Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование и растворение сульфидов металлов

    При растворении следует стремиться к тому, чтобы вещество растворилось полностью, независимо от того, полный или неполный анализ требуется провести. Многие неорганические соли и некоторые органические соединения хорошо растворяются в воде, подкисленной минеральными кислотами, чтобы предотвратить гидролиз (соли железа, висмута и др.). Органические соединения хорошо растворяются в органических растворителях - спирте, ацетоне, хлороформе и др. Большинство металлов и сплавов, а также оксидов, карбонатов, сульфидов и др. растворяется в разбавленных или концентрированных кислотах. Выбор кислот осуществляется на основании химических свойств растворяемых веществ. Так, сплавы и оксиды железа лучше растворять в хлороводородной (соляной) кислоте вследствие склонности Ре " к образованию хлоридных комплексов хром и алюминий не растворяются в азотной кислоте из-за образования на поверхности пассивирующей оксидной пленки и т.д. [c.49]


    Взаимодействие осадков сульфидов олова, мышьяка и сурьмы с сульфидами щелочных металлов или аммония приводит к их растворению благодаря образованию тиосолей, что используется в аналитической химии для отделения катионов этих элементов от других. Тиокислоты значительно менее устойчивы, чем их соли, поэтому при подкислении раствора тиосолей образуются не сами кислоты, а продук- [c.69]

    Наоборот, на растворимость осадков, являющихся солями слабых кислот, кислотность раствора оказывает очень существенное влияние Так, ионы jO "" могут взаимодействовать с ионами кальция, образуя осадок щавелевокислого кальция. HoBbi O " могут реагировать такл е с ионами Н , образуя молекулы слабой щавелевой кислоты. Образование или растворение щавелевокислого кальция, степень осаждения кальция и другие характеристики равновесия зависят от концентраций реагирующих веществ, а также от величин константы диссоциации кислоты и произведения растворимости осадка. Величины произведений растворимости углекислого бария и щавелевокислого бария почти одинаковы. Однако угольная кислота слабее щавелевой, т. е. анион СО при прочих равных условиях связывается с ионами водорода сильнее, чем анион С О . Поэтому ВаСО, легко растворяется в уксусной кислоте, а растворимость ВаС О при тех же условиях почти не изменяется. Если два осадка являются солями одной и той же кислоты, например сульфидами, то при прочих равных условиях растворимость в кислотах зависит от величины произведения растворимости. Известно, что путем изменения концентрации ионов водорода достигаются многочисленные разделения катионов в виде сульфидов, фосфатов и других соединений металлов с анионами слабых неорганических и органических кислот. Таким образом, значение кислотности раствора для осаждения и разделения металлов очень велико. [c.39]

    Образование и растворение сульфидов металлов [c.136]

    Выполнение работы. В пробирку с раствором хлорида сурьмы (1—2 капли) добавить 5—8 капель сероводородной воды. Отметить цвет образовавшегося осадка сульфида сурьмы. (Эуа реакция может служить качественной реакцией обнаружения иона Sb в отсутствие ионов висмута и других металлов, дающих труднорастворимые сульфиды в кислой среде.) Дать осадку отстояться н, удалив пипеткой или кусочком фильтровальной бумаги избыток жидкости, добавить к нему 4—5 капель сульфида аммония нли натрия. Перемешать содержимое пробирки стеклянной палочкой и наблюдать растворение осадка, протекающее с образованием соли тиосурьмянистой кислоты (NH4)gSbS3, К полученному раствору прибавить, 5—6 капель 2 п. раствора хлороводородной кислоты, слегка нагреть смесь и отметить снова выпадение осадка сульфида сурьмы (П1). Что происходит с тиосолью в кислой среде  [c.160]


    Большое значение при соосаждении электролитов имеют структура и старение осадков коллоидальных гидроокисей и сульфидов металлов. Например, свежеосажденные гидроокиси трех- и четырехвалентных металлов вначале состоят из частиц аморфной структуры. При стоянии осадков внутри аморфных частиц образуются кристаллические участки и частицы постепенно распадаются на более мелкие кристаллические частицы. Образующиеся отдельные кристаллы растут и объединяются в агрегаты или сростки в виде цепочек или сетчатых структур. Гидроокиси, основные соли и сульфиды двухвалентных металлов обнаруживают с самого начала кристаллическое строение. Они имеют слоистые решетки и проявляют склонность к образованию твердых растворов. При старении осадков их поглотительная способность уменьшается. Соосаждение состоит в поглощении растворенных веществ из раствора в процессе образования осадка. В противоположность этому, при адсорбции электролиты поглощаются уже готовым твердым сорбентом. [c.80]

    Влияние сернистых соединений в нефти. Вероятно, главной причиной коррозии в нефтяной промышленности является присутствие серы почти во всех сортах нефти (в количестве от немногих сотых процента до 4%). Сера может присутствовать в виде свободной серы, сероводорода, меркаптанов алкилсульфидов, тиофенов, тиофанов или двусернистого углерода, из которых первые три являются источником прямога действия серы на многие металлы. Вуд, Шили и Труасти показали, например, что хотя чистая сухая сырая нефть (нафта) не оказывает никакого действия на обычные металлы, раствор серы или сероводорода в сырой нефти действует на медь или серебро с образованием сульфида металла, и что раствор меркаптана в сырой нефти действует на те же металлы, образуя меркаптиды (металлические производные меркаптанов, которые разлагаются при 100°, давая сульфиды). Большинство других металлов (цинк, железо алюминий и т. д.) почти не подвергается действию сернистых соединений, растворенных в сырой нефти в отсутствии воды. Раствор сероводорода в сухой или сырой нефти дает на железе черную сульфидную пленку. Вуд и его сотрудники нашли, что многие металлы, на которые не действовала сухая сырая нефть, содержащая сероводород или меркаптан, подвергались сильному воздействию той же сырой нефти, если в ней присутствовала вода. Не подлежит сомнению, что в некоторых случаях вода просто растворяет серосодержащее вещество и за счет этого коррозионная активность воды увеличивается. Хром, который не корродирует <в воде и не подвергается действию раствора серо водорода в сухой или сырой нефти, испытывает сильную коррозию в присутствии обоих. После изучения различных форм серы Вуд нашел, что  [c.504]

    Кроме того, сульфиды V группы обладают ярко выраженным кислотным характером и легко растворимы в сульфидах щелочных металлов и в едких щелочах с образованием так называемых тиосолей или сульфосолей. Например, при растворении сульфида олова в растворе сернистого натрия образуется тиостаннат натрия  [c.250]

    Кроме явлений, влияющих на смачивание руды раствором, газы могут оказывать химическое воздействие при растворении самородных металлов и сульфидов, в особенности кислород. Прежде чем проникнуть к месту реакции, кислород должен перейти из газовой в жидкую фазу, т. е. раствориться в растворе для выщелачивания скорость и полнота этого перехода зависят от парциального давления газа. При действии кислорода на поверхность металлов и сульфидов имеют место физическая и активированная адсорбция газа с образованием кислородной пленки и дальнейшим окислением поверхности с образованием пленки окислов. В случае отсутствия образования таких пленок (например, золото) растворенный кислород служит как бы для поглощения электронов, освобождающихся при растворении металла происходит образование ионов гидроксила  [c.248]

    Объяснение на основании опытных данных условий образования и растворения осадков сульфидов металлов. [c.104]

    Двойной электрический слой, образованный за счет адсорбции молекул или ионов, может возникнуть не только на поверхности металла. На любой твердой поверхности в жидкости происходит в большей или меньшей степени адсорбция либо растворенного вещества, либо молекул растворителя. Если адсорбируются ионы или полярные молекулы, то это должно привести к образованию двойного слоя, целиком расположенного в жидкой фазе. Подобные двойные слои обнаружены на стекле, фарфоре, кварце, глине, многих окислах и сульфидах металлов и т. д. Схема изменения потенциала в таком двойном слое показана на рис. 84. [c.382]

    При изучении растворения золота и серебра в тиосульфатных растворах было замечено образование слоя сульфида серебра на поверхности металлического серебра, а при наличии в тиосульфатном растворе соединений меди — слоя сульфида меди на поверхности золота. Образовавшийся сульфидный слой изолирует металлы от раствора, и кинетически определяющим этапом реакции растворения становится диффузия растворителя сквозь этот слой. Толщина слоя изменяется во времени и определяет изменение скорости растворения металла. [c.87]


    Некоторые сульфиды в воде в результате гидролиза полностью разлагаются с образованием гидроокиси соответствующего металла и слабой сероводородной кислоты. Аналогичное явление может происходить и при растворении некоторых карбонатов в горячей воде. [c.11]

    При прокаливании смеои -серы с 22,4 г н-еизвестного металла без доступа воздуха протекает реакция -с -образованием -сульфида металла (II). Пр-и растворен-ии продуктов реакций в избытке -соляной кислоты выделяется газ А и остается 6,4 г нерастворимого вещества, при -сжигани-и которого в -избытке юисл-орода п-олуча-ется газ Б. Количественное взаимодействие газа А с газом Б приводит к образованию [c.33]

    При электролитическом растворении серебра в воде большое влияние на течение процесса оказывают примеси воды, образующие на поверхности электродов плотные, малорастворимые пленки, или изменяющие электрохимические реакции, которые протекают на электродах. Например, наличие в воде хлоридов приводит к образованию пленки хлорида серебра, затрудняющей растворение металла и, следовательно, понижающей выход серебра по току. При концентрации ионов хлора до 60 мг/л выход серебра по току снижается до 60—65%. Аналогично хлоридам влияют сульфиды, фосфаты и карбонаты. [c.332]

    ТЫ анодов возрастает с +0,2 в до 1 —1,1 в. При этом анолит становится более кислым, чем исходный раствор, подаваемый на электролиз (рис. 144). Это обусловлено тем, что анодный выход по току, взятый из расчета на сумму металлов, оказывается ниже, чем выход по току никеля на катоде. Вместе с тем на аноде не наблюдаетая выделения свободного кислорода. Из этого следует, что на аноде при значительном электроположительном потенциале возможны не только реакции растворения сульфидов с образованием катионов, но и реакции окисления серы. [c.308]

    В зонах сероводородного заражения (а Н28 может находиться в них в виде раствора и газа) происходит реакция взаимодействия Н25 с растворенными солями и металлами. Ее результатом является образование труднорастворимых сульфидов. Так формируются сероводородные барьеры. Глобальное распространение и генетическое разнообразие таких барьеров в биосфере позволяет объединять сероводородные барьеры по отношению к породам (осадкам), в которых они образуются и где происходит отложение сульфидов. При таком подходе в биосфере можно вьщелить осадочно-диагенети-ческие сероводородные и эпигенетические барьеры. Кроме них можно говорить о магматическом барьере, выходящем за пределы биосферы. Такое подразделение имеет и определенный геохимический смысл есть некоторые различия в изотопном составе серы сульфидов, образующихся на этих барьерах. [c.42]

    В. Г. Барикова, Л. А. Янковской обсуждался, в частности, случай анодного полярографирования сульфидов металлов (Си, РЬ, Ре) [4, с. 87 и 90]. Ход полярограмм (рис. 2) аналогичен получающе- <р в1н.в.э.) муся при анодном растворении металлов (см. рис. 1). Однако появление максимума в случае растворения минералов следует связывать не с практически полным растворением вещества с поверхности электрода, а с блокированием ее трудно растворимыми в данном электролите соединениями, образующимися за счет электродной реакции (например выделение элементарной серы при окислении сульфидов) или за счет взаимодействия иона металла с анио>ном фона ( апример образование сульфата свинца, труднорастворимых гидроокислов и т. п.). Тем не менее высота пика пропорциональна количеству вещества в пасте электрода и зависит От состава фона. Иначе говоря, постоянная К в уравнении 1хаах = КС определяется в основном растворимостью образующегося на электроде осадка. По наклону прямых в координатах ток в максимуме — количество вещества в пасте можно судить не только о количестве вещества в пасте, но и делать предварительные заключения об относительной растворимости соответствующих осадков, образующихся при работе пастового электрода на различных фонах. [c.57]

    Если мы действуем на сульфиды металлов III и IV групп одной и той же кислотой, беря ее в одинаковой концентрации, то, поскольку и продуктом реакции должно всегда являться одно и то же малодиссоциированное соединение (именно H2S), различное поведение указанных сульфидов можно объяснить только различиями в величинах их произведений растворимости. А так как произведения растворимости у сульфидов IV группы, как мы видели выше ( 37), гораздо меньше, чем у сульфидов III группы, следует ожидать, что первые должны гораздо труднее последних растворяться в кислотах. И действительно, в то время как сульфиды III группы легко растворяются в разбавленных кислотах, например НС1 и H2SO4, сульфиды IV группы в них практически нерастворимы. Сульфиды IV группы, очевидно, посылают в раствор так мало ионов S , что равновесие здесь устанавливается уже при образовании весьма малых количеств H2S, т. е. при растворении ничтожно малого количества сульфида. Наоборот, в случае сульфидов III группы, произведения растворимости которых несравненно больше, процесс образования H2S заходит гораздо дальше, так что при достаточном количестве кислоты [c.141]

    Для исследования был взят состав, лежащий в системе СаО—А12О3— 8102 и близкий к такому, который получается при растворении в основном доменном шлаке песка. Указанный состав не содержал тяжелых металлов и поэтому можно было ожидать образования только сульфидов легких металлов Са и Na. Сульфат вводился в шихту в количестве 5%, а кокс в различных количествах (от стехиометрического, согласно реакции Ка2804-Ь2С N8284-2002, до превышающего его в 5 раз). Стекла варились в керосиновой печи в /а кг тиглях при 1450°. [c.130]

    Для очистки вод от ионов тяжелых металлов применяют способ, основанный на способности специфической группы микроорганизмов сульфатреду-цирующих бактерий использовать в процессе дыхания кислород сульфатов в качестве акцептора водорода, восстанавливая их при этом до сероводорода. Сероводород, являясь сильным восстановителем, реагирует с растворенными ионами металлов с образованием нерастворимых сульфидов, выпадающих в осадок. [c.595]

    При водородном растрескивании металла трещины могут инициироваться неметаллическими включениями, в частности, вытянутыми сульфидами марганца и распространяться вдоль текстуры (по оси трубы). О таком механизме разрушения трубы ЛГ говорится в работе Г <о У. В частности, авторы указывают, что зарождение поверхностных дефектов явилось следствием взаимодействия водной среды с неметаллическими включениями сульфидов марганца на наружной поверхности трубопровода, что привело к образованию специфической коррозионной среды около сульфидных выделений, а также по устойчивому щелевогду эффекту в местах вытравления сульфидов. На следующей стадии произошло объединение поверхностного дефекта с близко расположенными дефектами, возникающими на строчечных выделениях по текстуре металла. А развитие образовавшегося поверхностного дефекта в глубь металла стенки трубы определялось растворением в металле электролитического водорода на меяфазной поверхности. [c.3]

    Обычно же отравление катализатора непреднамеренное общим недостатком катализаторов гидрогенизации является то, что они становятся менее активными даже при хранении боз использования. Ухудшение свойств катализатора нри использовании ого может быть обусловлено образованием сульфидов, закупоркой пор катализатора углеродистыми отложениями и множеством других причин. Как правило, группы У-в (Н, Р, Аз, ЗЬ, В1) и У1-в (О, 3, Зе, Те) являются ядами гидрогепизирую-щих метал/ ов группы VIII (Ее, N1, Со и металлы платиновой группы) [106]. Вообще считают, что отравление катализатора есть результат адсорбционной блокировки активных центров его, имеются, однако, и другие объяснения отравления. Одна из новейших теорий утверждает, что гидрогенизационные катализаторы действуют благодаря промотиро-ванию растворенным водородом [7, 8, 46, 154], а яды (депромоторы) являются особенно жадными акцепторами водорода. [c.268]

    Применение. Наибольшее значение из элементов подгруппы VI1Б имеет марганец. В больших количествах его применяют в качестве добавки к стали, улучшающей ее свойства. Поскольку марганец обладает большим сродством к сере, чем железо (для MnS AGf = — 218. кДж/моль, а для FeS AGf = —101 кДж/моль), при Добавке ферромарганца к расплавленной стали растворенная в ней сера связывается в сульфид MnS, который не растворяется в металле и уходит в шлак. Тем самым предотвращается образование при затвердевании стали прослоек между кристаллами из сульфида железа, которые значительно понижают прочность стали, делают ее ломкой, особенно при повышенных температурах. Непрореагировавший с серой марганец остается в стали, что еще более улучшает ее свойства. Кроме серы, марганец связывает растворенный в стали кислород, присутствие которого также нежелательно. [c.550]

    Концентрация водородных ионов имеет очень большое значение в аз-личных областях химии, технологии, почвоведения, геологии, биохимии, медицины и других науках. Образование и растворение большей части осадков, как, например, сульфидов, карбонатов, фосфатов, зависит от концентрации водородных ионов. Многие процессы окисления и восстаюв-ления как неорганических, так и органических веш,еств (в частности, биохимические процессы) нередко совершенно меняют свое направление при изменении концентрации водородных ионов. Коррозия металлов и обрс зо-вание заш,итных пленок также сильно зависят от кислотности или ще юч-ности растворов. В производстве соды и других минеральных солей, при флотационном обогащении руд, в пищевой промышленности, при дублелии кожи, крашении тканей и во многих других отраслях промышленнос ти, для правильной научной постановки технологического процесса, требуется учитывать влияние концентрации водородных ионов и уметь ее опр( де-лять. Концентрация водородных ионов оказывает существенное влияние на условия образования и устранения накипи в паровых котлах и т. д. [c.291]

    Применение. Наибольшее значение иэ элементов подгруппы VllE имеет марганец. Его применяют в качестве добавки к стали, улучшающей ес свойства. Поскольку марганец обладает большим сродством к сере, чем железо (ЛС/ для MnS и FeS соответственно равно -21в и -101 кДж/моль), то при введении ферромарганца а расплавленную сталь растворенная в ней сера связывается сулы )ид MnS, который не растворяется я металле н уходит а шлвк. Тем самым предотвращается образование при затвердевании стали прослоек между кристАмами нз сульфиде железа, которые значительно понижают прочность стали и делают ее ломкой, особенж> при повышенных температурах. Непрореагнровавший с серой марганец остался а стали, что еще более улучшает ее свойства. Кроме серы, марганец связывает растворенный в стали кислород, присутствие которого также нежелательно. [c.526]

    Однако принцип Бертло — Томссна противоречит термодинамике и самому факту существования химического равновесия. Как было показано выше, в зависимости от соотношения между концентрациями, реагирующих веществ реакция может самопроизвольно протекать как в прямом, так и в обратном направлениях. При этом в одном случае она будет сопровождаться выделением тепла, а в другом — его поглощением. Экзотермические реакции, например, образования сульфидов переходных металлов, при относительно низких температурах идут практически до конца, а при высоких температурах происходит диссоциация этих соединений. Принципу Бертло — Томсена такн е противоречит существование самопроизвольных процессов, сопровождающихся поглощением тепла, например, растворение многих солей в воде. Следовательно, величина изменения АН реакции не может служить мерой химического сродства. Такой мерой является величина ДО, определяемая уравнением AG = AH—T S, где ДЯ и AS — изменения энтальпии и энтропии реакции. [c.69]

    Другим объяснением исследуемого разрушения является концепция водородного охрупчивания металла, предполагающая, что растрескивание возникает в результате наводороживания стали. При этом источником водорода может быть сероводород, содержащийся в транспортируемом продукте или продуцируемый суль-фатвосстаиавливающими бактериями в грунте [62, 224] углекислый газ, содержащийся в транспортируемом продукте токи катодной защиты при потенциалах выше регламентированных значений. Однако при КР, как отмечалось выше (см. раздел 1), отсутствуют характерные внешние проявления водородного растрескивания, такие как блистеринг и расслоение металла. Нанодороживание металла вследствие образования сероводорода при растворении неметаллических включений сульфида марганца в [c.89]

    Яды специфичны для различных катализаторов, как и для различных реакций, в которых катализаторы принимают участие. Например, водород действует как яд при образовании воды на сплавах благородных металлов и железа, а кислород отравляет синтез воды на сплавах из благородных металлов и никеля [238] Вода при высокой концентрации отравляет сжигание окиси >тлерода иа различных катализаторах [56]. Соединения мышьяка являются сильными ядами для катализаторов, применяемых в контактном процессе получения серного ангидрида. Мышьяковистый ангидрид — сильный яд для каталитической гидрогенизации с платиной вследствие восстановления его в арсин. Тот же самый яд оказывает относительно слабое действие на активность платины при разложении перекиси водорода. Таким образом, некоторые вещества могут действовать как яды для определенных каталитических реакций, в других случаях совсем не действуя они могут даже действовать как промоторы в некоторых каталитических реакциях. Висмут, сильный яд для железа при каталитической гидрогенизации, является одним из наиболее активных промоторов для же леза при каталитическом окислении аммиака в окись азота. Подобным образом фосфат кальция является промотором для никеля в каталитической гидрогенизации, между тем как фссфор или фосфин сильные яды. Никель, отравленный тиофеном, не гидрогенизирует ароматический цикл, в то время как его способность гидрогенизировать олефины не нарушается [130, 161]. Сера или сульфиды, которые обычно действуют как яды, при каталитическом восстановлении бензоилхлорида и гидрогенизации смол могзт действовать как катализаторы [184]. Сероуглерод действует как ускоритель в процессе растворения кадмия в соляной кислоте [226]. Есть случаи, когда вещество, взятое в маленьких количествах, остается неактивным, но при применении в большом количестве действует как яд. Например, в реакции нафталина с японской кислой землей хлороформ неактивен в малом количестве и не оказывает никакого отравляющего действия, но взятый в большом количестве вызывает уменьшение количества смолы, образующейся с нафталином под влиянием земли. Хлористоводородная кислота, образующаяся из хлороформа, взятого в больших количествах, уменьшает каталитическую активность [134]. [c.392]

    Хотя никель корродирует в активной области с образованием ионов N 2+, эта реакция требует гораздо более высокого активационного перенапряжения, чем анодное растворение таких обратимых металлов, как Си и 2п. Однако для никеля перенапряжение значительно уменьшается, когда в растворе присутствуют ионы сульфидов. Это явление учитывается при производстве электролитических никелевых анодов, используемых для гальванического никелирования. Аноды получают в никелевой ванне, содержащей органическое сернистое соединение, из которого определенное количество серы (0,02%) выпадает в осадок. Такие аноды разрушаются довольно равномерно по сравнению с анодами, не содержащими серы, и при более отрицательном коррозионном потенциале. Аналогичным образом происходит осаждение блестящего гальванического покрытия в ванне с органическими сернистыми соединениями, которые используются как выравниватели и блескообразова-тели. Осадки, содержащие серу, являются более активными электрохимически и поэтому имеют при той же плотности тока более отрицательный потенциал, чем матовый осадок никеля, получаемый в простой ванне Ватта. Это явление используется для защиты стали двухслойным никелевым покрытием. [c.40]

    Антикоррозионные присадки предохраняют от коррозии узлы и детали машин и механизмов, выполненные преим, из цветных металлов, особенно при повыш. т-рах. Ингибиторы коррозии представляют собой в осн. полярные ПАВ. Механизм их действия заключается в образовании иа разл. пов-стях защитных комплексов с каталитически активными соед. металлов, накапливающихся в объеме смазочного материала в результате хим. растворения, либо стабильных оксидных, гидроксидных и др. пленок, устойчивых к воздействию агрессивных сред. В качестве ингнбнтороп кислотной коррозии используют бензотриазол, осерненные минер, масла, сульфиды алкилфеиолов, производные тиофенолов, три- [c.90]

    Для теллура и особенно для селена характерна способность, подобно сере, к обратимым реакциям присоединения. К числу таких реакций относится растворение в растворах сульфидов и полисульфидов щелочных металлов с образованием полихалькогенидных соединений. При действии на селен раствора сульфита при нагревании образуется селеносульфат — соединение типа тиосульфата  [c.96]

    Геохимические свойства меди таковы, что в биосфере она в растворенном виде попадает в природные воды и в благоприятных условиях осаждается и находится в некоторых осадочных породах в повышенной концентрации, а также образует значительные месторождения. В осадочных породах медь может сосредоточиваться в процессе их образования в восстановительны условиях, когда в водоемах находится в растворимом виде сероводород, благоприятствующий осаждению сульфидов меди МеДь отмечается в песчаных породах, где ее соединения могут играть роль цемента в песчаниках. При седиментации медь осаждается преимущественно в черных глинах и сланцах, богатых органическим веществом. В осадочных породах совместис с другими халькофильными металлами медь образует довольнс распространенные стратиформные свинцово-цинковые месторождения. [c.208]

    Недавно опубликованы [124] данные о водородопроницаемых катализаторах в виде трубок с тонкопористыми стенками, изготовленных спеканием порошков никеля и молибдена с размером частиц порядка 1 мкм. Внутренняя поверхность трубки была обработана сероводородом при температуре 673 К до образования сульфидов указанных металлов. В трубку подавали гидрируемую жидкость или эмульсию угля, а водород поступал из кожуха реактора через поры стенок трубки. На этом катализаторе фенантрен и бензтиофен, растворенные в фенилциклогек-сане, на 16,5% превратились в бензол при 673 К и давлении 48- 10 Па. Степень использования поданного водорода на реакции гидрирования и гидрокрекинга составляла от 0,49 до 0,98. При поступлении водорода через пористые стенки не наблюдалось стложения углистых продуктов на катализаторе, что немедленно происходило в случае прекращения подачи водорода и проникновения жидкости в поры трубки. [c.127]


Смотреть страницы где упоминается термин Образование и растворение сульфидов металлов: [c.344]    [c.546]    [c.357]    [c.205]    [c.22]    [c.422]    [c.201]    [c.84]    [c.12]    [c.264]    [c.269]    [c.355]    [c.207]    [c.365]   
Смотреть главы в:

Практические работы по неорганической химии и качественному анализу с применением полумикрометода -> Образование и растворение сульфидов металлов




ПОИСК





Смотрите так же термины и статьи:

Металлы растворение

Образование металлов

Сульфиды, растворение



© 2025 chem21.info Реклама на сайте