Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение метода в качественном и количественном анализе

    Сторонники масс-спектрометрии отрицательных ионов считают, что отсутствие большого числа фрагментов является преимуществом этого метода, хотя некоторые экспериментальные данные [34] не подтверждают этой характеристики. Во всяком случае отсутствие фрагментов, образовавшихся из молекулярного иона, не только является серьезным препятствием в работе по установлению строения соединений, но и может вообще помешать применению этого метода. Частичное или полное отсутствие фрагментов удобно для определения молекулярных весов или качественного анализа смесей. Упомянутая выше зависимость интенсивности пиков в масс-спектре от давления исследуемых паров затрудняет применение этого метода в количественном анализе. [c.63]


    Книга состоит из четырех частей. В первой части описано возникновение, становление и разработка структурной теории, особенно подробно — электронных представлений. Во второй части рассмотрено взаимопроникновение и взаимодействие физической и органической химии. В третьей части — развитие различных физических методов качественного, количественного и структурного анализа органических соединений. В четвертой части — применение и сочетание химических и физических методов в аналитической органической химии, включая расчетные методы, позволяющие перебросить мост между данными структурной теории, физико-химических и физических методов исследования. [c.8]

    Эмиссионный спектральный анализ, основанный на исследовании длин волн и интенсивности излучения, испускаемого атомами и молекулами в различных физических условиях, применим к аналитическому исследованию газов главным образом в тех отдельных случаях, когда требуется определить качественный состав простых газовых смесей, таких, как смеси инертных газов. Несмотря на принципиальную возможность применения спектральных методов к количественному анализу газовых смесей, методы спектрального анализа газов почти не разработаны. В этом направлении были сделаны только отдельные попытки спектроскопического анализа (например, спектральное исследование смеси азота, кислорода и двуокиси углерода [52]). Это обстоятельство обусловлено тем, что спектральный анализ газов связан с большими трудностями. [c.247]

    Методами газовой хроматографии можно выполнять качественное и количественное определение компонентов смесей органиче ских и неорганических газообразных, жидких и твердых веществ, давление паров которых превышает 133 Па, перегоняющихся без разложения в области температур до 400-500 С. Особенно широкое применение метод нашел в анализе сложных органических смесей, поскольку позволяет получить информацию о природе и количественном содержании компонентов в смеси в течение нескольких минут, причем для анализа требуются тысячные доли грамма смеси [1, 2], Основными достоинствами метода являются высокая чувствительность и разделяющая способность, скорость, точность и высокая степень автоматизации [3,4]. [c.61]

    В этой главе рассматривается не столько сам метод, сколько его применение к решению проблем химии нефти. Это относится к применению инфракрасной спектроскопии и спектров комбинационного рассеяния для изучения химического строения углеводородов и углеводородных смесей. Несмотря на то значение, которое имеет качественный и количественный анализы индивидуальных соединений, основное внимание уделяется характеристическим частотам, наблюдаемым в спектрах веществ с определенной молекулярной структурой. Оценивается возможность количественного определения содержания углеводородов данного типа или данных структурных групп. В главе обсуждаются лишь основные вопросы спектроскопии комбинационного рассеяния света и инфракрасной спектроскопии, а вопросы, относящиеся к рассмотрению природы колебательных спектров или интерпретации колебательных частот, рассматриваются лишь частично. [c.313]


    Анализ с помощью плоскостной (тонкослойной, бумажной) Ш X технически осуществляется почти так же, как и препаративное разделение, и отличается от последнего лишь малым объемом разделяемой пробы. Пятна разделенных ГАС выявляются сравнительно просто визуальным наблюдением их свечения при УФ облучении или окрашивании после опрыскивания слоя специфическими реагентами [267, 268]. В аналитических работах метод ТСХ чаще всего применяется для качественной идентификации отдельных групп соединений по характеру окрашивания (свечения) и параметрам удерживания (величинам И ). Получение точных количественных данных о составе разделяемой смеси с помощью ТСХ обычно связано с определенными трудностями. Некоторые перспективы улучшения разделения и облегчения количественного анализа кроются в применении уже упоминавшейся высокоэффективной круговой тонкослойной ЖХ и сканирующих устройств, фотометрирующих интенсивность спектров рассеяния или флуоресценции разделенных соединений [156]. [c.34]

    Для получения поляризационных кривых полярограмм) в этих методах пользуются в качестве катода струей ртути, непрерывно по каплям вытекающей из отверстия, а в качестве анода применяется электрод с большой поверхностью, обычно тоже ртутный. Ток применяется очень слабый, порядка 10 а. Анод, вследствие большой поверхности его и связанной с этим малой плотности тока, практически не поляризуется. Поэтому налагаемое напряжение расходуется лишь на поляризацию катода и на прохождение тока через раствор. В результате, измеряя силу тока при различных напряжениях, можно определять поляризацию на катоде. Различного вида ионам свойственны разные потенциалы их восстановления на катоде. Применяя среды кислые, нейтральные или щелочные, можно охватить все важнейшие виды ионов, выполняя как качественный, так в определенных условиях и количественный анализ раствора. Полярографический метод является очень чувствительным и дает возможность обнаружить и часто приближенно определить составные части, содержащиеся в очень малой концентрации. Полярографический метод находит применение в различных работах, где используется катодное восстановление.  [c.449]

    На базе учения о химическом равновесии был разработан новый метод исследования химических систем — метод физико-химического анализа. Он основан на изучении зависимости физических свойств химической равновесной системы от факторов, определяющих ее равновесие. В качестве изучаемых свойств могут быть выбраны тепловые, объемные, электрические, магнитные, оптические и другие свойства. Обычно изучается один из факторов, определяющих состояние равновесия системы, — ее состав. Метод исследования химических взаимодействий веществ в системах, основанный на изучении изменения физических свойств системы с изменением ее состава и построении диаграмм состав — свойство, находит широкое применение, от метод после Ломоносова был широко использован Менделеевым и получил дальнейшее развитие в работах Д. П. Коновалова, И. Ф. Шредера, В. Ф. Алексеева и др. Особенно большой вклад в создание физико-химического анализа как самостоятельного метода исследования внес Н. С. Курнаков и его ученики. Многочисленные работы Курнакова по изучению металлических, органических и солевых систем показали, что физико-химический анализ является важным, а иногда и единственным методом исследования сложных систем. По определению Курнакова физико-химический анализ есть ...геометрический метод исследования химических превращений . Метод физико-химического анализа позволяет на основании изучения изменений физических свойств системы в зависимости от количественных изменений ее состава установить протекающие в системе качественные изменения, характер взаимодействия между компонентами, области существования и составы равновесных фаз. Для этого применяют геометрический анализ диаграмм состояния, построенных в координатах физическое свойство — фактор равновесия (Р, Т, состав). [c.337]

    Масс-спектрометрия длительное время развивалась как метод количественного анализа многокомпонентных смесей и лишь п последние годы нашла применение для идентификации и качественного анализа неизвестных соединений. В этом случае масс-спектрометрия часто используется в сочетании с другими методами, обеспечивающими либо выделение индивидуального соединения из смеси, либо упрощение ее состава. За редким исключением, еще до проведения масс-спектрометрического анализа исследователь обладает определенной информацией об идентифицируемом соединении (физических константах вещества, его стабильности и путях синтеза). Эти сведения определяют принципиальные возможности анализа и метод введения вещества в масс-спектрометр. [c.116]


    Методы очистки веществ различны и зависят от свойств веществ и их применения. Наиболее распространенными методами являются фильтрование, дистилляция, возгонка, перекристаллизация и высаливание. Очистка газов обычно осуществляется поглощением газообразных примесей веществами, реагирующими с этими примесями. Чистые вещества обладают присущими им характерными физическими и химическими свойствами, поэтому чистоту веществ можно проверять физическими и химическими методами. Физические методы связаны с определением плотности, температуры плавления, кипения и других констант. Химические методы проверки основаны на химических реакциях и являются методами качественного и количественного анализа. [c.24]

    Ионный обмен используют в кожевенной, гидролизной, фармацевтической промышленности для очистки растворов, а также для удаления солей из сахарных сиропов, молока, вин. С помощью ионитов улавливают ионы ценных элементов из природных растворов и отработанных вод различных производств. Промышленное производство многих продуктов жизнедеятельности микроорганизмов (антибиотиков, аминокислот) оказалось возможным или было значительно удешевлено благодаря использованию ионитов. Применение ионного обмена позволило усовершенствовать методы качественного и количественного анализа многих неорганических и органических веществ. [c.304]

    Кроме главного своего применения — качественного и количественного анализа сложных смесей — хроматографические методы позволяют решать другие не менее важные задачи, например  [c.60]

    Качество основной и вспомогательной продукции химических производств, производимых химической промышленностью материалов, а также решение комплексных задач исследования в значительной мере зависят от аналитического контроля. При современном непрерывном превращении химических веществ в процесс - производства только применение экспрессных методов качественного и количественного анализа и методов обработки полученных данных обеспечивает оптимальное ведение производства. В настоящее время для ведения процесса уже непригодны классические ( ручные ) методы. анализа, проводимые в лаборатории, а также простое измерение физических свойств веществ (например, плотности, электропроводности) без дальнейшего их использования или измерение параметров процессов (давления, температуры). Важнейшими побудительными причинами автоматизации и внедрения техники в аналитический контроль являются технические и экономические требования к получению информации более высокой ценности (небольшая продолжительность анализа, лучшая селективность, более высокая точность и чувствительность методов аналитического контроля), а также необходимость снижения затрат рабочей силы и экономии мощностей. Внедрение техники в аналитический контроль осуществляют путем механизации, применения инструментальных методов контроля или автоматизации [А.1.1 —А.1.4]. [c.427]

    Методы атомного спектрального анализа качественного и количественного в настоящее время разработаны значительно лучше, чем молекулярного, и имеют более широкое практическое применение. Атомный спектральный анализ используют для анализа самых разнообразных объектов. Область его применения очень широка черная и цветная металлургия, машиностроение, геология, химия, биология, астрофизика и многие другие отрасли науки и промышленности. [c.10]

    После открытия спектрального анализа начинают появляться работы по его применению для качественного анализа. Хотя уже в первых работах было установлено, что интенсивность спектральной линии зависит от концентрации элемента в пробе, развитие количественных методов шло. крайне медленно. Сильное влияние состава пробы на интенсивность спектральных линий, нестабильность источников света, отсутствие надежных методов регистрации спектра и определения интенсивности линии не позволяли установить надежную зависимость между интенсивностью линии и концентрацией анализируемого элемента. Наряду с отдельными успехами были столь большие неудачи, что некоторые спектроскописты даже ставили под сомнение возможность количественного спектрального анализа. [c.224]

    Ядерный магнитный резонанс. Все рассмотренные нами до сих пор методы атомного и молекулярного спектрального анализа относились к оптическим областям спектра. Но оказалось, что и в радиоволновой области в определенных условиях можно получать ценные сведения о структуре химических, особенно органических, соединений. Метод ядерного магнитного резонанса, первые практические применения которого имеют всего 10 — 15-летнюю давность, стал в настоящее время одним из основных методов установления структуры органических соединений. Одновременно быстро увеличивается круг его применения для целей качественного и количественного анализа, особенно в случае сложных задач, когда применение других методов мало эффективно. Уже в настоящее время в ряде производств сложных органических соединений в химико-фармацевтической промышленности и производстве красителей для цветных фотоматериалов ход производства и качество готовой продукции контролируется методом ядерного магнитного резонанса. Несомненно, что и в ближайшем будущем применение этого метода в аналитических целях будет стремительно расти. [c.342]

    Практикум по качественному анализу изложен с использованием полумикрохимического метода. Практические примеры количественных определений подобраны с таким расчетом, чтобы они помогали подготовке студентов-технологов к проведению контроля как отдельных стадий технологических процессов, так и всего производства в целом. В книге лабораторный практикум предназначен для специализации по неорганической, органической химии и химии полимерных материалов. Комбинирование работ по качественному и количественному анализу с анализом производственных объектов и учебно-исследовательской работой студентов с применением математической обработки и ЭВМ позволяет наиболее рационально построить изучение химических методов анализа в зависимости от объема и содержания курса для каждой специальности. [c.238]

    Методы испытания веществ. При испытании на чистоту вещества известного состава можно пользоваться физическими методами (например, определением плотности, температуры плавления и кипения и т, д.) или химическими методами анализа (обработкой определенного весового количества вещества тем или иным реагентом). В последнем случае по количеству (весовому или объемному) получающегося в результате реакции нового вещества или по расходу реагента судят-о составе испытываемого вещества (количественный анализ). Определение примесей может иногда ограничиваться качественным анализом, т. е. применением реакций, дающих характерные для данной примеси продукты, легко отличимые по внешним признакам (образование осадка, изменение цвета и т. д.) без определения количества примеси. [c.55]

    Аналитическая химия изучает методы исследования химического состава веществ. Применение аналитических методов для установления состава веществ называется химическим анализом. Аналитическая химия делится на два раздела качественный и количественный анализ. [c.256]

    Количественный анализ — раздел аналитической химии, изучающий методы количественного определения состава веществ. Применение методов количественного анализа позволяет устанавливать количественные соотношения между элементами, ионами, молекулами и другими составными частями исследуемых индивидуальных веществ и выводить, их химические формулы определять процентное содержание полезных минералов в рудах осуществлять контроль готовой продукции проведением полного анализа или определением отдельных колшонентов. Во всех этих случаях количественному анализу должен предшествовать качественный, так как некоторые методы количественного определения одного из компонентов не могут использоваться в присутствии ряда других составных частей. [c.271]

    Дифференциальный термический анализ (ДТА) — один из основных методов физико-химического исследования. Он позволяет изучать характер фазовых превращений и осуществлять построение диаграммы состояния (ДС). Этот метод широко используется при исследовании металлических, солевых, силикатных и прочих систем. Большую роль метод ДТА сыграл в развитии современной химии полупроводников. Область применимости этого метода не ограничивается построением ДС, Он с успехом может быть применен при исследовании тепловых эффектов химических реакций, при изучении процессов диссоциации, для качественного и количественного определения фазового состава смесей и определения теплот фазовых переходов.-Метод ДТА является наиболее универсальным из известных методов термического анализа. Так, метод визуального политермического анализа применим для исследования прозрачных объектов (главным образом, некоторых солевых систем). Метод кривых температура — время не обладает достаточной чувствительностью. Метод ДТА свободен от этих недостатков. [c.7]

    В качественном и количественном анализе эти методы нашли применение к середине XIX в., однако их особенно интенсивное развитие приходится на XX столетие. [c.41]

    В современном качественном и количественном анализе широко используются методы ИК-спектроскопии, хотя с момента открытия ИК-лучей (1800 г.) и практически до самого конца XIX в. они не находили применения в анализе. [c.44]

    В последующие годы были проведены и опубликованы сотни работ по применению полярографии в качественном и количественном анализе, а сам метод был значительно усовершенствован. Большой вклад в развитие полярографического анализа внес И. М. Кольтгоф. [c.50]

    Хроматографические методы анализа основаны на применении различных сорбционных процессов (см. гл. III, 24). Хроматографию применяют как в качественном, так и в количественном анализе. Чаще всего пользуются ионообменной, распределительной и тонкослойной хроматографией. Анализ газов и паров проводят методом газожидкостной хроматографии. [c.6]

    Специальными высокочувствительными методами с применением приемов предварительного обогащения удается обнаружить еще целый ряд элементов — бор, фтор, цинк, литий, стронций, барий, медь, титан, олово и даже следы благородных металлов (серебра и золота). По-видимому, не будет преувеличением сказать, что в морской воде содержится большая часть элементов периодической системы, но одни из иих в больших, другие — в меньших, а третьи — в исчезающе малых количествах. В силу этого постановка задачи качественного химического анализа морской воды в отрыве от количественных критериев теряет смысл. Логически более правильна постановка другой задачи определить, какие элементы содержатся в морской воде в количествах, не меньших чем 0,05 %, или, скажем, какие элементы содержатся в морской воде в количествах, превышающих 10 %  [c.17]

    Качественный этап системного анализа не следует сопоставлять только с предварительным анализом ФХС, т. е. с теми случаями, когда исследования начинаются и используют априорную качественную и количественную информацию. Выделение качественного анализа в отдельный, четко ограниченный этап вряд ли может быть оправдано в связи с тем, что применение методов и приемов качественного анализа встречается на самых различных стадиях исследования. Практически на всех этапах исследователь использует и генерирует качественную информацию, а подчас применяет интуитивные представления о ФХС. В этом проявляется творческая активность специалиста, которая дополняется умением применять современные методы исследования. [c.14]

    Метод селективного выделения олефинов перед газохроматографическим анализом был с успехом применен также при качественном и количественном анализе изомерных алкилбромидов, которые лишь с трудом могут быть разделены из-за большого сходства физических свойств (Харрис и сотр., 1959). [c.244]

    В основе большинсттва реакций, используемых в качественном анализе, лежат редокс-нроцессы, обусловливающие появление и изменение цвета, образование осадков или проявление других, характерных свойств. Редокс-процессы нашли широкое применение и в количественном анализе. Так редоксметрия, электроанализ, полярография и другие методы целиком основываются на окислительно-восстановительных взаимодействиях. Рассмотрим поэтому некоторые основные вопросы, связанные, с этим типом процессов. , [c.120]

    В книге и.злагаются основы современной масс-спектрометрин н обобщается опыт ее использования в лабораторной практике и на заводах в качественном и количественном анализе органических соединений, в частности для непрерывного контроля производства. Большое внимание уделяется также зависимости между масс-спектрами и строением органических соединений, иа основе которой создаются методы масс-спектрометрического анализа. Кратко рассматриваются возможности применения масс-снектрометрии для решения важнейших теоретических проблем химии, демонстрируются богатые возможности, которые открывает этот метод исследования веществ. [c.2]

    Ф. М. Шемякин, Э. С. Мицеловский, Д. В. Романов. Хроматографический анализ. Госхимиздат, 1955, (207 стр.). В книге описаны теория и методы хроматографического анализа, аппаратура и типы адсорбентов. Рассмотрено применение хроматограф 1и для качественного и количественного анализа неорганических веществ и использование ее для разделения и исследования ряда органических соединений. Приведены примеры применения хроматографии в промышленности и в техническом анализе. В конце каждой глявы приведен список литературы. [c.489]

    Большинство аналитических методов, применяемых в компонентной аналитической химии, дают информацию и о качественном, и о количественном составе пробы. Если обозначить через 2 величину, характеризующую природу составных частей, а через у величину, характеризующую их количество, то в качестве примера можно привести постояннотоковую полярограм-му (рис. Д.174) и спектр, полученный в пламени (рис. Д.175). Таким образом, речь в данном случае идет о получении двухмерной аналитической информации. Превращение ее в одномерную в случае фотометрии пламени дало бы точки на оси z для качественного параметра (в данном случае для длин волн) и колоколообразную кривую распределения интенсивности эмиссии (количественный параметр) для определенного значения 2 (рис. Д.176,а и б). Такую одномерную аналитическую информацию используют в качественном анализе, например, при проведении классического разделения или при применении селективных цветных реакций, когда нужно получить сведения только об отсутствии или присутствии какого-либо элемента а также в количественном анализе, когда нужно только установить, какое количество определенного элемента вступило в реакцию. Не будем останавливаться на рассмотрении вопросов получения и обработки информации о структуре вещества, поскольку это не входит в задачи данной книги. [c.430]

    Такой дугово11 разряд нашел широкое применение в качественном и количественном анализе металлов и сплавов, при анализе минерального сырья н различных токопроводящих материалов, особенно при горизонтальном расположении электродов и просыпке анализируемых веществ между ними (метод просып-ки). [c.45]

    Применение спектроскопии для качественного и количественного анализов получило в настоящее время очень широкое распространение как по числу выполняемых анализов, так и по разнообразию аналитических объектов. Наибольшее значение имеют абсорбционный и эмиссионный анализ в оптической области спектра. Одновременно все больше практическое применение для аналитических целей получают и другие виды спектроскопии в оптической, рентгеновской и радиовол-новой областях. Рассмотрим кратко физическую основу этих методов, их аналитические возможности и аппаратуру. [c.338]

    Составление методики количественного анализа возможно, если известен состав вещества, а также какие компоненты являются основными, а какие — примесями. Полуколичественную оценку содержания металлов и некоторых неметаллов можно провести методом эмиссионного спектрального анализа (см. гл. 6). Из хроматографических методов для качественного анализа наиболее подходят ионообменная хроматография и хроматография на бумаге. Однако эти методы пригодны лищь для анализа смесей, состоящих из небольшого числа компонентов, например, катионов одной-трех групп. Применение дробных реакций дает надежную информацию также в случае несложных смесей, кроме нескольких специфических реакций (на ионы аммония, железа). [c.198]

    Разработка количественного метода. В XVill в. исследования состава новых псточнпков сырья — руд, минералов, солей — приобретают особую актуальность в связи с запросами развивающейся промышленности. Естественно, что перед шведскими, немецкими, английскими, русскими, венгерскими химиками (в странах, в которых весьма интенсивно развивались металлургия, горное и стекольное дело, химические промыслы) вставала неотложная задача разработать методы качественного и количественного анализа. Поэтому не удивительно, что почти все исследователи XVIII в. в той или ипой степени занимались химическим анализом различных руд, солей, минеральных источников. Им известны были чувствительные индивидуальные и групповые реактивы для обнаружения тех или иных веществ, обладающих определенными, характерными свойствами. Применение групповых реактивов — кислот, щелочей, сероводорода и др.— позволило разработать систематический ход анализа сложных смесей. В этот период экспериментальный метод исследования обогащается новыми средствами — усовершенствованными весами, термометром, микроскопом и ареометром — для изучения состава и свойств веществ. [c.58]

    Основы теории и практика ангшитического применения физикохимических и физических методов излах аются в разделе курса аналитической химии, специально посвященном этим методам и включающем преимущественно их приложение в количественном анализе. Здесь же ограничимся лишь краткой характеристикой применения некоторых из обсуждаемых методов в качественнолг анализе, дающей более или менее общее представление об их принципиальных возможностях. Исключение составляет рассмотрение методов ИК-спектроскопии, широко применяемых в качественном фармакопейном анализе, — эти методы излагаются более подробно (хотя, конечно, далеко не исчерпывающе). [c.515]

    В учебнике описаны важнейшие качественные реакции по мак-ро-, полумикро- и микрометодам. Сопоставлены сероводородный, кислотно-щелочной и фосфатный методы систематического качественного анализа. Они рассмотрены с позиций периодического закона Д. И. Менделеева, что позволяет установить сходство и различие методов. Наряду с классическими методами даны дробный, капельный и хроматографический анализы катионов и анионов. Рассмотрено применение экстракционного анализа. В количественном анализе описаны гравиметрический, титриметрическнй и физико-химический методы. [c.3]

    В связи с достаточной устойчивостью внутренних закономер-лостей динамики потребления светлых нефтепродуктов предприятиями отрасли машиностроения и металлообработки БАССР применение метода экстраполяции для планирования потребности в этих материалах может дать хорошие результаты. При этом должно быть обращено внимание на качественный анализ, с помощью которого можно учесть изменения основных факторов, определяющих формирование потребных объемов светлых нефтепродуктов, и внести необходимую корректировку в данные, полученные с помощью экстраполяции. В частности, необходимым является качественный анализ и последующий количественный учет возможного снижения удельных норм расхода светлых нефтепродуктов на предстоящий период. Это снижение может происходить за счет улучшения качества и повышения эффективности использования нефтепродуктов. Например, тенденции развития автомобилестроения характеризуются ростом мощностей и степени сжатия в автомобильных двигателях. Это, в свою очередь, повышает требования к детонационной стойкости автомобильных бензинов. [c.54]

    Проведение исследовательских и технологических работ с примененнем стабильных изотопов, т. е. препаратов, изотопный состав которых отличается от природного, предусматривает прежде всего необходимость определения содержания (концентрации) стабильного изотопа в препарате. В этой главе будут рассмотрены основные методы качественного и количественного изотопного анализа, т. е. методы изучения изотопного состава химических элементов и методы определения относительного содержания стабильных изотопов в изотопных препаратах. [c.108]


Смотреть страницы где упоминается термин Применение метода в качественном и количественном анализе: [c.31]    [c.8]    [c.41]    [c.87]    [c.17]    [c.13]    [c.2]    [c.221]   
Смотреть главы в:

Анализ ядохимикатов -> Применение метода в качественном и количественном анализе




ПОИСК





Смотрите так же термины и статьи:

Анализ качественный

Анализ качественный и количественный

Анализ количественный

Анализ применение

Качественный методы

Количественный методы

Применение метода в количественном анализе



© 2025 chem21.info Реклама на сайте