Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства, используемые в физико-химическом анализе

    Для экспериментального исследования строения молекулы помимо химических методов используют физические, при проведении которых не теряется химическая индивидуальность вещества. К физическим инструментальным методам относят эмиссионную спектроскопию, рентгенографию, электронографию, нейтронографию, магнитную спектроскопию [электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР)], мольную рефракцию, парахор и магнитную восприимчивость. Последние три экспериментально более простых метода основаны на установлении физических свойств — характеристик вещества, обладающих аддитивностью, т. е. подчиняющихся правилу сложения. Мольная рефракция и парахор равны сумме аналогичных величин для атомов или ионов, из которых составлена молекула (аддитивное свойство), и поправок (инкрементов) на кратные связи, циклы н места положения отдельных атомов и групп, характеризующих структурные особенности молекулы (конститутивное свойство). Многие физические методы исследования строения молекулы используют и как методы физико-химического анализа. [c.4]


    Физико-химический анализ — метод экспериментального изучения гетерогенных равновесий и фазовых превращений. В химии используется несколько методов познания природы и свойств вещества. Наиболее употребительный препаративный метод состоит в проведении соответствующей реакции, выделении, очистке и химическом анализе исследуемого вещества. По реакциям, в которые вступает вещество, определяются его химические свойства и структура. [c.166]

    Метод, предложенный Н. С. Курнаковым, позволяет изучать физические свойства систем в зависимости от их химического состава. Например, для аналитических целей могут быть использованы кривые зависимости температуры плавления от состава свинцово-оловянного сплава. Этот метод называется физико-химическим анализом. Не следует смешивать понятия физико-химический метод анализа с понятием физико-химический анализ . [c.30]

    Для изучения фазовых равновесий используют физико-химический анализ. При этом находят зависимость между измеримыми на опыте физическими свойствами ( пл, кип, т). плотность И др.) И химпческим составом систем. На основе опытных данных строят фазовые диаграммы состав — свойство. Анализ фазовых диаграмм позволяет выяснить, какие фазы и в каком количестве присутствуют в системе, какие физико-химические превращения они претерпевают. Построение и анализ фазовых диаграмм широко используется в исследовательских работах при изучении сплавов металлов, солевых расплавов и растворов, спекающихся силикатных материалов, применяемых в производстве стекла, цемента, огнеупоров. На основе фазовых диаграмм рассчитывают химический состав металлургических шлаков. [c.98]

    Диаграммы состояния дают возможность, как это ясно из изложенного выше, выявить наличие химических соединений в системе, состав этих соединений, их способность к диссоциации при плавлении. Все эти данные оказывается возможным получить на основании анализа кривых, описывающих зависимость температуры появления новой фазы от состава системы. Изучение графиков, описывающих зависимость какого-либо физического свойства системы от ее состава, является задачей физико-химического анализа. Идея подобного способа исследования сложных систем принадлежит Д. И. Менделееву. В настоящее время физико-химический анализ широко используется для исследования не только однородных растворов, но и сложных многокомпонентных многофазных систем. [c.390]


    В физической химии применяется несколько теоретических методов. Квантово-механический метод использует представления о дискретности знергии и других величин, относящихся к элементарным частицам. С его помощью определяют свойства молекул и природу химической связи на основе свойств частиц, входящих в состав молекул. Термодинамический (феноменологический) метод базируется на нескольких законах, являющихся обобщением опытных данных. Он позволяет на их основе выяснить свойства системы, не используя сведения о строении молекул или механизме процессов. Статистический метод объясняет свойства веществ на основе свойств составляющих эти вещества молекул. Физико-химический анализ состоит в исследовании экспериментальных зависимостей свойств систем от их состава и внешних условий. Кинетический метод позволяет установить механизм и создать теорию химических процессов путем изучения зависимости скорости их протекания от различных факторов. [c.5]

    Экстракция компонентов из водной фазы в органическую широко используется, как свойство в физико-химическом анализе. Построение диаграмм состав — извлечение компонента в органическую фазу — обычный метод определения состава химических соединений, существующих в растворе. Коэффициенты распределения служат для расчета констант образования химических соединений. [c.475]

    Электронные спектры поглощения являются важнейшей характеристикой органических соединений. Они тесно связаны со строением, физико-химическими свойствами и реакционной спО собностью органических молекул. Накоплен огромный экспериментальный материал и установлены определенные эмпирические закономерности между строением и электронными спектрами поглощения различных классов органических соединений. Электронные спектры широко используются при исследовании строения индивидуальных соединений, изучении кинетики и равновесия многочисленных реакций с их участием, идентификации и анализе органических и других химических веществ. Ими пользуются также как одним из наиболее удобных и обоснованных свойств в физико-химическом анализе. Разработана и широка применяется разнообразная спектральная аппаратура, с помощью которой получают надежные данные об электронных спектрах поглощения органических соединений. [c.3]

    В данном разделе рассмотрен ряд более или менее сложных систем, изучение которых с помощью лишь одного термодинамического метода является затруднительным. Вы познакомились с основными чертами физико-химического анализа, который широко использует построение различных диаграмм состояния. С помощью таких диаграмм удобно описывать свойства системы в различных условиях. Параллельное применение термодинамических закономерностей позволяет уточнить представления об изучаемых системах. Всегда следует помнить о том, что большей частью рассматриваются лишь равновесные системы. Именно для равновесных систем изображаются соответствующие диаграммы состояния. Количество и конкретный вид фаз сложной системы, наблюдаемые на практике, могут в действительности сильно отличаться от равновесных вследствие заторможенности перехода в равновесное состояние. [c.175]

    Гидроокиси. Гидроокиси типа У(ОН)з и Ьп(ОН)з выпадают в виде аморфных осадков от действия солей иттрия и РЗЭ на водные растворы аммиака или щелочей. pH осаждения У из раствора нитрата 7,39, хлорида 6,78, сульфата 6,8 и ацетата 6,83. pH осаждения гидроокисей лантана и лантаноидов в соответствии с их порядковыми номерами и ионными радиусами лежит между 6,0 у Ьи и 8,0 у Ьа. Заметно отличается от них pH осаждения Се(ОН)4 (0,7—1,0), что используется при разделении РЗЭ. Методы получения гидроокисей описаны в литературе довольно подробно. Но физико-химические свойства и состав гидроокисей, полученных в различных условиях, изучены недостаточно. В [31] описаны реакции образования гидроокисей некоторых РЗЭ. Методами физико-химического анализа — растворимости, измерения [c.55]

    Метод физико-химического анализа, основанный на изучении зависимости плотности от состава раствора, оказался малоэффективным. Тем не менее идея Д. И. Менделеева нашла широкое развитие в других методах физико-химического анализа, использующих зависимости некоторых термодинамических свойств раствора от его состава. [c.95]

    Для определения стехиометрических коэффициентов р уравнениях реакций образования комплексов, находящихся в растворе, широко применяется метод физико-химического анализа, разработанный И. В. Тананаевым, А. К- Бабко, Н. П. Комарем и другими учеными [7] — [28]. Метод основан на построении диаграмм состав — свойство. В качестве свойства изучаемой системы при спектрофотометрических исследованиях используют оптическую плотность А. Этот метод позволяет определять и состав комплексных соединений, если известно ионное состояние компонентов, участвующих в образовании комплексного соединения. [c.97]


    Изучение химических систем путем установления свя,зи между их физическими свойствами и количественным соотношением компонентов называют физико-химическим анализом. Основы физикохимического анализа заложены выдающимся русским ученым академиком И. С. Курнаковым. Наиболее часто в физико-химическом анализе используют зависимость температуры плавления (кристаллизации) веществ от их состава. Для этой цели получают данные о скорости охлаждения чистых веществ и их смесей различного состава, наблюдая падение температуры охлаждающегося расплавленного вещества через одинаковые промежутки времени. Результаты наблюдения изображают графически, откладывая на оси ординат температуру, а на оси абсцисс — время. [c.187]

    Для проведения физико-химического анализа могут быть использованы самые разнообразные свойства системы, например, вязкость, теплоемкость, теплопроводность, электропроводность, коэффициент сжимаемости и т. д. Наиболее часто с этой целью строят кривые зависимости плотности или показателя преломления от состава. Последнее объясняется тем, что значения этих свойств можно определить с большой точностью. Кроме того, измерение показателя преломления требует весьма малой затраты времени. [c.314]

    Частным случаем физико-химического анализа является термический анализ, имеющий большое значение для исследования сплавов и их свойств. В нем используют диаграммы состав — температура плавления , называемые диаграммами плавкости. [c.295]

    В настоящее время круг объектов, при изучении которых применяется построение диаграмм состав — свойство, расширился и распространился на все отделы неорганической химии, химической технологии (включая силикаты, удобрения), петрографию, на ряд объектов органической химии. В последние десятилетия метод физико-химического анализа широко используется в сравнительно новых областях химии полупроводников, теории и технике выращивания монокристаллов, радиохимии, синтезе сег-нетоэлектриков. Диаграммы состояния используются преимущественно в современном материаловедении при создании новых материалов с заранее заданными свойствами (таких как композиционные материалы различных типов, материалы, полученные методом сверхбыстрой закалки и т. д.), отличающихся тем, что они включают в свой состав, как правило, большое число компонентов. Системы с числом компонентов четыре и выше называются многокомпонентными. Их изучение и построение затруднено, во-первых, сложностями графического изображения и, во-вторых, большим объемом экспериментальной работы. Здесь на помощь физико-химическому анализу могут быть привлечены методы ма-чйтического планирования эксперимента позволяющие строить [c.279]

    Экспериментальный метод исследования систем, свойства которых зависят от состава, использует физико-химический (термический) анализ, основы которого были разработаны академиком [c.271]

    Кроме диаграмм состояния в качестве вспомогательного средства изучения растворов полимеров могут быть использованы элементы физико-химического анализа Курнакова для исследования зависимости состав — свойство. Здесь основным приемом такл<е является топологический анализ. В дальнейшем изложении этот прием будет широко использован в несколько измененном виде для анализа вязких свойств и изменений физического состояния системы полимер — растворитель. [c.30]

    Методы физико-химического анализа основаны на использовании функциональной зависимости между химическим составом вещества и его физическими свойствами для двойных, тройных и многокомпонентных систем, например для растворов, сплавов. Функциональная зависимость выражается таблицей или графически (диаграмма состав — свойство , Н. С. Курнаков). Можно использовать ряд свойств вещества, например, светопреломление, оптическую плотность, электропроводность и др. [c.6]

    Физико-химический анализ исследует зависимость физических свойств системы от ее состава или внешних условий. Это позволяет обнаружить и изучить происходящие в системе химические изменения. Физико-химический анализ как метод исследования был предложен М.В. Ломоносовым. Этот метод широко использовал Д.И. Менделеев при изучении плотности растворов. Основополагающие теоретические и экспериментальные работы в области физико-химического анализа, превратившие его в самостоятельную научную дисциплину, принадлежат Н.С. Курнакову. [c.152]

    Построение реальных диаграмм состояния сводится к определению опытным путем температур фазовых превращений, характера и состава фаз, находящихся в данной системе в равновесии при различных температурах. Эти исследования производятся различными методами химического и физико-химического анализа — термическим, микроскопическим, электронно-микроскопическим, рентгенографическим, электронографическим, локальным рентгеноспектральным и другими методами анализа. Иногда используют также дилатометрические исследования, изучение электросопротивления, твердости и других свойств материалов. [c.281]

    Перед физико-химическим анализом в области гомогенных систем чаще всего ставится задача обнаружения и определения концентраций образующихся соединений. В этой главе излагаются основные положения, выдвинутые в работах Степанова [1]. На основании закона действующих масс можно вывести уравнения выхода образующегося химического соединения, а затем, используя связь между выходом и данным свойством, можно получить уравнение кривой состав—свойство. [c.466]

    Физико-химические методы анализа можно считать составной частью большой и самостоятельной научной дисциплины — физикохимического анализа. Физико-химический анализ использует взаимосвязь между составом химической системы и ее физическими свойствами для широкого и всестороннего изучения происходящих в ней химических и фазовых превращений. [c.9]

    Метод физико-химического анализа применим как к гетерогенным, так и к гомогенным системам. При построении диаграмм физико-химического анализа гомогенных систем используются многие свойства тепловые свойства (теплоемкость, тепловые эффекты и т. д.), механические свойства (плотность, коэффициент трения, твердость), оптические свойства (оптическая плотность, показатель преломления, интенсивность флюоресценции и т. д ), электрические свойства (электропроводность, электродвижущие силы и т- д.), магнитные свойства, акустические свойства и др. Кроме того, используются свойства, характеризующие переход одной фазы в другую давление пара, температура кипения, растворимость и т. д. [c.417]

    Развитие методов физико-химического анализа и применение их к гомогенным системам показало, что отклонение от аддитивности, встречающееся во многих системах, обязано возникающему в растворах химическому взаимодействию. Для исследования этих систем были использованы многие свойства давление пара, тепловые эффекты, вязкость, поверхностное натяжение, плотность, электропроводность. [c.17]

    В работах Бабко и сотрудников [6] в значительной степени развит метод сдвига равновесия, предложенный Бодлендером. В качестве измеряемого свойства системы использовалось главным образом изменение оптической плотности растворов при комплексообразовании. Исследования Бабко обобщены в его монографии Физико-химический анализ комплексных соединений в растворах . [c.490]

    Н. С. Курнакову и его крупной школе принадлежит заслуга дальнейшего широкого теоретического и экспериментального развития метода физико-химического анализа, превращения его в самостоятельный и важный раздел физической химии. Для построения диаграмм Курнаков использовал наряду со многими другими свойствами также изотермы вязкости. Вязкость — свойство, чувствительное к изменению молекулярного состояния жидкости. В то же время измерения ее легко и просто выполнимы . [c.246]

    Мы видели, что при помощи этих методов для учения о растворах открывается возможность опереться на всю совокупность знаний, которыми располагают современные химия и физика. Теперь же мы хотим отметить, что многие из этих методов тоже могут быть использованы для построения соответствующих диаграмм состав—свойство, т. е. могут находить применение для целей физико-химического анализа. Геометрические особенности диаграмм состав—свойство, получаемых с помощью этих методов, могут быть непосредственно связаны с молекулярным строением растворов. Таким образом, применение теоретических и экспериментальных результатов, получаемых иными путями, чем в физикохимическом анализе, обогащает и усиливает метод физико-химического анализа, открывая возможности для выяснения внутренних причин, обусловливающих тот или иной вид диаграммы состав—свойство. Что касается выяснения связи между различными свойствами одного и того же раствора, то для решения этой задачи, как мы увидим далее, особенно большое значение имеют методы термодинамики и статистической физики. [c.202]

    Цель исследования — выявление характера взаимодействия сульфатов в водной среде, установление выделения двойных комплексов между этими компонентами, дополнительное изучение их свойств другими методами физико-химического анализа, чтобы устранить разноречивые суждения о их природе. Исследование этих реакций взаимодействия имеет как теоретическое, так и практическое значение. Включение в состав двойных комплексов солей аммония с сульфатом натрия является хорошим удобрением для корнеплодов (сахарная свекла, турнепс и др.). Литий полезен в этих комплексах, как один из микроэлементов, способствующих повышению морозоустойчивости растений. В качестве исходных препаратов для работы использовались реактивы сульфаты лития, натрия, аммония марки х. ч., которые очищались от примесей перекристаллизацией. Изучение проводилось при температуре 25° широко известным методом растворимости. Равновесие устанавливалось через 12— 16 часов, пробы, как правило, отбирались через сутки и больше. Контроль об установившемся равновесии осуществлялся химическим анализом по содержанию сульфат-иона и аммония. Твердая фаза на однородность просматривалась под микроскопом. Жидкие и твердые фазы подвергались химическому анализу. В пробах определялись сульфат-ион в виде Ва304, аммоний по Кьельдалю, литий — нериодатным методом, а натрий и вода находились рассчетным путем. Первая часть работы была посвящена изучению тройных систем сульфат лития—сульфат натрия—вода, сульфат лития—сульфат аммония—вода, сульфат натрия— сульфат аммония—вода при 25°. [c.47]

    Помимо температуры кристаллизации, физико-химический анализ использует для исследования металлических систем зависимость от состава плотности, твердости, электропроводности и других свойств. [c.271]

    Физико-химический анализ широко использует диаграммы состояния, которые показывают зависимости физических сво11ств от состава систем в состоянии равновесия. Физико-химический анализ такл<е широко использует сопоставление одно1 о с другим различных физико-химических свойств сложных систем. Физико-химический анализ как отрасль химической науки зародился в России во второй половине XIX в. и связан с работами Д. И. Менделеева по изучению зависимости плотности от состава различных вОлТ-иых растворов. Построенные Менделеевым диаграммы зависимости плотности от состава для различных водных растворов показали, что производная плотности по составу на определенных участках концентраций непрерывно изменяется с изменением состава раствора и претерпевает разрыв в точках, соответствующих составу образующихся в растворе определенных химических соедииений. Анализ этих диаграмм дал Менделееву основание для развития химической (сольватной) теории растворов, предусматривающей образование в растворах определенных химических соеди-нени . [c.166]

    В работе использовались масла МП-1 и МП-100. Масло МП-1 применяется в настоящее время в качестве растворителя связующего офсетных печатных красок и красок для высокой печати. Оно представляет собой экстракт циклических углеводородов, содержащих в основном одно ароматическое кольцо в среднестатистической молекуле. По данным структурно-группового анализа, выполненного по методу С-Ь, примерно половина (56,3%) углерода среднестатистической молекулы масла находится в боковых цепях ароматических колец. Циклическая часть молекул содержит 0,5 нафтенового кольца. Таким образом, условно, масло представляет собой длинноцепочные алкилнроизводные тетралина. Масло МП-100 характеризуется высоким содержанием нафтеновых колец в средней углеводородной молекуле, оно содержит углерода в парафиновых структурах вдвое меньше, чем масло МП-1. По содержанию углерода в ароматических структурах образцы масел не отличались друг от друга, что позволяет выявить роль нафтеновых колец в формировании структур ВМС нефти в растворах и их влияние на реологические и печатно-технологические свойства красок. Физико-химическая характеристика образцов масел представлена в табл. 9.2. [c.253]

    При изучении кинетики химических реакций широко используются физико-химические методы анализа, которые позволяют определять состав реакционной смесн по ее свойствам. Большое значение имеет при этом колориметрический метод. В отличие от химических методов он требует меньше времени, при этом обычно веш,ество анали. шруется непосредственно в растворе (без выделения) и в очень малом количестве. [c.373]

    Химический потенциал равен изменению изобарного потенциала О с изменением числа молей -го компонента щ при постоянных температуре Т, давлении р и числе молей всех других компонентов в системе п, П2,. .., п . Химический потенциал указывает увеличение способности системы производить работу при добавлении в нее бесконечно малого количества вещества . Подобно другим потенциалам он определяет направление самопроизвольного перехода в сторону низшего потенциала. Гетерогенная равновесная система характеризуется равенством химических потенциалов всех компонентов в равновесных фазах и равенством температуры. Правило фаз широко используется в методах физико-химического анализа, который устанавливает зависимость между изучаемы м физическим свойством и составО М системы. [c.59]

    Для суждения о характере взаимодействия веществ в физико-химическом анализе изучаются разные физические свойства, чувствительные к изменению состава системы. В качестве таких свойств используются температуры фазовых превращений (например, плавления), теплоты образования, теплопроводность, теплоемкость, электросопротивление, плотность, коэффициент теплового расширения, твердость и др. Сюда следует добавить методы исследования макро- и микроструктуры нейтронографию, рентгенофазовый и рентгеноспектральный анализ, ЯМР, Y-peзoнaн нyю спектроскопию, электронную микроскопию, метод высокотемпературной калориметрии, измерение магнитной восприимчивости, точки Кюри и т. д. [c.264]

    Современная неорганическая химия состоит из многих самостоятельных разделов, например химии комплексных соединений, химии неорганических полимеров, химии полупроводников, металлохимии, физико-химического анализа, химии редких металлов, радиохимии и т. п. Неорганическая химия давно перешагнула стадию описательной науки и в настоящее время переживает свое второе рождение в результате широкого привлечения квантовохимических методов, зонной модели энергетического спектра электронов, открытия валентнохимических соединений благородных газов, целенаправленного синтеза материалов с особыми физическими и химическими свойствами. На основе глубокого изучения зависимости между химическим строением и свойствами она успешно решает главную задачу создание новых неорганических веи еств с заданными свойствами. Неорганическая химия, как и любая естественная наука, руководствуется методологией диалектического материализма, следовательно, опирается на ленинскую теорию отражения От живого созерцания к абстрактному мышлению и от него к практике... . Живое созерцание осуществляется, как правило, при помощи эксперимента — наблюдения явлений в искусственно созданных условиях. Из экспериментальных методов важнейшим является метод химических реакций. Химические реакции — превращение одних веществ в другие путем изменения состава и химического строения. Во-первых, химические реакции дают возможность исследовать химические свойства вещества. Аналитическая химия использует химические реакции для установления качественного и количественного состава вещества. Кроме того, но химическим реакциям исследуемого вещества можно косвенно судить о его химическом строении. Прямые же методы установления химического строения в большинстве своем основаны на использовании физических явлений. Во-вторых, на основе химических реакций осуществляется неорганический синтез. За последнее время неорганический синтез достиг большого успеха, особенно в получении особочистых соединений в виде монокристаллов. Этому способствовало применение высоких температур и давлений, глубокого вакуума, внедрение бесконтейнерных способов синтеза и т. п. [c.7]

    Для построения Д. с. расчетным путем необходимо знать зависимости хим. потенциалов всех компонентов системы от 7] р и состава фаз. Приближенные методы расчета с применением ЭВМ интенсивно развиваются, в частности, для многокомпонентных сплавов. Однако пока Д. с. строят на основе эксперим. данных, получаемых гл. обр. термическим анализом, к-рый позволяет определять зависимости т-р плавления или кристаллизации от состава, а также изучением равновесий жидкость-пар и жидкость - жидкость, Широко используют рентгеновский фазовый анализ, данные о микроструктуре затвердевших расплавов, измерения физ. св-в фаз (см. Диаграмма состав - свойство). Изучение Д. с. составляет осн. содержание физико-химического анализа. [c.33]

    В современных химических исследованиях используют два основных метода познания природы вещества. Предположим, нам надо решить такой вопрос могут ли вещества Л и 5 реагировать одно с другим, образуя соединение АВ Решая эту задачу более старым препаративным методом, химик смеши-, вает вещества Л и В и разнообразными способами старается вызвать реакцию нагревает их, растворяет в чем-либо, действует на них катализатором и т. д. После этого он пытается выделить из смеси вещество, образовавшееся в результате химической реакции. Для этого он применяет кристаллизацию, экстракцию, перегонку и т. д. Полученное таким образом соединение он подвергает исследопанию анализирует его, определяет его физические свойства и изучает реакции, в которые это вещество вступает. Таким путем он устанавливает его состав, а иногда и строение. Но можно решать эту задачу методом физико-химического анализа, возникшим во второй половине XIX столетия, хотя этот термин был введен значительно позже Н. С. Курнаковым. При этом исследование взаимодействия веществ А и В ведут совершенно иным путем. Работая по этому методу, химик, прежде всего, готовит смеси веществ Л и В в разнообразных отношениях и старается уже указанными выше способами (нагревание и т. д.) вызвать в этих смесях реакцию. Когда реакция закончится или, как говорят, система придет в состояние равновесия, он измеряет у всех смесей некоторое подходящее физическое свойство (плотность, вязкость, температуру плавления, давление пара и т. д.), после чего строит так называемую диаграмму состав — свойство. Для этого он по одной оси прямоугольной системы координат откладывает в определенном масштабе концентрацию одного из веществ Л нли В, а по другой — числовое значение измеренного свойства. По виду полученной таким образом кривой часто можно сказать, образуется ли в данной смеси химическое соединение (и даже определить его состав), осталось ли каждое вещество неизменным или, наконец, получился раствор (твердый или жидкий). [c.5]

    Основные научные работы В. Я. Аносова были посвящены разработке геометрии химических диаграмм. Блестяще владея методологией физико-химического анализа и математическим аппаратом, В. Я. Апосов дал исчерпывающее, законченное аналитико-геометрическое описание химических диаграмм двойных гомогенных систем. Эти исследования позволили отличить свойства диаграмм, являющихся следствием математических отношений, от свойств, обусловленных физико-химическими процессами, а это необходимо для любых областей применения физико-химического анализа. Исследования по геометрии химических диаграмм были обобщены В. Я. Аносовым в монографии Геометрия химических диаграмм двойных систем (1949 г.), которая и в настоящее время остается уникальной в мировой литературе. В. Я. Аносов внес значительный вклад также в теорию химических диаграмм многокомпонентных систем. Он разработал и предложил оригинальный метод изображения многокомнонентных систем, так называемый метод спиральных координат, позволяющий изображать системы любой сложности, не используя понятия многомерной геометрии. [c.5]

    При исследовании систем, состоящих из двух или большего числа химических индивидов, главную роль играет зависимость свойств системы от состава. Измеряется то или иное свойство для смесей или растворов различного состава, по возможности от О до 100каждого из исходных индивидов, и строится диаграмма состав—свойство или эта зависимость дается аналитически. Несмотря на то, что последний способ представления результатов является более высокой ступенью в обработке результатов измерения, в физико-химическом анализе пока используется преимущественно графический метод. Геометрический образ — диаграмма — отражает, какие процессы прошли в системе образовались ли механические смеси, твердые или жидкие растворы, возникли ли новые соединения и т. д. По диаграмме также определяются границы существования различных фаз в системе. Анализ диаграммы позволяет выявить не столь резко выраженные процессы и отметить слабые межчастичные взаимодействия, которые не приводят к образованию новых соединений или распаду имеющихся. [c.7]

    В физико-химическом анализе принято пользоваться диаграммами удельная электропроводность х —состав . Поскольку электропроводность относится к заведомо неаддитивным свойствам, способ выражения концентрации при этом может быть произвольным, однако для наглядности чаще всего выбирают мольные доли. Диаграммы молекулярная электропроводность состав используются реже. Действительно, во многих случаях электропроводность жидкой смеси обусловлена ионногенностью продукта взаимодействия неионногенных компонентов. Концентрация же продукта взаимодействия, необходимая для расчета изотермы X двойной жидкой системы, большей частью неизвестна, либо определяется приблизительно. [c.401]

    Примером метода физико-химического анализа квазидвойной системы в растворителе, основанном на измерении свойств раствора, может служить диэлькометрия. С помощью кривых диэлькометрического титрования [4] по принципу, аналогичному калориметрическому титрованию, можно определять стехиометрию и константу равновесия процесса взаимодействия. Данные по диэлектрической проницаемости раствора могут быть использованы для расчета поляризации. [c.428]

    Kon проницаемости, электропроводности, показателей преломления, вязкости, поверхностного натяжения. Широко используются методы физико-химического анализа, в частности диаграммы плавкости, и т. д. Все они основаны на отсутствии аддитивности физических и химических свойств компонентов. [c.11]


Смотреть страницы где упоминается термин Свойства, используемые в физико-химическом анализе: [c.8]   
Смотреть главы в:

Физико-химический анализ гомогенных и гетерогенных систем -> Свойства, используемые в физико-химическом анализе




ПОИСК





Смотрите так же термины и статьи:

Анализ химический

Физико химическии анализ

Физико-химический анализ



© 2025 chem21.info Реклама на сайте