Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регенерация из остатков

    После проскока ионов цинка в фильтрат колонну останавливают на регенерацию. Остаток сточной воды выпускают из колонны, взрыхляют катионит обратным током фильтрованной сточной воды. Регенерацию ведут 10— 15%-ным раствором серной кислоты (расход раствора —120% объема загруженной в фильтр смолы), а затем 5%-ным раствором соды для перевода смолы КБ-4 в рабочую Ыа-форму. Раствор сульфата цинка в серной кислоте направляют на утилизацию. Так как на промывку волокна после отделки расходуется умягченная вода, то опасность гипсования катионита не возникает и проводить разделение гипса и сульфата цинка не нужно. [c.1081]


    Побочные продукты полимеризации — гомологи ацетилена, которые накапливаются в виде отложений в аппаратах, машинах и трубопроводах, склонны к самопроизвольному взрывному разложению. Самовоспламеняется на воздухе сухой остаток полимеров, образующийся на стадии регенерации растворителя после его насыщения гомологами ацетилена при концентрировании ацетилена из газов пиролиза. [c.24]

    Вариант самостоятельного осуществления процесса. В рассматриваемом варианте (рис. 36) процесс экстракционной депарафинизации осуществляют в три ступени. В I ступени экстракции на обработку сырья подают 60—70% от общего количества растворителя, что составляет 400—700% от сырья. Экстракцию проводят при конечной температуре процесса —35- —39°. Экстракт I ступени вполне насыщен целевым низкозастывающим продуктом, поэтому его выводят из процесса и после использования его холода направляют на регенерацию растворителя. Остаток от экстракции I ступени, в котором содержится значительное [c.218]

    Регенерация растворителя из раствора гача (петролатума) осуществляется в три ступени. Раствор гача насосом 20 подается в паровой подогреватель 19. Образующиеся в нем пары отделяются от жидкости в колонне 18. Пары растворителя по выходе из колонны 18 конденсируются в водяном кожухотрубном конденсаторе-холодильнике 24 конденсат стекает в приемник влажного растворителя. Остаток с низа колонны 18 насосом 25 через паровой подогреватель 26 подается в колонну 28. Отделившиеся здесь пары растворителя присоединяются к парам, выходящим из колонны 18. [c.87]

    Продолжительность второй ступени меньше здесь образуется около 55% сырого бензина и около 6% стабильного газа (содержащего 60% метана и этана) остаток отделяют и возвращают в процесс. Регенерацию катализатора, теряющего активность из-за отложения на нем углерода, проводят простым окислением воздухом при 500 °С (выжигание). Схема установки гидрирования показана на рис. 87. [c.247]

    В соответствии с технологической схемой сырье и продукты гидродеалкилирования поступают в колонну для разделения на нафталиновую и бензиновую фракции, сырье гидродеалкилирования и остаток. Сырье гидродеалкилирования смешивается с циркулирующим водородом и водой, способствующей повышению селективности процесса и резко снижающей коксообразование, нагревается в печи и направляется в реактор. Катализатор работает без регенерации до 1 года. Продукты реакции после охлаждения поступают в сепаратор высокого давления. С верха сепаратора выходит циркулирующий водород, который затем очищают от примесей в абсорбере. Жидкая фаза входит в сепаратор [c.190]

    Остаток, выходящий из колонны экстрактивной перегонки 2 — ароматический углеводород и растворитель, — направляется в колонну регенерации растворителя 4 для отгона ароматического углеводорода, после чего растворитель вновь подают в колонну экстрактивной перегонки. В случае применения в качестве растворителя фенола часть его выводят из системы и очищают от образовавшихся смол. [c.44]


    В промышленных установках тех лет применяли трех- и четырехступенчатые схемы переработки угля [63]. На стадии жидкофазной гидрогенизации паста — 40% угля и 60 /о высококипящего угольного продукта с добавкой железного катализатора — подвергалась воздействию газообразного водорода при температуре 450—490 °С и давлении до 70 МПа в системе из трех или четырех последовательно расположенных реакторов. Степень конверсии угля в жидкие продукты и газ составляла 90—95% (масс.). Поскольку экономичные методы регенерации катализаторов в то время не были разработаны, в большинстве случаев использовали дешевые малоактивные катализаторы на основе оксидов и сульфидов, железа. После прохождения системы реакторов и горячего сепаратора при температуре 440—450 °С циркуляционный водородсодержащий газ и жидкие продукты отводили сверху. Затем в холодном сепараторе газ отделялся от жидкости и после промывки возвращался в цикл в смеси со свежим водородом. Жидкий продукт после двухступенчатого снижения давления для отделения углеводородных газов и воды подвергался разгонке, при этом выделяли фракцию с температурой конца кипения до 320—350 °С и остаток (тяжелое масло, его употребляли для разбав.чения шлама гидрогенизации перед центрифугированием). [c.79]

    Регенерация растворителя из экстрактного раствора. Экстрактный раствор отводится насосом 23 из колонны 10, прокачивается через теплообменник 26, обогреваемый конденсатом паров фенола из колонны 21, теплообменник 25, где нагрев осуществляется теплом конденсации паров фенола из колонны 16, и с температурой 120—130 °С поступает в сушильную колонну 19. В этой колонне экстрактный раствор обезвоживается разделяется на пары азеотропной смеси фенола и воды и на остаток, состоящий из экстракта с основной массой фенола. [c.121]

    Регенерация растворителя из раствора гача или петролатума проводится в три ступени. Раствор гача II из приемника 25 (см. рис. 61) подается через паровые подогреватели 15 я 16 в колонну 17. Пары растворителя сверху колонны 17 вместе с парами, выходящими сверху колонны 20, конденсируются в конденсаторе-холодильнике 29. Конденсат IV стекает в емкость влажного растворителя. Остаток снизу колонны 17 насосом 18 подается через паровой подогреватель 19 в колонну 20. Остаток снизу колонны 20 [c.180]

    Продукты крекинга разделяются в ректификационной колонне 13, в колоннах 14 и 15 производится дополнительная отпарка легкого и тяжелого газойлей. В нижней части колонны 13 отстаивается катализаторный шлам, который направляется на регенерацию через промежуточную емкость 5. Отстоявшийся от катализатора жидкий остаток > 420°С), состоящий в основном из полициклических ароматических углеводородов и являющийся хорошим сырьем для получения кокса, выводится из колонны. Установка может работать с рециркуляцией промежуточных фракций, которые отводятся из промежуточных точек колонны 13 и насосами 12 подаются в пневмоподъемник 11. Производительность установки по сырью — около 160 т/ч, скорость циркуляции катализатора — 900—1100 т/ч. [c.30]

    При каталитическом крекинге, протекающем при соприкосновении паров сырья с поверхностью катализатора, практически образуются газ, бензин, остаток и кокс. Газ, бензин и остаток во все время процесса остаются в газо-парообразном состоянии и в таком виде уходят из реактора в систему погоноразделения кокс же отлагается на поверхности катализатора. Образование оболочки кокса настолько быстро лишает катализатор работоспособности, что через некоторое время после начала процесса образование бензина чрезвычайно замедляется и процесс в целом выходит из пределов экономичности. Однако закоксованный катализатор не теряет своих активных свойств, а только лишается возможности проявить их, будучи покрыт коксом. При соприкосновении горячего катализатора с воздухом кокс сгорает, освобождая поверхность катализатора, чем и достигается регенерация катализатора. [c.204]

    Верхний слой — раствор парафина — подается насосом Н-13 в соответствующую перегонную аппаратуру. На рис. IV.39 показана трехступенчатая схема регенерации растворителя. Нагрев раствора лепешки производится последовательно в теплообменниках Т-20 и Т-21 парами растворителя из колонн К-З-А и К-З-Б, а также в Т-17 парафином. Остаток из первой ступени во вторую подается насосом Н-12 через трубчатую печь П-2. Остаток из второй ступени поступает за счет разности давлений в отпарную колонну К-4. Так как пары из первой ступени (колонны К-З-А) содержат некоторое количество влаги, то конденсат направляется в секцию влажного растворителя емкости Е-1-Б. Растворитель из второй ступени (колонны К-З-Б) не содержит влаги и поступает в секцию Е-1-А сухого растворителя той же емкости. [c.234]

    По окончании регенерации удаляют из реактора воздух, оставшийся в слое катализатора, при помощи парового эжектора 9. Остаток кислорода сжигают с водородом, затем вновь отсасывают эжектором. После выполнения этих операций реактор вновь включают па контактирование. [c.609]


    После. перемешивания раствороз при температуре около 35° смесь охлаждают приблизительно до 25°. Пульпу или взвесь комплексов отделяют на вращающемся фильтре или центрифуге. Остаток на фильтре промывают растворителем для удаления механически увлеченных непарафиновых углеводородов. Растворитель после промывки снова используют в качестве разбавителя. Фильтрат разделяют на два слоя водный раствор мочевины и раствор остаточного масла в кетоне. Кетоновую фазу промывают водой, а раствор мочевины кетоном. Растворы в кетоне направляют на дистилляционную установку для регенерации кетона и выделения масла. Раствор мочевины нагревают с фильтровальной лепешкой, в результате чего разделяются масло и водный раствор мочевины, который уже не является насыщенным при более высокой температуре. Механически связанный парафиновыми компонентами кетон удаляют перегонкой, а раствор мочевины снова возвращают в процесс. [c.57]

    Л и н и и I—смесь хлористого амила и едкого натра П—отработанная щелочь на регенерацию пентана III—смесь спирта, хлорида и амилена IV—пары амилена V—амилен на гидратацию VI—пары хлористого амила VII—хлористый амил в гидролизатор VIII—пары спирта и вода IX—вода и спирт на регенерацию X—спирт на орошение XI — водяной пар XII—спирт и хлорид XIII — влажный спирт XIV—диамиловый эфир (остаток) XV—орошение колонны XVI—пары спирта XVII—товарный спирт [c.221]

    Регенерация пропана из битумного раствора, выводимого с низа К-1, осуществляется сначала в испарителе-сепараторе Э-2 — после его нагрева в трубчатой печи П-1, затем в отпарной колонне К-3. Тяжелый остаток деасфальтизации — битум — откачивается с низа К-3 в товарЕ1ЫЙ парк. [c.233]

    За рубежом тепло пародистиллятных фракций широко используется для предварительного подогрева нефтяного сырья. Так, на атмосферно-вакуумной установке фирмы Креол (Ве,несуэлла) производительностью 3 млн. т/год нефти в результате глубокой регенерации тепла всех видов горячих потоков (в том числе и пародистиллятных фракций) температура предварительного подогрева нефти достигает 260 °С. Нефть пропускается через теплообменные аппараты, обогреваемые теплоносителями в следующем порядке циркуляционные орошения атмосферной колонны— -пародистиллятные фракции атмосферной колонны— -верхние продукты вакуумной колонны— -боковые потоки атмосферной колонны— -боковые потоки вакуумной колонны— -вакуум-остаток. На обычных установках нефть поступает в атмосферную печь при 170—180 °С. Таким образом, благодаря регенерации тепла горячих потоков тепловая нагрузка печей уменьшается на 20—25%. [c.213]

    Процесс фирмы Мобил-Баджер осуществляется при температуре выше 270 °С (катализатор стабилен до 565°С), давлении около 2 МПа, соотношении бензол этилен 6—7 1, объемной скорости 3 ч селективность по этилену 99% (рис. 61). Блок алкилнрования может состоять из двух и более реакторов, работающих в режиме алкилирование — регенерация. Регенерацию проводят в азотно-воздушной среде для исключения излишнего подъема температуры. Остаток из колонны выделения диэтилбензола вместе с отходящими газами может обеспечить 607о потребности установки в топливе. Кроме того, 95% тепла, затрачиваемого на проведение процесса, регенерируется в виде пара. Этот процесс позволяет использовать низкоконцентриро-ванпую этиленовую фракцию, обеспечивает повышенный выход целевого продукта. Для него характерны низкая энергоемкость, обусловленная высокой степенью утилизации тепла, отсутствие коррозии и вредных выбросов в атмосферу. [c.173]

    Регенерация пропана. Из процессов регенерации углеводородных растворителей процесс отгонки бензиновых растворителей (технического гептана и др.) от продуктов депарафинизации проводят на наиболее простых перегонных устройствах, применяемых для разделения продуктов на дистиллят и остаток, значительно отличающихся друг от друга по температурам кипения. Эти устройства или установки включают нагреватель огневого или парового нагрева, колонный испаритель, оборудованный двумя-четырьмя отбойными или ректификационными тарелками, конденсационные, теилообменные и вспомогательные аппараты. Растворитель отгоняют в исиарителе острым водяным паром. Для переработки растворов с высоким содержанием растворителя можно применять циркуляционную систему нагреза, а также двухступенчатый нагрев и отгон. [c.234]

    Линии I — раствор депарафинированного масла с депарафинизационной части установки II — раствор гача (петролатума) с депарафинизационной части установки III — раствор масла на регенерацию IV — остаток от отгона пропана из раствора масла У — вывод масла на дополнительный подогрев VI — освобожденное от пропана депарафинированное масло в резервуар VII — раствор гача на регенерацию VIII — остаток от отгона пропана из раствора гача IX — вывод гача на дополнительный подогрев X — освобожденный от пропана гач (петролатум) в резервуар XI — пары пропана высокого давления XII — жидкий пропан на депарафиниэационную часть установки XIII — пары пропана низкого давления XIV — пропан на орошение колонн. [c.235]

    Из колонны К-2 остаток под избыточным давлением, существующим в этой колонне, проходит паровой нагреватель Т-7, где подогревается до 155—165° и поступает в колонну III ступени К-3 (давление 0,7 ати, температура отходящих паров 145— 150 ). В этой колонне отгоняется почти весь ацетон, бензол и основная масса толуола. Остаток из колонны К-3 перетекает в расположенную под ней отпарную колонну IV ступени К-4, ] де от него острым водяным паром отгоняют остатки растворителя. Для поддержания в колонне К-4 нужной температуры часть выходящего масла забирается насосом, прокачивается через паровой нагреватель Т-19 и возвращается в верхнюю часть этой колонны. Отходящие нары растворителя содержат в основном толуол, частично бензол и небольшое количество ацетона, а также водяной пар, подаваемый в низ колонны для отпарки растворителя. Масло, освобожденное от остатков растворителя, с низа колонны проходит в теплообменник Т-9 для отдачи тепла раствору, идущему на регенерацию, и после охлаждения в водяном холодильнике Т-21 откачивается в резервуарный нарк. [c.242]

    Регенерация растворителя (удаление смолистых веществ) производится путем его упаривания. Смолистый остаток после упаривания разбавляют водой и сжигают. Для нормальной работы регенерационной установки необходи.мо поддерживать вакуу.м во всех ступенях процесса регенерации и соответствующую герметичности системы, так как пары растворителей (ДМФ, НМП могут образовывать взрывоопасные смеси с воздухом. [c.105]

    Змеевиковые теплообменники были первыми аппаратами, применяемыми для регенерации тепла мазутов и полугудронов. Их укладывали по дну подогревателя сырья. По трубам змеевика прокачивали горячий остаток охлаждаясь, он отдавал тепло сырью. Вследствие возможности размещения небольшой поверхности теплообмена, низкого коэффициента теплопередачи — менее 30 ккалЦм X X ч-град), громоздкости и опасности в пожарном отношении такие [c.254]

    На основании изучения растворимости нефтяных остатков в сжатых газах был предложен метод деасфальтизации нефтяных остатков сжатыми газами [Жузе Т. П., Капелюшников, (М. А., 1954 г., Жузе Т. П., 1966 г.]. Он заключается в следующем пропан или его смесь с пропиленом смешивается с сырьем при температуре 105—МО°С и давлении 100—120 кгс/см й направляется в сосуд, где температура и давление те же. При этом в газе растворяется углеводородная часть сырья, образуя газовый раствор деасфальтизата. Асфальтово-смолистые компоненты сырья в этих условиях не растворяются, образуя остаток. При переходе газового раствора в другой сосуд, где давление снижается до 40 кгс/см , из раствора выпадает деасфальтиро-ванный продукт, так как при 40 кгс/см газ уже не является растворителем. Выпадение деасфальтизата сопровождается регенерацией газа, который направляется затем на прием компрессора, дожимается с 40 до 100—120 кгс/см и возвращается в цикл для растворения новых порций сырья. Если между первым и вторым сосудами установить промежуточные сосуды, в [c.105]

    Реакционная масса представляет собой суспензию терефталевой кислоты в растворителе. Эту суспензию фильтруют в центрифуге (или на фильтре) 4, на которой терефталевую кислоту промывают свежей уксусной кислотой и направляют на очистку. От фильтрата отгоняют воду в ректификационной колонне 5 из куба уксусная кислота с растворенным в ней катализатором возвращается в реактор /. В кислоте при многократной циркуляции накапливаются смолистые примеси, поэтому часть кислоты отводят в колонну 6 для регенерации. Уксусная кислота отгоняется от тяжелого остатка и возвращается в цикл. Остаток сжигают или регенерируют из него кобальт. [c.403]

    Продукты реакции направляют в колонну 2, где отгоняется лаиболее летучий пропилен, возвращаемый на эпоксидирование. Затем в колонне 3 в виде дистиллята получают оксид пропилена, а кубовый остаток перегоняют в вакуумной колонне 4, отделяя тяжелый остаток, содержащий катализатор. Часть тяжелого остатка возвращают на эпоксидирование, а остальное сжигают или подают на регенерацию катализатора. Дистиллят колонны 4 состоит главным образом из этилбензола, метилфенилкарбинола и ацетофенона. [c.444]

    Из маточного раствора в ректификационной колонне 9 регенерируют растворитель, возвращаемый на стадию перекристаллизации. Остаток от регенерации растворителя еще содержит значительное количество дифенилолпропана и побочных веществ (изо-П1)опенилфенол), способных к образованию дифенилолпропана. Поэтому часть остатка после дополнительной обработки в блоке/I) [c.552]

    I — окись углерода И — олефины III — катализатор IV — вода V — реакционная смесь VI — катализатор на регенерацию VII — сырые кислоты VIII — промывная вода на очистку IX — товарные нео-кислоты X — кубовый остаток на сжигание. [c.267]

    Аппараты ую разгонки кЩ. Установки моноэтаноламиновой очистки обязательно снабжаются аппаратами для разгонки МЭА в присутствии щелочи, что является главным фактором снижения химических потерь амина и уменьшения коррозии. Разгонку проводят в специальных аппаратах под вакуумом или при давлении регенерации с подачей пара в присутствии щелочи. На разгонку поступает небольшая часть раствора чистые пары ЮА отводят в куб регенератора, а продукты побочных реакщй накапливаются в аппарате. Вазгонка под давлением регенерации осуществляется в аппарате, снабженном паровым нагревателем. Она проводится в две стадии (полунепрерывный процесс).Вначале разгонка идет с подачей МЭА, с добавкой 3 щелочи (первая стадия 12-15 суток). По мере отгонки МЗА и воды в аппарате накапливаются вы-сококипящие примеси и температура повышается. При температуре 140-146°С подпитку прекращают и начинают вторую стадию - выщелачивание амина при непрерывной подаче пара (двое суток). После того как содержание амина в паре снизится до 0,5 , разгонку прекращают. Кубовый остаток удаляют промывкой водой. [c.223]

    Посредством однократного испарения невозможно полностью отогнать растворитель от рафината и экстракта, довести содержание в НИХ растворителя до сотых долей проценту. Неиопаривший-ся остаток растворителя отгоняют открытым водяным паром в отпарных колоннах. После такого отпаривания в рафинате и экстракте остается 0,005—0,02% (масс.) растворителя. Отпаривание растворителя при его регенерации используют во всех процессах очистки и депарафинизации. Первой стадией извлечения растворителей из рафинатного и экстрактного растворов является нагревание в трубчатых Печах с конвекционными и радиантными секциями печи для нагрева экстрактных растворов многопоточные. На некоторых установках растворы нагревают в теплообменниках жидкими теплоносителями (нагретыми дистиллятами и остатками, дифенилом, водяным паром и др.). Последний способ используют только в схемах очистки низкокипящими растворителями. [c.104]

    По другому варианту (рис. 86) сырье разделяют в двух адсорберах, в одном из которых проводится адсорбция, в другом — десорбция. Тяжелое сырье разделяют в многоадсорберной системе. Разделяемое сырье подается через теплообменник 1 в печь 5, где оно испаряется и поступает вниз адсорбера 4 или 6 в зависимости от того, на какой стадии каждый из них находится. Сверху адсорбера выходит денормализат II, который через теплообменник I и холодильник 2 поступает в емкость денормализата 3. После того как адсорбент полностью насытится к-алканами,- его продувают потоком м-гексана для удаления примесей из свободного объема и с внешней поверхности. Отработанный адсорбент поступает в систему десорбции 7 и выжига кокса (если в этом есть необходимост ). Смесь десорбируемых в системе регенерации н-алканов с ниэкомолекулярным десорбентом поступает в ректификационную колонну 10 для разделения. Отбираемый сверху этой колонны десорбент III возвращается в процесс. Остаток — -ал-каны IV отбирают снизу коло.нны 10, охлаждают в холодильнике и вьгводят с установки. Денормализат, если в нем содержится десорбент, также поступает на ректификацию, после чего выводится с установки. [c.257]

    Регенерация катализатора. По окончании никла реакции катализатор теряет активность вследствие отложения на нем кокса. Процесс регенерации осуп],ествляется поэтапно. Сначала прекращается прием сырья на установку. Блок гидроочистки и блок стабилизации отключаются. Циркуляция водородсодержащего газа в блоке платформинга продолжается для промывки системы от углеводородов. Далее постепенно сокращается подача топлива в форсунки печи платформинга до полного отключения. Система постепенно охлаждается до 200°С, и циркуляция водородсодержа-, щего газа прекращается. Водородсодержащий газ сбрасывается через редукционные клапаны в топливную сеть. Из реакторов остаток паров углеводородов отсасывается вакуумным насосом. Затем система продувается инертным газом в атмосферу. После продувки система заполняется инертным газом до давления 1 МПа, включается циркуляционный компрессор и реакторный блок постепенно разогревается при постоянной циркуляции инертного газа. При 250 °С к инертному газу добавляется воздух в таком количестве, чтобы концентрация кислорода в инертном газе не превышала 0,57о (об.) в начале регенерации и 2% (об.) в конце регенерации. Выжигание кокса проводится в две ступени первая ступень при 250—300°С, вторая при 380—400°С. После окончания выжигания кокса катализатор прокаливают при 500 °С. Затем систему охлаждают, циркуляцию инертного газа прекращают и сбрасывают его в атмосферу. После этого снова продувают систему водородсодержащим газом. [c.254]

    Вентили переключаются автоматически, что обеспечивает непрерывность процесса. Продукты реакции перерабатывают почти так же, как и при термическом крекинге. Давление, под которым работает установка, значительно меньше давления, применяемого в чисто термическом процессе оно составляет всего 10% его величины, т. е. 2,8—3,5 ат. Часовая объемная скорость зависит от исходного сырья в расчете на жидкость опа составляет 1—2 объема исходного сырья на 1 объем катализатора. Выход бензина из газойля при однократном прохождении сырья через печь равняется 35— 40% объемн. При регенерации катализатора температура пе должна превышать 550°, в противном случае его активность может упасть. Ненрореаги-ровавшпй остаток (рециркулят)]успегано моя по использовать для термического крекинга. [c.265]

    Источниками покрытия потребности в материальных ресурсах являются остаток материальных ресурсов на начало пла-новэго периода Зо, внутренние ресурсы предприятия (регенерация масел, восстановление инструмента и др.) Ив.р, материальные ресурсы, приобретаемые в централизованном порядке И, материальные ресурсы, приобретаемые в порядке оптовой тор- [c.238]

    В работе [зз], в патенте [44] приведена технологическая схема узла регенерации растворителя и условия работы основных аппаратов (экстрактора, сепаратора) при црименении в качестве растворителя н-пентана и изобутана (рис. 6). Согласно описанию в [44] экстракция гудрона ведется н-пентаном при температуре 149°С и давлении 0,98 МПа, а регенерация растворителя осуществляется в сепараторе, в который деасфальтизатный раствор попадает после обогрева в теплообменнике и пароаерегревателе 1фи температуре 202-203°С, давлении 3,8-4,О МПа, либо цри температуре 214°С, давлении 4,75 МОа. В этих условиях большая часть растворителя отделяется и возвращается на стадию экстракции, а остаток растворителя далее отпаривается от деасфальтизата обычным способом. При проведении экстракции гудрона изобутаном условия были следующими температура 115°С, давление 3,7 МПа [44]. Регенерация растворителя осуществляется по той же схеме (см. рис.6) в сепараторе цри температуре 144°С и давлении 4,2 МПа. В патенте [45], где в качестве [c.30]

    Сырье, пройдя блок гидроочистки, после стабилизации подогревается в печи 1 и поступает в колонну 2 для отгонки легких фракций, образовавшихся при гидроочистке. Остаток после отгонки, имеющий кп -200 С, подают насосом 8 через печь 7 к основанию подъемника (лифт-реактор) 11. Температура в реакторе 515-545 С, время контакта сырья с катализатором несколько секунд. Сюда же из регенератора 6 ссьшается регенерированный катализатор и вниз подается водяной пар. Катализатор, взвешенный в смеси паров сырья и водяного пара, через решетку на конце подъемника 11 попадает в реактор 10. Там пары продуктов крекинга отделяются от катализатора, который ссыпается в отпарную секцию, снабженную перегородками для повышения эффективности отпаривания. Отпаренный катализатор самотеком ссыпается в регенератор 6. Воздух на регенерацию подают воздуходувкой 9 температура регенерации 700 С, давление 2,5 МПа, интенсивность выжигания кокса -80 кг/ч, скорость газов над слоем 0,9-1,0 м/с. В регенераторе отсутствуют паровые змеевики для отвода избыточного тепла, и тепловой баланс реакторного блока регулируют, изменяя соотношение СО СОз (раздельно подавая воздух в воздушные змеевики). [c.55]

    Регенераторы тепла, или теплообменники. Змеевиковые теплообменники. Эти аппараты были первыми из применявшихся на нефтеперегонных заводах для регенерации тепла мазутов и нолу-гудронов. Змеевики укладывались или по дну резервуара, или но всему объему хранилища (фиг. 166). По трубам змеевшга прокачивался горячий кубовый остаток, который, охлаждаясь, отдавал свое тепло сырью, поступающему на перегонку. Аппараты одновременно служи.чи водогрязеотделителями. Вследствие невысокого коэфициента теплопередачи (ниже 30 ккал м час), небольшой поверхности теплообмена на единицу сырья, опасности в пожарном отношении и громоздкости эти аппараты не получили [c.276]

    При дальнейшем нагревании соли дисернокислого эфира происходит регенерация гидросульфата калия. Так как атом водорода и остаток гидросульфата калия отщепляются от двух соседних атомов углероДа, в результате должен был бы образоваться непредельный спирт — про-падненол с двумя двойными связями. Однако практически, как показывает реакция с фуксинсернистой кислотой, вместо такого спирта гголучается альдегид. Очевидно, в момент образования спирта происходит его изомеризация в альдегид—акролеин  [c.44]

    В склянку емкостью 1—1,5 л вносят 275 мл брома и постепенно при взбалтывании, порциями по 25 мл, ирплпвают 48%-ную бромистоводородную кислоту, следя за тем, чтобы не было сильного разогревания. Приливание кислоты прекращают, когда смесь станет гомогенной. Расход кислоты составляет около 560 мл. За ходом растворения брома в бромистоводородной кислоте удобно наблюдать в проходящем свете. Применение механической мешалки значительно ускоряет растворение. В полученную однородную жидкость через воронку с длинной трубкой, доходящей почти до дна склянки, приливают 200—250 мл воды (порциями ио 50 мл), при этом происходит расслоение жидкости. Нижнии слой представляет собой чистый бром (225 г). Верхний слой подвергают перегонке в приборе, описанном выше, при этом получают еще 600 г брома. Остаток в колбе после отгонки брома перегоняют с целью регенерации бромистоводородной кислоты. При 115—123 °С отгоняется около 400 мл 38%-ной кислоты (пл. 1,34), прп 123—124 °С — 150 мл 45 -ной кислоты и выше 124 °С 275 мл 48%-нои кислоты (пл. 1,48—1,49). [c.76]


Смотреть страницы где упоминается термин Регенерация из остатков: [c.183]    [c.297]    [c.164]    [c.289]    [c.332]    [c.155]    [c.241]    [c.306]    [c.314]    [c.23]    [c.33]   
Руководство по неорганическому синтезу Т 1,2,3,4,5,6 (1985) -- [ c.1084 , c.1742 ]




ПОИСК





Смотрите так же термины и статьи:

Выбор реагентов для высокотемпературной очистки газов от сероводорода и общая характеристика условий регенерации твердого остатка

Отмывка остатков продуктов регенерации

Регенерация KI из лабораторных остатков

Регенерация йодных остатков

Регенерация отработанных остатков

Регенерация отработанных остатков Регенерация серебряных остатков

Регенерация растворителей, применяемых в процессах очистки и разделения нефтяных фракций и остатков

Регенерация ртути и переработка ртутных остатков



© 2025 chem21.info Реклама на сайте