раствора и добавлением свежего четыреххлористого углерода. [c.390]

    Образование газа. Газы, образующиеся при крекинге, состоят из осколков больших молекул. Большое увеличение выхода газа с возрастанием температуры, возможно, является результатом крекинга первоначальных продуктов реакции. На состав газа влияют прежде всего условия его образования и, в меньшей степени, — характер исходного сырья. Газы состоят главным образом из углеводородов, хотя в них могут присутствовать и окись и двуокись углерода, сероводород, кислород и водород. Были обнаружены даже уксусная и муравьиная кислоты [171]. [c.316]

    В простейшей форме сжигание углеводородов в факеле сводится к следующему. В процессе горения молекулы топлива нагреваются и вступают 1В реакцию с молекулами окислителя образующиеся при этом продукты горения содержат в основном воду и двуокись углерода. Одновременно имеют место реакции термического крекинга, в результате которых образуются углерод, ненасыщенные соединения и полимеры. [c.50]

    Полученные из метана смеси окиси углерода и водорода переводят реакцией с избытком водяного пара в смесь двуокиси углерода и водорода. Двуокись углерода отмывают водой под давлением 25 ama или раствором этаноламина промытый газ затем компримируют до рабочего давления и удаляют окись углерода промывкой аммиачным раствором формиата одновалентной меди-. После этой обработки остается водород, пригодный для проведения синтеза аммиака. Азот получают двумя способами. По первому способу азот выделяют ректификацией ожиженного воздуха в этом случае кислород можно использовать для частичного сожжения метана. По второму способу сначала проводят конверсию метана с водяным паром при 700°, с тем чтобы в продуктах реакции осталось значительное количество непрореагировавшего углеводорода. Затем к горячей газовой смеси добавляют воздух в таком количестве, чтобы достичь нужного для синтеза аммиака [c.51]

    При этом процессе перегретый водяной пар смешивают с углеводородным сырьем, нагревают до 565°С, смешивают в диффузоре с нагретым до 510°С кислородом или обогащенным кислородом воздухом, и смесь подают в верх каталитического реактора. Кислород вступает в экзотермическую реакцию с углеводородом в незаполненной зоне над слоем катализатора. Здесь же протекают эндотермические реакции углеводородов с водяным паром и двуокисью углерода, ограничивающие подъем температуры в результате экзотермической реакции. Затем реакционную смесь пропускают через слой никелевого катализатора, в котором эндотермические реакции протекают почти до равновесия, что позволяет достигнуть достаточно полного превращения углеводородного сырья в окись и двуокись углерода и водород. Получаемые газы, выходящие из каталитического реактора при температуре около 950°С, охлаждаются примерно до 350°С и направляются через второй реактор, содержащий окисный железохромовый катализатор, для превращения окиси углерода взаимодействием с водяным паром в двуокись углерода и водород. [c.180]


    Цеолиты типа молекулярных сит легко вступают в реакции ионного обмена. Ионы натрия, ограничивающие вход молекул через восьмичленное кислородное кольцо в молекулярных. ситах типа 4А, можно удалить обменом на ионы кальция. Поэтому на этом материале не могут адсорбироваться молекулы размером более 5А. На рис. 2 показано влияние степени замещения ионов натрия ионами кальция на адсорбционные свойства. Молекулярные сита типа А, в которых более 30% натрия заменены катионами кальция, адсорбируют молекулы размерами до 5А и выпускаются как сита типа 5А. (промышленные молекулярные сита типа 5А, выпускаемые фирмой Линде содержат около 70% катионов кальция и лишь 30% натрия).- Как видно из рис. 2, двуокись углерода, диаметр молекулы которой равен 2,8 А, адсорбируется одинаково хорошо на молекулярных ситах типа 4А и 5А. Изобутан (диаметр молекулы 5,6 А) не адсорбируется на обоих 4,9 А) не может адсорбироваться до замены примерно 30% материалах. С другой стороны н-бутан (диаметр молекулы ионов натрия кальцием при большей полноте замены натрия он адсорбируется очень быстро. Таким образом, молекулярные сита типа 5А адсорбируют не только все те вещества, которые адсорбируются на ситах типа 4А, но и углеводороды нормального строения, не адсорбируя углероды, изостроения и циклические углеводороды, содержащие более, чем трехчленные циклы. [c.201]

    Приведенные выше данные позволяют выявить общие проблемы, возникающие при разработке катализаторов крекинга. При любом варианте процесса катализатор подвергается попеременно стадиям крекинга и регенерации. Во время крекинга, осуществляемого при высоких температурах, катализатор должен обеспечивать протекание сложной совокупности последовательных изотермических реакций углеводородов. Воздействие водяного пара, сернистых и азотистых соединений, а также металлов не должно снижать активности катализатора. Во время регенерации производится экзотермический выжиг углеродистых отложений для их удаления на этой стадии катализатор подвергается воздействию окислительной атмосферы, -содержащей кислород, водяной пар, двуокись и окись углерода, сернистый ангидрид, азот и окись азота. В зависимости от способа циркуляции катали--затора он подвергается действию механических нагрузок — в стационарном слое и абразивного износа и истирания — при процессах с движущимся или псевдоожиженным катализатором кроме того, при любых вариантах процесса он подвергается действию высоких температур и изменениям температуры. [c.173]

    Для очистки от сероокиси углерода, сероводорода и окиси углерода эти примеси каталитическими процессами превращают в соединения, менее вредные или легче удаляемые из газового потока. В качестве катализатора для гидрирования сернистых соединений в сероводород на промышленных установках применяют сульфид никеля [13], сульфат магния и окись цинка [22, 25], тиомолибдаты металлов [12] и окислы металлов [44]. Окись углерода превращают в двуокись, пропуская газ через один или несколько конверторов, в которых окись углерода, взаимодействуя на стационарном катализаторе с водяным паром, образует двуокись углерода и водород [5]. Образующуюся двуокись углерода удаляют из газового потока одним из рассмотренных выше процессов. Иногда небольшие количества окиси и двуокиси углерода удаляют превращением в метан реакцией гидрирования. Ацетиленовые углеводороды удаляют из алкенсодержащих газовых потоков процессом избирательного гидрирования [35, 68]. [c.99]

    Многочисленные реакции углеводородов можно разделить на две большие группы реакции окисления без деструкции углеводородного скелета и реакции деструктивного окисления. Реакции деструктивного окисления подразделяются на реакции, сопровождающиеся частичной и полной деструкцией углеводородного скелета. Последние в зависимости от степени окисления элементов углеводорода (углерода и водорода) разделяются также на две группы реакции, сопровождающиеся неполным и полным окислением этих элементов. Основными продуктами в первом случае являются окись углерода и водород. Во втором случае образуются исключительно двуокись углерода и вода — продукты полного окисления углеводородов (см. схему). [c.3]

    Реакционные газы промывали водой, при этом улавливали растворимые продукты реакции, а газообразные (углеводороды С4, кислород, азот, окись и двуокись углерода) выводили через газовые часы. Периодически газообразные продукты реакции направляли в дозатор хроматографа. [c.216]

    Для анализа газов, содержащих кислород, азот, окись и двуокись углерода и углеводороды, был разработан метод анализа, совмещающий газо-жидкостную и адсорбционную хроматографию. Для этой цели был переделан хроматограф системы ХТ-2М, который позволил на одном катарометре и двух рабочих колонках определить полный состав газов реакции. [c.216]

    Продукт реакции представляет собой смесь ацетилена, бутадиена-1,3 (диацетилен), полимеров, жидких при нормальной температуре, и ароматических углеводородов кроме того, продукт содержит этилен, окись углерода, двуокись углерода и водород. [c.23]

    В качестве катализатора предлагалась также окись магния с нанесенными на нее окисями никеля, церия ли алюминия. Поскольку двуокись углерода, образующаяся при реакции углеводородов с водяным паром, поглощается окисью магния, то для удаления двуокиси углерода катализатор необходимо периодически регенерировать. Другие исследователи рекомендуют применение окиси кальция или церия ". Окись церия поглощает двуокись углерода при 100° и может быть регенерирована нагреванием получающегося карбоната до> 350—500°. [c.316]

    Окисление смеси изопрен — ацетат привело к образованию 3-метилгексена и высших углеводородов. О стереохимии продуктов упомянуто не было. Трифторацетат и бутадиен дали смесь, которая содержала 1,1,1,10,10,Ю-гексафтор-3,7-декадиен. Такого типа эксперимент был проведен также с двухосновными кислотами, которые не образуют димеров Кольбе. При электролизе оксалата в обычных условиях реакции Кольбе образовывался этилен и двуокись углерода. Электролиз метанольного раствора этилоксалата калия с бутадиеном приводит к диэтиловому эфиру 3,7-декадиен-1,10-дио-вой кислоты. Это вещество, вероятно, образуется при реакции диена с метильными и карбэтокси-радикалами в результате димеризации промежуточного соединения. [c.139]

    При газификации тяжелого сырья, наоборот, температура адиабатической реакции (1) может оказаться значительно выше, чем необходимо для удовлетворительного протекания процесса при работе на сырье, содержащем ненасыщенные или ароматические углеводороды. В этом случае для поддержания температуры в желаемых пределах к кислородному или углеводородному потоку добавляют разбавитель — обычно водяной пар. Вместо водяного пара для снижения температур можно применять также двуокись углерода при газификации с воздушным дутьем — без добавления кислорода или обогащения кислородом — функцию разбавителя выполняет азот, содержащийся в воздушном потоке. [c.81]

    Наряду со стиролом и водородом при дегидрировании этилбензола образуются такие побочные продукты, как метан, окись и двуокись углерода, этилен, бензол, толуол, ксилолы, изопропил-бензал, а- и р-метилстиролы, дибензил, стильбен, антрацен, флуо-рен и др. Бензол и толуол, как было доказано с помощью меченых -атомов [14], возникают непосредственно из этилбензола, а также и из стирола. Они представляют собой главные побочные продукты, в основном определяющие селективность процесса. Высказывалось немало предположений о том, что реакция образования бензола и толуола является обратимой и что добавки этих углеводородов могут увеличить выход целевого продукта. Однако на практике это приводило лищь к уменьщению производительности и отравлению катализатора сопутствующими примесями. [c.735]

    Реакции, идущие в газопенераторе типа Лурги , типичны для процесса сухой перегонки угля, а именно возгонка летучих углеводородов из угля и соответствующий крекинг их до метана и низших углеводоров, взаимодействие синтез-газа с образующимися при парокислородной карбонизации коксом или полукоксом, в результате чего образуются окись углерода и водород, и, наконец, реакция метанизации окиси углерода водородом под давлением. Газы, образующиеся на разных уровнях реактора, соединяются и по трубопроводу направляются в отделение очистки. Перед подачей на очистку газ охлаждается в котле-утилизаторе с получением пара, расходуемого на нужды всей установки. Охлажденный газ проходит через реактор прямой конверсии окиси углерода, в котором часть ее реагирует с избытком пара и образует двуокись углерода и водород. Смола и концентрат аммония удаляются из конденсата как в котле-утилизаторе, так и в холодильнике после реакции конверсии окиси углерода. [c.157]

    Как видно из таблицы, продуктами реакции являются непредельные углеводороды, метан, водород, формальдегид, высшие альдегиды, метиловый и этиловый спирты, окись и двуокись углерода и вода, т. е. в основном те же продукты, какие были найдены при окислении пропана и Пизом. Непредельные углеводороды состоят из пропилена и этилена, а под высшими альдегидами следует понимать ацетальдегид. Данные таблицы приводят авторов к выводу о слабом влиянии природы поверхности на химизм окисления пропана. Важным результатом этих опытов, проведенных в статических условиях, явился факт полного [c.141]

    В отличие от реакции окисления изобутана, направленной п сторону образования перекисей, было найдено, что окисление и юпана и бутана (отношение углеводорода к кислороду 9 1, температура около 450°С, время контакта — 4 сек) приводит к получению смеси продуктов, содержащей органические перекиси, перекись водорода, альдегиды, спирты, окись и двуокись углерода, воду, олефины и водород . Органические перекиси в этом случае состоят, вероятнее всего, йз оксигидроперекисей и диоксиперекисей, образующихся в результате взаимодействия 1 рисутствующих в окисляемой среде альдегидов (например, формальдегида) и перекиси водорода. В более поздней работе описан способ превращения этана в гидроперекись путем окисления при 10—80° С под действием ультрафиолетового излучения в присутствии паров ртути, цинка или кадмия в качестве [c.20]

    При замене диацетилперекиси перекисью с более длинной цепью, например дилауроилперекисью, дикарбоновые кислоты в продуктах реакции не образуются. В этом случае получаются двуокись углерода, лауриновая кислота и углеводороды за счет димеризации ундецилового радикала (докозан) и его диспропорционирования (н-ундекан и н-ундецен). [c.397]

    Если при разложении диацетилперекиси в качестве растворителей использовать углеводороды, содержащие легко отрываемые атомы водорода, например циклогексан, то в результате реакции получается метан и двуокись углерода. Углеводородные радикалы, оставщиеся после отщепления водорода, обычно димеризуются. Так, кумол образует 2, З-диметил-2, 3-дифенилбутан [СбНбС (СНз)2]2 аналогичные димеры образуются из толуола, ксилола и цимола после отщепления атома водорода, находящегося в а-положении боковой цепи [c.391]

    Мягкое, или цеоолное, окисление углеводородов на всех катализаторах оопровождается глубокими окислением, поэтому в продуктах реакции кроме органических кислородоодержащих соединений всегда присутствуют двуокись углерода и пары воды. [c.216]

    Термодинамические свойства углеводородов и продуктов их окисления представляют особый интерес ввиду того, что ценность углеводородов как горючего зависит от разности менеду величиной их внутренней энергии и соответствуюш ими величинами продуктов сгорания. Однако ввиду того, что при сгорании не все реакции протекают до конца, т. е. до образования двуокиси углерода и воды, возникает также необходимость знать термодинамические свойства многих устойчивых и неустойчивых промежуточных соединений углерода, водорода и кислорода, образуюш,ихся при горении. Животные также получают необходимые им тепло и энергию за счет процесса окисления, сопровонгдаюш егося попутным образованием многочис-денных нестойких и устойчивых промежуточных продуктов. Растения завершают вторую часть этого цикла. Используя солнечный свет в качестве первичного источника энергии для процесса фотосинтеза, растения жадно поглощ ают двуокись углерода из атмосферы, связывают ее с водой и синтезируют соединения, менее деградированные в энергетическом отношении. После того как этот процесс образования менее деградированных соединений пройдет через целый ряд стадий, определенное промежуточное соединение (например, сахар) может являться вполне подходящим горючим для осуществляемого в организмах животных цикла деградации. Таким образом, процессы, ведущие к рассеиванию энергии или к накоплению ее, постоянно протекают с образованием многочисленных общих промежуточных соединений, содержащих углерод, водород и кислород. Эти соединения играют ваншую роль, поскольку они охватывают всю [c.458]

    Исследование синтеза нронноновой кислоты взаимодействием этилового спирта с окисью углерода дало [124] результаты, весьма близкие к полученным для реакции метилового спирта с окисью углерода. В продуктах реакции содержатся только нро-иноновая кислота, ее этиловый сложный эфир, двуокись углерода, смесь газообразных насыщенных углеводородов и водорода наряду с непрореагнровавшими окпсью углерода и этиловым спиртом. Кислоты образовалось меньше, а выход сложного эфира и газообразных продуктов реакции был больше, чем при аналогичном синтезе уксусной кислоты. И в этом случае йодистые соли более активны, чем металлы или их бромистые или хлористые соли йодистый нпкель как катализатор синтеза более активен, чем йодистый коба.льт или йодистое железо. [c.67]

    Облэд и Горин [135] в 1946 г. изучали влияние кислорода и других промоторов на катализируемую бромистым алюминием реакцию изомеризации н-бутана. Неустойчивый характер реакции в ранних исследованиях послужил причиной для утверждения, что некоторые примеси к катализаторам, действующие как промоторы, потребляются в ходе реакции. Таким веществом считался кислород, и его поведение в условиях реакции изучалось наиболее детально. Было найдено, что исследуемая реакция — первого порядка относительно взятого для реакции углеводорода нри дайной температуре, и ее течение зависит от концентрации бромистого алюминия, концентрации кислорода и размера поверхности. Было высказано предположение, что новерхность необходима для обеспечения полярной среды, в которой протекает реакция. Помимо кислорода, изучались и другие промоторы, включая воду, бром, водород, двуокись углерода, хлористый водород, бромистый водород, бромистый этил. Обсуждался также механизм реакции с учетом возможности образования бромистого водорода и бромистых алкилов под действием кислорода и дальнейшей реакции с получением [(СНз)з С ] и (АШгГ). [c.343]

    Хроматографический анализ показал, что газовая часть продуктов реакции состоит прешлущественно из водорода, этилена, пропилена и бутилена. В меньшем количестве присутствуют окись и двуокись углерода, этан, пропан и отсутствуют ацетиленовые углеводороды, ослож- [c.165]

    Первые научные работы связаны с извлечением лекарственных веществ из растений. Последующие исследования относятся главным образом к органической химии. Изучал (конец 1830-х) производные мочевой кислоты, пурпуровую кислоту и ее соли. При разложении индиго выделил (1840) антранило-вую кислоту, распадавшуюся при нагревании на двуокись углерода и новое азотистое основание, которое он назвал анилином. Установил, что окисление анилина приводит к образованию окрашенных веществ. Открыл (1858) реакцию пикриновой кислоты с ароматическими углеводородами, дающую хорошо кристаллизующиеся молекулярные соединения. Открыл (1858) карбазол в каменноугольном дегте, выделил углеводороды — антрацен (1857), ретен(1858) и фенантрен (1869). [23] [c.531]

    Чаще всего для этого применяют азот, двуокись углерода и галоидные соединения. Так, четыреххлористый углерод флегмати-зирует гремучую смесь, метилбромид снижает воспламеняемость углеводородов. Тормозящее действие галоидных соединений и таких добавок, как карбонил железа, олефины, гидрохинон, при взрыве объясняется тем, что они связывают в начальный период реакции активные центры и обрывают цепную реакцию горения [c.521]

    Во многих из вышеописанных методов тепло, потребное для реакции, получается из какого-либо внешнего источника или от раскаленного слоя топлива, а в других — температура поддерживается за счет сжигания отделившегося угля. Температурные условия, необходимые для разложения, могут быть получены путем неполного сгорания части самого углеводородного материала, что также является основой некоторых процессов. Окись углерода, один из продуктов горения, сама способна разлагаться или же сгорать в двуокись углерода поэтому в наше обсуждение мы д<мжны включить также краткое упоминание о тех немногочисленных процессах, в которых это происходит. Другая большая и более изученная группа методов, основанных на неполном сожжении углеводородов (с целью поддержания температуры разложения), обсуждается в гл. 8, где рассматривается осаждение угля из пламени. Эти процессы являются, повидимому, также чисто термическим разложением, вызываемым теплотой сгорания части углеводородного материала. Пожалуй в этом месте следует указать на два других метода поддержания температуры, потребной для разложения, а именно — на подогревание вольтово) дугой и подогревание с помощью металлической бани, поддерживаемой при высокой температуре. [c.240]

    Bradley использовал окисление метана или его гомологов воздухом или кислородом и углекислым газом для получения ламповой сажи. Реагирующие газы смешиваются при этом в таких соотношениях и при такой температуре, что за счет экзотермического окисления углеводородов образуется вполне достаточное количество тепла, чтобы компенсировать тепло, поглощаемое эндотермической реакцией двуокиси угле]юда с углеводородом. Окись углерода, получающаяся в процессе реакции, превращается в двуокись углерода последняя затем отделяется и используется вновь. Goodwin для получения тонко раздробленного угля смешивал воздух и углеводородный газ или пар в реакционной камере, нагретой выше максимума температуры, достижимого при горении смеси. Lewis частично сжигал углеводороды и направлял пламя на металлическую поверхность, в результате чего получалось отложение сажи. [c.240]

    Методы, применяемые для хлорирования метана, довольно разнообразны. В общем они сводятся к действию ка смесь метана и хлора света, богатого химически действующими лучами, тепла, катализаторов и других активаторов, как например тихого электрического разряда. Наибольшие затруднении возникают при регулировании процеоса с целью избежания взрыва и образования каких-либо других, кроме требующихся, продуктов хлорирования. Надлежащий контроль за концентрациями, температурой и действием активаторов на реакцию уменьшает, хотя и не устраняет совсем, последнее из затруднений опасности взрыва можно до некоторой степени избежать разбавлением углеводорода каким-либо инертным газом, как наприме р двуокись углерода, азот, водяной пар, хлористый водород, или хлорированным веществом, а также точнывд регулированием количества В1ВОЛИМОГО в реакцию хлора. При.меняется также хлорирование в инертных жидких растворителях [c.750]

    Работы Горнорудного бюро проводились при давлениях, лишь незначительно превышающих атмосферное. Поэтому полученные = результаты полностью обусловлены лишь химическим равновесием Для .аналогичной системы с натрием вместо калия [201] и для системы друркись углерода—сероводород—карбонат натрия—бикарбонат натрия- оерни-стый натр—вода [379] было показано, что свободные формы. соединений, существующие в растворе под повышенным давлением, оказывают значительное влияние на равновесие газ—жидкость при абсорбции, сопровождающейся химическими реакциями. С достаточной уверенностью можно предположить, что этот вывод справедлив и для системы двуокись углерода — сероводород — углеводород — карбонат калия — бикарбонат калия—сульфгидрид калия—вода. [c.355]

    Химизм процесса. Кислый газ обычно содержит двуокись углерода, сероводород и небольшие количества углеводородов. Эти газы смешивают с воздухом для возможности п ротекания в печи следующих реакций  [c.369]


Смотреть страницы где упоминается термин Реакции углеводородов с двуокисью углерода: [c.93]    [c.29]    [c.191]    [c.10]    [c.391]    [c.191]    [c.37]    [c.215]    [c.1056]   
Смотреть главы в:

Химия углеводородов нефти и их производных том 1,2 -> Реакции углеводородов с двуокисью углерода




ПОИСК





Смотрите так же термины и статьи:

Промышленное применение реакций водяного пара и двуокиси углерода с углеводородами

Реакции углеводородов с водяным паром, двуокисью углерода, аммиаком и др

Углерода двуокись реакция с ароматическими углеводородами

Углерода двуокись реакция с парафиновыми углеводородами



© 2025 chem21.info Реклама на сайте