Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основы газо-адсорбционной хроматографии

    Разработана методика анализа смесей, содержащих воздух, тетрафторметан (фреон-14), трифторхлорметан (фреон-13) и дифтордихлорметан (фреон-12) на основе газо-адсорбционной хроматографии, -щ [c.290]

    Основы газо-адсорбционной хроматографии [c.282]

    На основе молекулярно-адсорбционной хроматографии в последние годы чрезвычайно интенсивно развивается газовая хроматография. Еще недавно анализ сложной смеси газов был трудной, а иногда и практически неразрешимой задачей. Между тем для [c.59]


    В основе метода, называемого газо-адсорбционной хроматографией, лежит процесс многократного распределения газообразных продуктов между подвижной газовой фазой и подходящим твердым сорбентом. Этот метод обсуждается в разделе ИГ. [c.455]

    Материалы предлагаемого читателю сборника посвящены 100-летию со дня рождения основоположника хроматографии М. С. Цвета и включают статьи итогового характера по обоим основным направлениям хроматографии — газовой и жидкостной. Представленные статьи позволяют проследить эволюцию газовой хроматографии от применения химически инертных, но структурно неоднородных адсорбентов до быстро развившейся после работ Мартина газо-жидкостной распределительной хроматографии, наряду с которой в настоящее время получила существенно новое развитие газо-адсорбционная хроматография на основе использования однородных адсорбентов с разнообразными свойствами. [c.6]

    Теоретический вывод уравнения для определения поверхности адсорбента при помощи газо-адсорбционной хроматографии дан Кремер . В основу вывода легло уравнение (15а)  [c.182]

    Варианты газовой хроматографии — газо-жидкостная и газо-адсорбционная— имеют свои преимущества и недостатки, поэтому выбор наиболее эффективного способа анализа в каждом случае определяется характером конкретной задачи. Так, в начальный период развития газовой хроматографии анализировали только газы и легколетучие жидкости на колонках с сильными адсорбентами. Переход к газо-жидкостной хроматографии способствовал уменьщению коэффициента распределения Г для более тяжелых сорбатов, в результате чего появилась возможность анализировать их хроматографическим методом. Использование неподвижных жидкостей самой разнообразной химической природы сделало газожидкостную хроматографию универсальным методом, позволяющим осуществлять разделение на основе различных видов физико-химических взаимодействий между сорбатами и растворителями. Кроме того, линейность изотерм растворения обеспечивала получение практически симметричных пиков сорбатов (при правильном подборе условий процесса). Однако существенные ограничения, связанные с летучестью неподвижных жидкостей, не позволяли проводить высокотемпературные процессы разделения высококипящих веществ ни в аналитическом, ни в препаративном вариантах. Поэтому дальнейшее развитие газо-адсорбционной хроматографии с применением однороднопористых адсорбентов различной химической природы было необходимо для обеспечения дальнейших успехов газовой хроматографии как метода анализа и исследования высококипящих соединений. [c.33]


    В основе газо-жидкостной распределительной хроматографии (ГЖХ) лежит различие растворимости разделяемых веществ на выбранном неподвижном растворителе в хроматографической колонке, или более точно — различие коэффициентов их распределения между неподвижной жидкой фазой (НЖФ), служащей растворителем, и подвижной газовой фазой (ПГФ), служащей газом-носителем. Чем больше коэффициент распределения вещества в газо-жидкостной колонке, тем больше объем удерживания и тем дольше вещество задерживается в колонке. Коэффициент распределения К равен частному от деления концентрации компонента в НЖФ на концентрацию компонента в ПГФ. Величина К является термодинамической константой равновесия в процессе распределения растворяющегося вещества между НЖФ и ПГФ, подобно тому как коэффициент адсорбции Г в адсорбционной хроматографии является термодинамической константой в процессе распределения адсорбирующегося вещества между твердой неподвижной фазой-адсорбентом и ПГФ — газом-носителем. [c.105]

    По мере того как развивалась теория газовой хроматографии и выяснялись зависимости хроматографических характеристик анализируемых веществ, адсорбентов и жидких неподвижных фаз от их физико-химических свойств, стало возможно не только предсказывать параметры хроматографического разделения на основе термодинамических и кинетических характеристик, но и подойти к решению обратных задач — определению физико-химических параметров по данным, получаемым при помощи газовой хроматографии [I—3]. Наибольшее значение газовая хроматография приобрела для определения термодинамических характеристик. Газо-адсорбционную хроматографию широко используют для измерения изотерм адсорбции. Из данных по изменению величин удерживания с температурой можно вычислять также энтропию и свободную энергию адсорбции. На основе хроматографического изучения адсорбции удается исследовать характер взаимодействия молекул адсорбата и адсорбента. Газо-жидкостная хромато рафия позволяет путем определения величин удерживания вычислять растворимость, теплоту и энтропию процесса растворения, а также измерять давление пара и температуру кипения анализируемых веществ, рассчитывать константы равновесия реакций в растворах и в газовой фазе и определять коэффициенты адсорбции на межфазных границах (жидкость—газ, жидкость—жидкость, жидкость—твердое тело). [c.223]

    Вследствие большого влияния геометрической структуры молекул на энергию их адсорбции в газо-адсорбционной хроматографии имеются большие возможности получения селективных колонок не только на основе различий в электронной структуре молекул разных компонентов, но и на основе различий в их геометрии при адсорбции на достаточно гладкой поверхности адсорбентов [29,30]. [c.9]

    В последние годы происходит быстрое развитие газовой и жидкостной адсорбционной хроматографии (ГАХ и ЖАХ). Это вызвано необходимостью повышения селективности и стабильности хроматографических колонн, а также возможностью достижения высокой эффективности на адсорбционных колоннах. Повышения селективности можно достичь путем повышения геометрической однородности поверхности адсорбента, подбора нужного химического ее состава, а также путем подбора соответствующей подвижной фазы на основе исследования межмолекулярных взаимодействий в системе адсорбент — разделяемые вещества — подвижная фаза (газ- или пар-носитель, жидкий элюент). Чувствительность адсорбционной хроматографии к структуре адсорбирующихся молекул исключительно высока. Это позволяет использовать адсорбционную хроматографию для изучения структуры молекул и адсорбентов. В предлагаемой монографии рассмотрены в основном молекулярные основы селективности адсорбционной хроматографии. [c.8]

    Теория газо-адсорбционной хроматографии на основе ранее выведенного ур-ния. Рассмотрено влияние природы газа-носителя и перепада давления в колонке. [c.22]

    Так, на основе метода получения однороднопористых минеральных и полимерных сорбентов [28] новое развитие получила препаративная газо-адсорбционная хроматография. Зельвенский [29] подробно рассмотрел особенности проведения препаративного разделения на силикагелях, изучил размывание в газо-адсорбционных препаративных колоннах и [c.252]

    Газовая адсорбционная хроматография отличается большей термической стабильностью неподвижных фаз — адсорбентов и может успешно применяться как при высоких температурах для анализа высококипящих соединений, так и при низких — для анализа природных и нефтяных газов. Для анализа слабо адсорбирующихся молекул газон и легкокипящих углеводородов используют адсорбенты с большой удельной поверхностью— цеолиты, тонкопористые силика ели. ГТо мере увеличения объема анализируемых молекул необходимо применять все более макропористые адсорбенты с менее развитой поверхностью. Выпуск однородных адсорбентов, в частности цеолитов и пористых полимеров, так называемых пор ап а ков, на основе сополимеров стирола, этилстирола и дивинилбензола позволил уменьшить несимметричность пико и расширить область применения ГАХ. [c.89]


    В зависимости от того, какой процесс лежит в основе метода, определяющим может быть тот или иной коэффициент. Так, для газо-жидкостной хроматографии определяющим является коэффи-иент Г. В газо-адсорбционной — коэффициент Гь При недостаточной инертности твердого носителя в газо-жидкостной хроматографии коэффициенты Г1 и Гз вносят искажения в характеристики удерживания. При хроматографировании полярных веществ на по-чярных жидких неподвижных фазах существенную роль может иг- [c.209]

    В основе адсорбционной хроматографии лежит непрерывный обмен хроматографируемым веществом между неподвижной (чаще всего твердой) и подвижной (газ, жидкость) фазами. Обмен осуществляется за счет многократно повторяющихся актов адсорбции-десорбции, происходящих в процессе перемещения хроматографируемого вещества в токе подвижной фазы через слой неподвижного сорбента. Разделение осуществляется за счет разной адсорбируемости хроматографируемых веществ. В зависимости от агрегативного состояния подвижной фазы различают газоадсорбционную и жидкостно-адсорбционную хроматографию. Последняя включает в себя проточный колоночный и плоскостной (тонкослойная хроматография) варианты. Эффективность разделения обусловлена щ)авильным подбором комбинаций подвижной и неподвижной фаз. В качестве подвижной фазы применяют инертный газ, растворители с учетом их полярности или смеси нескольких растворителей в различных пропорциях. [c.209]

    В зависимости от того, какой процесс лежит в основе метода, определяющим может быть тот или иной коэффициент. Так, для газо-жидкостной хроматографии определяющим является коэффициент Г. В газо-адсорбционной — коэффициент Г1. При недостаточной инертности твердого носителя в газо-жидкостной хроматографии коэффициенты Г) и Гз вносят искажения в характеристики [c.161]

    Хроматографический метод анализа газов основан па принципе физического разделения газовой смеси, при котором разделяемые компоненты распределяются между двумя фазами одна из фаз представляет собой неподвижный слой сорбента с большой поверхностью, другая—поток газа-иосителя, фильтрующийся через неподвижный слой. В зависимости от типа применяемой неподвижной фазы (насадки) различают газо-адсорбционную и газожидкостную хроматографию. В газо-адсорбционной хроматографии нспользуются твердые вещества, обладающие адсорбционньми свойствами активированный уголь, силикагель, окись алюминия, пористые стекла, молекулярные сита (цеолиты). Газо-адсорбционная хроматография используется для раэделения низкокипящих газов водорода, азота, окиси углерода, кислорода, аргона, метаяа и др. В газо-жидкостной хроматографии используются растворители, нанесенные на инертную ио отношению к газам основу. Разделение газов в этом случае осуществляется благодаря различной растворимости газов в жидкости. Газо-жидкостной хроматографией хорошо разделяются углеводороды. [c.238]

    В основе распределительной хроматографии лежит поглощение разделяемых веществ жидкостью, т. е. растворимость главное условие для разделения — различие в растворимости. Природа сил межмолекулярного взаимодействия имеет тот же характер, что и в адсорбционной хроматографии. Но в первую очередь это вандерваальсовы силы. Однако, поскольку разделение протекает на границе двух фаз, несмешивающихся между собой — неподвижной (жидкости) и подвижной (жидкости или газа), — то правильнее сказать, что в данном случае процесс разделения определяется различием коэффициентов распределения разделяемых веществ между обеими фазами. Отсюда происходит и само название данного варианта хроматографии — распределительная. [c.13]

    Среди новых направлений в развитии газо-адсорбцион-ной хроматографии, обусловливающих расширение ее аналитических возможностей, следует отметить применение пористых полимерных сорбентов Л. 149—152]. В настоящее время для газовой хроматографии начинают применять пористые материалы на основе сополимеров стирола, этилстирола и дивинилбензола. [c.108]

    Учитывая эти обстоятельства, мы решили провести исследование по применению методов газовой хроматографии для препаративного разделения хлоридов некоторых редких элементов и хлорида железа (И1). При этом в основу работы была положена газо-адсорбционная методика, поскольку, как известно, емкость сорбентов типа углей и силикагелей намного превышает таковую в газо-жидкостной хроматографии. [c.238]

    Разработана методика определения малых количеств (нримесей) воздуха, фреона-14 и фреона-12 во фреоне-13 на основе газо-адсорбцион-ной и газо-жидкостной хроматографии. [c.290]

    Кроме термической стабильности адсорбенты имеют и другие преимущества. Как показал Гнддингс [3], массообмен в газо-ад-сорбционных колонках может происходить значительно быстрее, чем в газо-жидкостных, что позволяет проводить быстрые разделения на эффективных колонках. Вследствие большого влияния геометрической структуры молекул на энергию их адсорбции в газо-адсорбционной хроматографии имеются большие возможности получения селективных колонок не только на основе различий в электронной структуре молекул разных компонентов, но и на основе различий в их геометрии при адсорбции на достаточно гладкой поверхности адсорбентов. [c.85]

    Описаяный Цветом [85] в 1906 г новый метод разделения не был оценен по достоинству и привлек внимание химиков лишь 25 лет спустя, когда Кун, Винтерштейн и Ледерер [51] вновь открыли его. В 1941 г. Мартин и Синдж [58] опубликовали статью с описанием нового аналитического метода — жидко-жидкостной хроматографии. Это открытие было настолько важным и оказало такое влияние на развитие химического анализа, что авторы его впоследствии были удостоены Нобелевской премии. Мартин и Синдж всегда полагали, что в качестве подвижной фазы в предложенном ими методе можно использовать и газы, однако осуществить эту идею удалось далеко не сразу лишь 10 лет спустя Мартин и Джеймс доказали справедливость этого предположения и разработали основы исключительно эффективного практически универсального аналитического метода. Они продемонстрировали преимущества нового метода на примере разделения летучих жирных кислот и показали, что вследствие низкой вязкости газа по сравнению с вязкостью жидкой подвижной фазы и во много раз более быстрой диффузии в газовой фазе разделение с применением газа-носителя проходит значительно быстрее, и поэтому такой метод более удобен для рутинных анализов. Почти одновременно Янак [41] опубликовал работу, посвященную разделению углеводородов методом газо-адсорбционной хроматографии. [c.154]

    Первую хорошую сводку теоретических представлений по фронтальному анализу и вытеснительному проявлению в газо-адсорбционной хроматографии дали Тизелиус [6] и Клессон [7]. Клессону на основе развитой теории удалось превратить вытеснительную технику в количественный метод анализа с.месей углеводородов, содержащих до 8 углеродных атомов. Для детектирования Клессон применял метод теплопроводности, который он первым усиленно рекомендовал для хроматографических работ. Для разделения углеводородов этот исследователь использовал ряд углей с различной активностью поверхности, отобранных им из одной крупной партии для обеспечения воспроизводимой зарядки колонок, На работы Клессона не было обращено должного внимания. Это отчасти следует объяснить трудностями, связанными с отсутствием достаточно хорошей воспроизводимости свойств адсорбента. [c.281]

    Для анализа и характеристики малолетучих образцов применяют различные варианты ГХ и методические приемы. В обзоре мы кратко рассмотрим методы определения состава веществ на основе высокотемпературной газо-жидкостной хроматографии (ГЖХ) на обычных набивных колонках, ГЖХ на малозагруженных колонках, капиллярной хроматографии, высокотемпературной газо-адсорбционной хроматографии, ГХ при высоких давлениях, реакционной ГХ, обращенной ГХ. [c.80]

    Молекулярной основой теории удерживания в жидкостной хроматографии должна стать молекулярно-статистическая теория адсорбции из разбавленных растворов. Эта теория делает еще первые щаги [18а, 186], так как учет межмолекулярного взаимодействия растворителя с адсорбентом и с молекулами рассматриваемого компонента довольно сложен. Однако можно надеяться, что и в случае жидкостно-адсорбционной хроматографии атом-атомное приближение и использование атом-атомных потенциалов, полученных с помощью молекулярно-статистической теории адсорбции газов и газо-адсорбционной хроматографии, позволит, по крайней мере для более простых систем, развить количественные методы расчета констант Генри. Поэтому для получения надежных значений констант Генри при разных температурах для разных растворителей и адсорбентов необходимо проводить подобные измерения и в жидкостно-адсорбционной хроматографии. Эти задачи должны быть рещены сначала хотя бы для простейших случаев квазижестких молекул компонентов [c.205]

    Простая физико-химическая основа хроматографического разделения молекул и макромолекул на адсорбентах, возможность регулирования и использования различий в геометрической структуре и химической природе поверхности, нелетучесть большинства адсорбентов, их высокая термическая и химическая стабильность и легкая реген ер ируемость делают адсорбенты особенно удобными при работе аналитических колонн в режиме программирования температуры, а также в препаративном и производственном применениях газовой и молекулярной жидкостной хроматографии. Наряду с этими практическими применениями, газо-адсорбционная хроматография становится также важным методом физико-химического исследования -химии поверхности твердых тел, изотерм, теплот и энтропий адсорбции. [c.5]

    В этом направлении большой интерес представляют работы Зи, Блемера, Рийндерса, Ван Кревелена [273, 274], использовавших в качестве флюидов пентап, диэтиловый эфир, изопропанол при давлении 30—50 атм и температуре 250° С вместо газа-носителя низкого давления. В основе метода флюидной хроматографии лежит принцип смещения адсорбционного равновесия, которое определяется двумя факторами молекулярным взаимодействием в плотной газовой фазе и модифицированием поверхности адсорбента молекулами адсорбированного газа-носителя — флюида. Метод позволяет при температуре 200—250° С разделять производные алкилбензолов с числом атомов углерода 36 (температура кипения выше 500° С) за короткое время одновременно улучшается симметрия пиков. В работе [273] приведены примеры разделения антиоксидантов, алкалоидов, хинонов и эпоксисмол (рис, 52, 53). [c.155]

    Для углубленного исследования состава конечных композиций присадок к смазочным маслам предложен ряд схем многоступенчатого препаратного разделения и анализа [533,543—545], в основу которых входяг препаративные методы — диализ, жидкостная адсорбционная хроматография, экстракция и гидролиз, а также препаративная и аналитическая тонкослойная хроматография, аналитическая газо-жидкостная и гель-хроматография, ИК-спектроскопия и т. д. Образцы композиций присадок неизвестного и по данным, качественного анализа сложного состава исследуют с применением [c.316]

    На основе Джрадзорского диатомита, тщательно отмытого кислотой и водой, путем сплавления с 5-7% соды получают твердые носители — порохромы 1, 2, 3. По данным авторов [7,8] порохромы отличаются от большинства других носителей однородной макропористой структурой, высокой геометрической однородностью пор. Кроме того, они адсорбционно и каталитически инертны. Порохромы можно применять для аналитической и препаративной газо-жидкостной хроматографии в сочетании как с неполярными, так и с полярными неподвижными ЖФ. Из диатомита Джрадзорского месторождения в последнее время изготавливаются также твердые носители — цветхромы [9]. [c.276]

    В газоадсорбционной хроматографии (ГАХ) разделение соединений происходит за счет различной адсорбируемости на поверхности адсорбента. Г АХ — один из основных методов газовой хроматографии наряду с газо-жидкостной хроматографией. ГАХ широко используется для разделения газов и паров легкокипящих соединений, структурных изомеров, а также для разделения высококипящих соединений. Адсорбция на плоских поверхностях более чувствительна к геометрической структуре молекул по сравнению с растворением, т.к. в первом случае молекула испытывает одностороннее межмолекулярное взаимодействие с адсорбентом, а во втором она окружена молекулами растворителя со всех сторон. Для ГАХ разработаны однородные неорганические, полимерные и углеродные адсорбенты. Возможности ГАХ значительно расширила разработка различных методов геометрического, адсорбционного, ионообменного и химического модифицирования. Колонки с неорганическими и углеродными адсорбентами не имеют собственного фона, в отличие от колонки с сорбентами на основе жидких фаз. Это обстоятельство позволяет работать на таких колонках и при более высоких температурах в режиме программирования, используя более чувствительные шкалы. [c.279]

    Для названия этого варианта газовой хроматографии в отечественной литературе испо.чьзуются выражения адсорбционно-абсорбционная газовая хроматография (Киселев А. В., Пошкус Д. П., Яшин Я- И. Молекулярные основы адсорбционной хроматографии. — М. Химия, 1986) и газо-жидко-твердофазная хроматография Березкин В. Г. Газо-жидко-твердофазная хроматография.— М. Химия, 1986.) —Прим. перев. [c.12]

    Для углубленного исследования состава товарных и отработанных (окисленных) пластичных смазок предложены схелш многоступенчатого препаративного разделения и анализа [541, 565—. 570 ], в основу которых входят препаративные методы — ионообменная и жидкостная адсорбционная хроматография, экстракция, а также аналитические методы, газо-жидкостной и тонкослойной хроматографии, ИК-спектроскопия. Сначала проводят качественный. анализ пластичных смазок неизвестного состава (см. разд. III.2.1). При обнаружении в пластичной смазке солей уксусной и других водорастворимых низших жирных кислот разделение и анализ осуществляют по схеме 4, предусматривающей выделение и количественное определение этих кислот. Методически проще проводить исследование пластичных смазок по схеме 5, которая в виде различных модификаций жидкостного хроматографирования на активном и неактивном силикагелях применяется также для определения [c.332]

    Разработана методика выделения моноциклических ароматических углеводородов из нефти-В основу выделения положен метод элюентно-адсорбционной хроматографии на силикагеле и оксиде алюминия. Выявлен порядок выхода алкилбензолов на этих сорбентах в зависимости от молекулярного веса, числа и положения заместителей в ароматическом кольце. С помощью газо-жидкостной хроматографии и масс-спектрометрии, а также специально синтезированных алкилбензолов в нефтях идентифицированы моно- и диалкилбензолы состава Сц—С32 с нормальнкми и изопреноидными. цепями. [c.239]

    В основу метода положен принцип предварительного упрощения состава исследуемых фракций. Для упрощения состава бензино-лигроиновых фракций использованы точная ректификация и жидкостная адсорбционная хроматография с последующим анализом фракций с помощью газо-жидкостной хроматографии. С этой целью применены конструкции безнасадочной колонки для ректификации 1—3 мл пробы и установки для жидкостной адсорбционной хроматографии пробы объемохм 0,5—2 мл. Для газожидкостной хроматографии был изготовлен сдвоенный хроматограф эффективностью 8000 т.т., рассчитанный на работу при температуре до 150° С. В качестве фазы в колонке с наполнителем длиной 16 м служила иолиметилфенилсилоксановая жидкость. Абсолютная ошибка при анализе на хроматографе смесей углеводородов Сб—Сд находилась в пределах —1,1+ 0,8%, относительная ошибка — в пределах 0,0—5,8%. Расхождение результатов в параллельных опытах при анализе нефтяных фракций, выкипающих в интервале 100—175°С, найдено равным в среднем 0,2% и не превышало 0,6% (считая на фракцию 50—200°С). [c.199]


Смотреть страницы где упоминается термин Основы газо-адсорбционной хроматографии: [c.261]    [c.309]    [c.10]    [c.211]    [c.5]    [c.95]    [c.129]    [c.6]    [c.276]   
Смотреть главы в:

Хроматография газов -> Основы газо-адсорбционной хроматографии




ПОИСК





Смотрите так же термины и статьи:

Адсорбционная хроматографи

Хроматография адсорбционная

Хроматография газо-адсорбционная



© 2024 chem21.info Реклама на сайте