Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионная стойкость металлов и сплавов в соляной кислоте

    В книге освещены проблемы и современное состояние борьбы с коррозией аппаратуры и машин в химической, нефтеперерабатывающей и смежных с ними отраслей промышленности. Описаны исследование коррозии металлов в условиях теплопередачи применение электросварных труб в нефтеперерабатывающей и нефтехимической промышленностях катодное наводороживание и коррозия титана и его а-сплавов в различных электролитах влияние водорода на длительную прочность сталей влияние пластической деформации на водородную стойкость сталей о методике определения температурных границ применения конструкционных сталей в гидрогенизационном оборудовании влияние водорода при высоких температурах и давлениях на механические свойства металлов защитные свойства плакирующего слоя стали 0X13 на листах стали 20К против водородной коррозии влияние твердости стали ЭИ579 на ее коррозионную стойкость в водородосодержащих средах влияние легирующих элементов на водородную коррозию стали влияние толщины стенки и напряжений на скорость водородной коррозии стали протекторная защита теплообменной аппаратуры охлаждаемой сырой морской водой коррозия углеродистой стали в уксусной кислоте и электрохимический способ ее защиты торможение коррозии стали Х18Н9 в соляной кислоте добавками пенореагента ингибиторы коррозии для разбавленных кислот ингибиторы коррозии стали в системе углеводороды—сероводород—кислые водные растворы сероводородная коррозия стали в среде углеводород—электролит и защитное действие органических ингибиторов коррозии ингибиторы коррозии в среде углеводороды—слабая соляная кислота коррозионно-стойкие стали повышенной прочности для химического машиностроения тепло- и коррозионно-стойкие стали для печных труб и коммуникационных нефтеперерабатывающих заводов коррозия в нитрат-нитритном расплаве при 500° С коррозионная стойкость сталей с пониженным содержанием никеля в химически активных средах коррозия нержавеющих сталей в процессе получения уксусной кислоты окислением фракции 40—80° С, выделенной из нефти коррозионные и электро-химические свойства нержавеющих сталей в растворах уксусной кислоты коррозия металлов в производстве синтетических жирных кислот газовое борирование металлов, сталей и сплавов для получения коррозионно- и эрозионно-стойких покрытий применение антикоррозионных металлизированных покрытий в нефтеперерабатывающей промышленности коррозия и защита стальных соединений в крупнопанельных зданиях. [c.2]


    Повышенный интерес к титану и его сплавам объясняется хорошими конструктивными свойствами, высоким отношением проч ности к удельному весу, большой коррозионной и эрозионной стойкостью, высокой температурой плавления (при 300 сплавы титана имеют большую прочность, чем нержавеющая сталь). Он не растворяется в азотной, серной и соляной кислотах. На поверхности титана имеется прочная оксидная пленка, которая препятствует осаждению на него других металлов. Удаление этой пленки производится самыми различными способами а) обработкой титановых сплавов плавиковой кислотой при = °С в течение 5—15 мин. б) травлением в смеси концентрированных азотной и плавиковой кислот в соотношении 3 1 и т. д. Определенного мнения по этому вопросу лока нет [74]. [c.119]

Фиг. 8. 10. Характеристика коррозионной стойкости цветных металлов и сплавов в соляной кислоте концент- рации <35% [22, 51] Фиг. 8. 10. Характеристика <a href="/info/911564">коррозионной стойкости цветных металлов</a> и сплавов в <a href="/info/1816">соляной кислоте</a> концент- рации <35% [22, 51]
    Поведение металлов и сплавов в естественных водных средах различно и определяется их составом и структурой, наличием примесей и распределением их в металле, видом поверхностной обработки. В табл. 2 приведены опытные данные по определению коррозионной стойкости железа, ряда сталей и серого чугуна в 5%-ной соляной кислоте. [c.27]

    Титан и его спчавы обладают очень высокой коррозионной стойкостью в морской воде, влажной морской и промышленной атмосфере. В этих средах скорость коррозии титановых сплавов не превышает 0,0001 мм/год. Несмотря на то, что титан относится к наиболее термодинамически неустойчивым металлам, его высокая коррозионная стойкость обусловлена защитными свойствами образующихся гидридных и оксидных пленок. Титановые сплавы устойчивы в окислительных средах даже в присутствии больших количеств хлор-ионов в большинстве органических сред. Исключение составляют серная, соляная,. муравьиная, щавелевая, винная, лимонная, смесь ледяной уксусной кислоты с уксусным ангидридом. Технические титановые сплавы, легированные алюминием (до 6%), марганцем (1...2%), оловом широко используются в химическом машиностроении, пищевой промышленности. [c.158]


    КОРРОЗИОННАЯ СТОЙКОСТЬ МЕТАЛЛОВ и СПЛАВОВ В СОЛЯНОЙ КИСЛОТЕ [c.34]

    Интересные результаты получены при исследовании вь действия на ситаллы различных агрессивных газов. Например, при изучении коррозионной стойкости разных материалов к соединениям хлора установлено следующее. Образцы 14 металлов и сплавов (хром, никель, сплав на основе никеля, сплав на основе титана, нержавеющая сталь, сплавы на основе меди и на основе ниобия) совершенно не выдерживали воздействия тетрахлорида титана. В то же время ряд технических ситаллов (К 4, 224-18 и др.) показали высокую коррозионную стойкость в сухом и влажном хлоре, в парах соляной кислоты, тетрах лоридов титана, кремния, углерода и циркония, а также в парах тетрахлори-дов тантала и ниобия. Испытания проводились при тевйхературах [c.129]

    Патент США, № 4089707, 1978 г. Описывается методика повышения коррозионной стойкости свинца и его сплавов, применяемых для покрытия металлов, характеризующаяся последовательной обработкой поверхности металла с покрытием соляной кислотой. [c.217]

    Ванадий, ниобий и тантал являются перспективными металлами для создания сплавов, работающих при температурах, более высоких, чем никелевые и кобальтовые жаропрочные сплавы. Высокая жаропрочность сплавов этих металлов сочетается с хорощими технологическими свойствами кроме того, они обладают высокой коррозионной стойкостью в ряде агрессивных сред. Ниобиевые и танта-ловые сплавы весьма стойки в морской воде, в азотной и соляной кислотах, в контакте с рядом жидких металлов. Некоторые сплавы ниобия и тантала отличаются особыми физическими свойствами высокой сверхпроводимостью и хорошей эмиссионной способностью [c.130]

    В настоящем сообщении приводятся результаты опытов по определению границ устойчивого пассивного состояния никель-молибденовых сплавов й некоторых других металлов, обладающих повышенной коррозионной стойкостью в растворах соляной кислоты. [c.52]

    Палладий в сравнении с платиной, родием и иридием обладает значительно меньшей стойкостью к химическому воздействию. Теоретическая коррозионная диаграмма палладия (рис. 4.5) показывает, что в-отсутствие сильных окислителей и комплексообразующих веществ металл должен быть устойчив в водных растворах с любыми pH. И действительно, на практике палладий не корродирует в хлорной воде (если ее температура невысока) и не тускнеет во влажном воздухе. При обычных температурах на палладий не действуют такие кислоты, как уксусная, щавелевая,, плавиковая и серная, однако сильные окислительные кислоты, например смесь соляной кислоты с азотной, быстро разрушают палладий. Разбавленная азотная кислота вызывает медленную коррозию, но в концентрированной кислоте металл корродирует быстро. Сплавы палладия с платиной в значительной степени сохраняют коррозионную стойкость платины. В обычных атмосферах палладий не тускнеет, но в промышленных атмосферах, содержащих двуокись серы, может наблюдаться некоторое потускнение, связанное с образованием сульфидной пленки. Щелочные растворы, даже при наличии в них окислителей, никакого влияния на палладий не оказывают Это может быть связано с образованием тонкой пассивной пленки окиси палладия РсЮ [более устойчивой, чем Р(1(0Н)2], препятствующей дальнейшей коррозии. [c.220]

    Представленные в табл. 5.1 данные показывают, что коррозионная стойкость металлов и сплавов, обычно применяемых в химическом аппаратостроении, резко понижается при наличии в растворе хлорида марганца даже небольших количеств соляной кислоты. [c.157]

    Все перечисленные сплавы системы Ре—N1 и Ре—N1—Со с небольшими добавками Си и Сг во влажной атмосфере обладают пониженной коррозионной стойкостью. Они также не стойки при температуре 20—25°С в азотной кислоте (всех концентраций), в соляной и сернистой кислотах. В 2—5%-ном растворе серной кислоты металлы корродируют со скоростью 0,15 мм/год, но с увеличением концентрации и температуры скорость коррозии возрастает. В 65%-ном растворе азотнокислого аммония скорость коррозии составляет <0,8 мм/год. [c.169]

    Повышение коррозионной стойкости металла с увеличением концентрации такого сильно агрессивного электролита,, как соляная кислота, вероятно, можно объяснить хемосорбционным взаимодействием компонентов пр с элементами сплава видимо, большое значение имеют находящиеся в пр ненасыщенные соединения. [c.96]

    На коррозионное поведение металлов оказывают влияние как внешние факторы (некоторые рассмотрены в 4), так и внутренние. Известный факт значительного уменьшения коррозии обычной стали при легировании ее никелем и хромом подчеркивает большое значение одного из внутренних факторов — химического состава сплава. Сплав железа с 18% хрома и 8% никеля носит название нержавеющей стали. Число марок нержавеющих сталей велико, что свидетельствует о большом различии их свойств, в том числе и коррозионных. Конечно, термин нержавеющая сталь может быть применен лишь для сред средней агрессивности, таких как разбавленные растворы кислот, естественные водные растворы и др. Вместе с тем существуют такие агрессивные среды, в которых и нержавеющие стали быстро разрушаются. Поэтому говорить о стойкости того или иного сплава, не учитывая среду, в которой определяется его коррозионное поведение, нельзя. Ведь даже такой коррозионно-стойкий в обычных условиях металл, как золото, оказывается нестойким в царской водке, смеси соляной и азотной кислот (3 1). [c.27]


    Цирконий. Этот металл и сплавы на его основе в настоящее время приобретают исключительно важное значение. Они обладают высокой коррозионной стойкостью во многих агрессивных средах при повышенных температурах и давлении, а также хорошими механическими свойствами. Применяются для изготовления оборудования в производстве соляной кислоты. [c.27]

    Значительные количества циркония потребляет и цветная металлургия. Здесь его действие весьма разнообразно. Незначительные добавки циркония повышают теплостойкость алюминиевых сплавов, а многокомпонентные магниевые сплавы с добавкой циркония становятся более коррозионноустойчивыми. Цирконий повышает стойкость титана к действию кислот. Коррозионная стойкость сп.чава титана с 14% 2г в 5%-ной соляной кислоте при 100° С в 70 раз ( ) больше, чем у технически чистого титана. Иначе влияет цирконий на молибден. Добавка 5% циркония удваивает твердость этого тугоплавкого, но довольно мягкого металла. [c.197]

    Определяли коррозионную стойкость чистых металлов — тантала и ниобия — и их сплавов в соляной кислоте при температурах 100, 165 и 200°С, время испытания — 200—250 часов. [c.240]

    В химическом машиностроении нашел применение монель-металл, который содержит приблизительно никеля, /з меди и железо в пределах 1,5—2,5%. Такой сплав имеет повышенную коррозионную стойкость во многих агрессивных средах по сравнению с чистыми компонентами (медь и никель), входящими в его состав. Монель-металл хорошо противостоит действию газовых сред его механические свойства мало снижаются при температурах до 500° С он не окисляется при температурах до 750° С. Монель-металл стоек в неокислительных минеральных кислотах (серной и соляной кислотах при невысоких концентрациях). Следует отметить стойкость монель-металла в чистой [c.257]

    В настоящей работе определяли коррозионную стойкость редких металлов и их сплавов в азотной, соляной, серной и уксусной кислотах при температурах до 250°С. [c.239]

    Нержавеющие стали подвержены точечной коррозии. Цирконий, титан и сплавы на их основе являются- наиболее корроэи-ониостойкимн материалами в этой среде, однако стойкость титана снижается при аэрирований раствора (прн концентрации р-ра 25% и температуре 100 С). Б аэрируемых растворах не рекомендуется также применять моиель-металл. В водных растворах соль подвергается гидролизу с об разованием соляной кислоты, поэтому углеродистые стали, латуин. алюминий подвергаются интенсивней общей и местной коррозии. В горячих концентрированных раст.ворах хромоникелевые стали под напряжением подвержен коррозионному растрескиванию. Никельхромовые сплавы при повышенных температурах ие. проявляют склонности к коррозионному растрескиванию. Возможна местная коррозия сталей и никелевых спла.вов. [c.809]

    Замечательным свойством благородных металлов являются их исключительно высокая стойкость к коррозии в многочисленных агрессивных жидких и газообразных средах, а также их устойчивость при высоких температурах в таких условиях, когда неблагородные металлы быстро окисляются. Сопротивление благородных металлов химическому и окислительному воздействию объясняется в основном присущей им термодинамической устойчивостью, хотя в водных средах, в окислительных или анодных условиях на поверхности этих металлов может возникать очень тонкая пленка адсорбированного кислорода или окисла, также способная давать вклад в коррозионную стойкость [1]. Исключением из этого правила является пассивация серебра и серебряных сплавов в соляной или бромистоводородной кислотах, когда на металле образуются сравнительно толстые галоидные пленки. [c.215]

    Моисеев П. С. Коррозионная стойкость сплавов тройной системы железо — -хром — молибден в соляной кислоте. Труды НИИХИММАШ. Вып. 17. Конструкционные шеметаллические материалы и коррозия металлов . М., Машгиз,, 1954. [c.349]

    Коррозионная (химическая) стойкость. Не все металлы и сплавы в одинаковой степени разрушаются агрессивными средами. Одни разрушаются быстрей, другие в тех же условиях оказываются практически устойчивыми в течение длительного времени. Однако нет металлов, совершенно не подвергающихся коррозии. Например, одним из наиболее устойчивых металлов является платина, но и она при погружении в смесь азотной и соляной кислот разрушается. Алюминий устойчив к воздействию крепкой [c.13]

    На коррозионную стойкость металлов в растворах уксусной кислоты большое влияние оказывает присутствие небольших примесей серной и соляной кислот. Стали типа Х18Н12М2Т, имеющие в растворах уксусной кислоты вплоть до температуры кипения высокую коррозионную стойкость, в присутствии этих примесей подвергаются разрушению [23]. В этих условиях необходимо применять более высоколегированные стали, например типа 0Х23Н28МЗДЗТ [8], а для горячих растворов — сплавы на основе никеля [12]. [c.471]

    На рис. 177 показано влияние температуры на скорость коррозии монель-металла типа 70/30 и никеля в 5%-ном растворе соляной кислоты. Сплавом из системы Си — N1, близким по коррозионной стойкости к монель-металлу типа 70—30, является сплав монель К, имеющий состав 66% N1 29% Си 0,9% Ре 2,75% А1 0,4% Мп 0,5% 51 0,15% С. Этот сплав замечателен тем, что подвергается упрочнению при старении. В подобном состоянии он имеет очень высокие механические свойства предел прочности 1000 Мн м при относительном удлинении 20%. Монель-К применяется для деталей, несущих значительную силовую нагрузку, например деталей центробежных насосов. [c.258]

    Титан и его сплавы имеют высокую прочность, хорошие технологические свойства и повышенную коррозионную стойкость. Темпы роста производства титана выше, чем других конструкционных металлов. Титан используют в химической, гидрометаллургической, пищевой про-мыленности, цветной металлургии и других отраслях [105 с. 25. 132—134]. Применение титана может быть экономически оправдано при использовании в природных коррозионных средах, особенно в морской воде (в подводных лодках глубокого погружения, опреснительных установках и т. д.). Коррозионная стойкость титана и его сплавов достаточно полно освещена в рабогах [39, 135—137]. Катоднолегированные сплавы на основе титана рассмотрены в гл. IV. Здесь кратко суммируются данные, связанные с природой коррозионной стойкости титана особенностями электрохимического и коррозионного поведения титана и его сплавов. Окислы на титане возникают при окислении на воздухе, анодном окислении, а также при самопассивации его не только в сильноокислительных, но и в нейтральных и слабокислых растворах. Пассивация титана в электролитах происходит только в присутствии воды, что указывает на участие в образовании защитных окисных слоев кислорода воды, а не молекулярного кислорода, растворенного в электролитах [39]. Особенностью титана является также его большое сродство к водороду. Гидрид на поверхности титана был обнаружен после коррозии его в растворах серной и соляной кислот, а также при растворении титана в плавиковой кислоте. [c.224]

    Высокая коррозионная стойкость циркония и сплавов на его основе в очень агрессивных средах, в частности в соляной кислоте, применимость различных видов механической обработки циркония— ковки, штамповки, развальцовки, сварки и др., сохранение благоприятных физико-механических свойств при повышенных температурах определяют широкое применение этого металла в качестве конструкционного материала и в химическом машиностроении. [c.288]

    В настоящее время молибден применяется главным образом в качестве легирующего компонента в сплавах. В случае нержавеющей стали типа 18-8, стойкость которой в разбавленной серной или соляной кислоте не может считаться достаточной, кислотостойкость стали значительно улучшается, если в нее ввести молибден (от 2 до 4%). Такие стали применяются в бумажной промышленности (в аппаратуре для процессов, в которых используется сернистая кислота), а также во многих отраслях химической промышленности. В то время как добавка молибдена улучшает коррозионную стойкость нержавеющей стали, присадка небольших количеств этого металла к обыкновенной малоуглеродистой стали приводит к ускорению ее коррозии в слабой [c.318]

    Во влажных хлорорганических жидкостях, гидролизующихся с образованием соляной кислоты, стойки некоторые высоконикелевые сплавы. Однако промышленный выпуск теплообменников из монель-металла и сплавов типа хастеллоев у нас еше недостаточен. Поэтому в существующем производстве тиоколов на участках, связанных с теплообменом, пока приходится применять аппараты из хромоникелевой или даже из нелегированной стали с утолщенными стенками, рассчитанными на интенсивный коррозионный износ. По стойкости в указанных средах углеродистая и хромоникелевая стали несколько различаются. Так, например, в азеотропной смеси этиленхлоргидрииа с водой, в соотношении 1 1, при 100° С сталь Ст. 3 корродирует равномерно со скоростью 49 мм/год. Легированная сталь Х18Н9Т в тех же условиях подвергается коррозии со скоростью - 25 мм/год, но при этом наряду с равномерной коррозией иногда наблюдаются точечная и язвенная коррозия. Как видно из приведенных цифр, скорость коррозии обоих металлов недопустимо высока, поэтому конденсационно-охлаждающая аппаратура, не говоря уже о кипятильниках и других обогревающих устройствах, быстро выходит из строя. [c.350]

    Весьма высокой коррозионной стойкостью в охлаждающей воде (как в пресной оборотной, так и в морской) отличается монель-металл. Его стойкость сохраняется и при больших скоростях движения охлаждающей воды [35]. Испытания в 3% растворе Na l (имитация морской охлаждающей воды) показали [3] значительно более высокую коррозионную стойкость монеля по сравнению с мельхиором, латунями и углеродистой сталью. В частности, коррозионная стойкость монеля примерно в 10 раз превышала стойкость латуней в этих средах. Однако в связи с высокой стоимостью и дефицитностью высоконикелевого сплава монель его применение оправдано в технико-экономическом отношении лишь в случае очень высокой агрессивности охлаждаемого продукта. В первую очередь это относится к головным фракциям атмосферных колонн установок прямой гонки, содержащих существенные количества соляной кислоты и сероводорода. [c.321]

    Большое значение для промышленности СК имеет применение титана. С помощью этого металла могут быть успешно решены острые коррозионные проблемы в производстве таких каучуков, как наириты, тиоколы, бутилкаучук, где встречаются хлороргани-ческие соединения, склонные к гидролизу с образованием соляной кислоты. С большим экономическим эффектом титан можно использовать и в тех цехах, где в перерабатываемых средах содержатся агрессивные хлористые соли, например хлористый аммоний или хлорное железо. Среди многочисленных сплавов титана особенно высокой коррозионной стойкостью в солянокислых средах [c.9]

    Наиболее устойчивы к коррозии те марки свинца, которые слабо подвержены рекристаллизации. Чем чище свинец, тем менее способен он к рекристаллизации зерна. Коррозионная стойкость свинца объясняется плохой растворимостью продуктов коррозии, образовавшихся на поверхности металла при воздействии агрессивной среды. Эти продукты коррозии в виде плотной пленки защищают металл от дальнейшего проникновения агрессивного раствора и надежно изолируют его от внешней среды. Свинец устойчив в растворах серной кислоты, но при высоких концентрациях, особенно в олеуме, разрушается. Растворы соляной кислоты также слабо действуют на свинец, однако концентрированная соляная кислота при температуре кипения быстро его разрушает. Аэрированная 10%-ная H l при нормальной температуре разрушает свинец со скоростью 0,6—2 мм/год, а при 1(Ю°С скорость коррозии превышает 4 мм1год. Характерно, что сплав свинца с сурьмой (гартблей) в этих условиях отличается более высокой коррозионной стойкостью. В 10%-ной НС1 скорость коррозии гартблея составляет 0,1 мм год, а при 100°С —только 0,2 мм год. [c.116]

    Из таблицы видно, что прн низкой температуре в растворах соляной кислоты все изученные металлы и сплавы, за исключением стали Х18Н12МЗТ, обладают высокой коррозионной стойкостью. Скорость коррозии Та, КЬ, Мо, Zr, Т1, сплавов НИМО-28, и НИХМО-20-10 в широкой области концентраций кислоты и во времени остается постоянной. При более высокой температуре скорости коррозии сплавов НИМО-28 и НИХМО значительно возрастают. Так, например, при 80° С в 15%-ном растворе НС1 эти сплавы растворяются со скоростями, превышающими [c.53]

    Изучение коррозионной стойкости и электрохимических свойств ниобия, тантала и сплавов ниобий—тантал проводили в 20 и 36%-ных растворах соляной кислоты при 100° С. Данные коррозионных испытаний показывают, что в 20%-ном растворе кислоты совершенно устойчивы сплавы, содержащие не менее 5 вес. % тантала (см. рис. 2, кривая 3), тогда как в более концентрированной кислоте (36 %-ной) резкое улучшение коррозионной стойкости наблюдается только при наличии в сплаве 30 вес. % тантала. Скорость коррозии этого сплава равняется 0,07 г/м час (см. рис. 2, кривая 4). Таким образом, при снижении содержания тантала в сплаве ниобий—тантал ниже указанного количества наблюдается заметное увеличение скорости коррозии в растворах соляной кислоты. Потенциостатические поляризационные кривые, представленные на рис. 5, показывают, что ток коррозии сплавов уменьшается по мере увеличения в последних содержания тантала. Анодные поляризационные кривые для сплавов ниобий—тантал занимают промежуточное положение между ниобием и танталом. При этом плотность тока на тантале в пассивном состоянии как в 20%-ной, так и в 36%-пой кислоте не превышает 10 мка/см . Эта величина плотности тока характеризует тантал как металл, имеющий высокую химическую стойкость в соляной кислоте. У ниобия ток коррозии в пассивном состоянии в 20%-ной кислоте равняется 100 мкаЬм (см. рис. 5 кривая 1), что в пересчете на скорость коррозии будет соответствовать 0,6 г/м час. В 36%-пом растворе кислоты происходит резкое увеличение плотности тока коррозии ниобия, которая достигает значения, равного 1 ма/см . [c.186]

    По коррозионной стойкости в ряде практически важных сред титан превосходит такие широко используемые в промышленности металлы и сплавы, как нержавеющие стали, алюминий и его сплавы. Титан устойчив в окислительных средах даже в присутствии больших количеств хлор-ионов, но корродирует в растворах восстановительных кислот, таких как серная, соляная. Однако его коррозионная стойкость в этих средах может быть повышена добавлением в раствор небольших количеств окислителей (например, азотной кислоты, хлора, ионов Т - -, Ре -<-, Си2->- и других) или окислительных (анодных) ингибиторов. Титан имеет высокую коррозионную стойкость в различных атмосферах (морской, промышленной, сельской). Данные семилетних испытаний показали, что скорость коррозии не превышала 0,0001 мм1год. В морской воде как на поверхности, так и на больших глубинах (данные 3-летних испытаний) титан не подвергается коррозии. Длительные испытания (4—8 лет) титана в разнообразных почвах показали отсутствие коррозионных потерь. Титан отличается высокой стойкостью в большинстве органических сред. Исключение составляют муравьиная, щавелевая, винная, лимонная, смесь ледяной уксусной кислоты с уксусным ангидридом, в которых титан корродирует с большой скоростью. [c.226]

    Для проверки влияния истирающего действия шлама, наличия сероводорода и других производственных факторов мы провели длительные коррозионные испытания упомянутых выше металлов, а также стали ЭИ496. Последняя обладает высокой коррозионной стойкостью в соляной кислоте всех концентраций и при всех температурах [4]. Как видно из данных табл. 1, титан BTI-1 корродирует в реакторах с небольшой скоростью, а изменение pH раствора в реакторах не влияет заметно на скорость коррозии. Образцы после испытаний были покрыты плотной черной пленкой, с трудом снимаемой механическим путем. Характер разрушения титана равномерный. Совершенно не корродирует в приведенных условиях сплав титана с молибденом, Скорость коррозии стали ЭИ496 значительно больше, чем титана и его сплавов, и достигает 0,2—0,7 г/л ч при язвенном характере разрушения. По-видимому, восстановительная среда и истирающее действие шлама отрицательно влияют на стойкость стали ЭИ496. [c.68]

    Данные табл. 2.24 могут служить основой для выбора никелевого сплава, наиболее подходящего для эксплуатации в той или иной конкретной кислоте. Сплавы N1—Сг— Ре—Мо—Си и N1—Сг—Ре—Мо, как деформируемые, так и литые, наиболее часто используются в серной кислоте. Их дополнительное преимущество состоит в том, что на коррозионной стойкости существенно не сказывается присутствие двуокиси серы. В контакте с серной кислотой часто применяют также литейные сплавы N —81, содержащие не менее 9% 51, в которые рекомендуется вводить легирующие добавки меди, титана и молибдена [67, 68]. Большинство никелевых сплавов обладает хорошей стойкостью к чистой фосфорной кислоте, но присутствие примесных ионов галогенов понижает стойкость в более высоких концентраций этой кислоты. Сплав N1—35Сг характеризуется хорошей стойкостью к азотной кислоте и является одним из немногих металлов, способных противостоять смеси азотной и плавиковой кислот. В то же время стойкостью к смеси азотной и соляной кислот этот сплав не обладает. Сплав N1—28 Мо входит в число наиболее подходящих металлических материалов для использования в контакте с соляной кислотой, особенно в отсутствие воздуха и других окислителей, а в окислительных условиях лучше применять сплавы N4—Сг—Мо. Сам никель и его сплав N1— ЗОСи обладают хорошей стойкостью к плавиковой кислоте на практике в контакте с безводной плавиковой кислотой и ее водными растворами обычно используют N1— [c.151]

    Хастеллой — сплав, содержащий в качестве основных компонентов никель, молибден и железо и отличающийся хорошими механическими свойствами, высокой коррозионной (ТОЙКОСТЬЮ в соляной кислоте и в сухом хлористом водороде. Хастеллой В содержит много никеля и отличается повышенной стойкостью в окислительных средах при температурах до 800° С. Хастеллой С стоек в окислительных и галогенных средах, в которых большинство металлов и сплавов разрушается. Хастеллой С применяют во влажном хлористом водороде до 60° С, в растворе хлорного железа РеС1з, а также в ряде окислительных сред при температуре до 1000° С. [c.113]

    Поскольку стойкость в кислотах может быть достигнута легированием металлами, способность которых к образованию основных окислов выражена слабо, то должно оказаться полезным использование в качестве легирующих компонентов неметаллических элементов. Применение в этом отношении нашел главным образом кремний. Выше указывалось (стр. 292), что повышение стойкости чугуна в кислотах при длительных испытаниях обусловлено постепенным образованием на его поверхности пленки кремнезема, почти нерастворимой в кислотах. При введении в сплав больших количеств кремния он становится стойким уже с самого начала соприкосновения с кислотой. Д51Я обеспечения стойкости в серной кислоте в чугун необходимо ввести примерно 14% кремния, а в случае соляной кислоты — около 17%. К сожалению, механические свойства высококремнистых чугунов настолько же плохи, насколько коррозионная стойкость хороша. Их хрупкость сильно возрастает, если содержание кремния увеличивается с 14 до 17%. Эти сплавы могут отливаться, но не прокатываться отливки же очень хрупки. Однако с приобретением опыта по конструированию изделий и в области технологии получения отливок из кремнистого чугуна научились бороться с такими порами и раковинами в литье, которые могут отразиться на эксплуатационных свойствах и сроке службы изделия. В настоящее время насосы для перекачивания кислот, запорные приспособления и другие изделия из кремнистого чугуна нашли широкое применение. Риск поломки таких изделий до некоторой степени снижается, если их подвергнуть отжигу с целью снятия Внутренних напряжений. Чугун с 14—16% кремния прочно обосновался на сернокислотных заводах. Чтобы повысить коррозионную стойкость чугуна и сделать его пригодным для аппаратуры, соприкасающейся с горячей соляной кислотой, нередко, вместо повышения содержания кремния, в чугун вводят 3—4% молибдена. Таким образом избегают крайней хрупкости, которой обладает чугун с 17% кремния. [c.319]


Смотреть страницы где упоминается термин Коррозионная стойкость металлов и сплавов в соляной кислоте: [c.116]    [c.257]    [c.18]    [c.627]    [c.397]    [c.485]    [c.75]   
Смотреть главы в:

Коррозионная стойкость материалов в хлоре и его соединениях -> Коррозионная стойкость металлов и сплавов в соляной кислоте




ПОИСК





Смотрите так же термины и статьи:

Кислота соляная

Кислоты Ба металлы

Кислоты металлы и сплавы

Коррозионная стойкость

Металлы коррозионное металлов

Металлы сплавы

Соляная кислота кислоты

Сплавы и металлы металлов



© 2025 chem21.info Реклама на сайте