Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Факторы, влияющие на гидрирование

    Как видно, термодесорбционная характеристика, предложенная Д. В. Сокольским с сотр. [14], помогает исследователю получить более конкретные сведения об активности катализатора без использования данных многочисленных физико-химических измерений. Подробные данные о связи между активностью никелевого катализатора и количеством сорбированного им водорода позволяют определить скорость гетерогенного каталитического жидкофазного гидрирования с учетом особенностей трех фаз, представляющих собой реакционную систему [14]. Решающее значение при этом имеют свойства используемого катализатора (твердой фазы), изменяющиеся в зависимости от химического состава, условий приготовления или применения (подбор среды). Изложенные выше факторы влияют прежде всего на сорбционную способность металлических катализаторов по отношению к. водороду, участвующему в образовании активных центров поверхности катализатора. На основе приведенных данных необходимо считать, что  [c.32]


    Возможные направления процессов изомеризации и восстановления при гидрировании метиллинолеата приведены иа схеме (30). Наиболее простым процессом должно было быть восстановление ДО эфиров 18 1 (9с н 12с) и далее до стеарата, однако конкурирующие реакции изомеризации приводят к нескольким диенам (сопряженным и несопряженным) и моноенам. Изомеры образуются в результате миграции двойной связи и изменения стереохимии Юлекулы. Состав продуктов частичного восстановления зависит от катализатора, температуры, давления н других факторов, влияю- Циx на степень доступности атомов водорода на поверхности ката-лизатора. Важное значение имеют также способность различных Ложных эфиров адсорбироваться иа поверхности катализатора и сорбироваться с нее н скорость их гидрирования. При гидриро- ании смеси эфиров относительная легкость адсорбции может [c.39]

    Скорость гетерогенного каталитического жидкофазного гидрирования определяется поведением трех фаз, представляющих собой реакционную систему. Решающее значение при этом имеют свойства используемого катализатора (твердой фазы), изменяющиеся в зависимости от его химического состава, условий приготовления или применения (подбор среды). Приведенные факторы влияют прежде всего на сорбционную способность металлических катализаторов по отношению к водороду, участвующему в образовании активных центров поверхности катализатора. В ряде работ, например [1], обсуждается связь между активностью катализаторов гидрирования и наличием в них водорода (количеством, энергией его связи с поверхностью). Однако до сих пор не удавалось сделать определенных обобщений, поэтому необходимо и далее заниматься вопросами, которые могут разрешить эту проблему. [c.108]

    На одном и том же катализаторе селективность процесса зависит от ряда факторов, в том числе от относительной реакционной способности органических веществ или отдельных функциональных групп и от их способности адсорбироваться поверхностью катализатора. Часто оба фактора влияют параллельно, иногда первый из них превалирует над вторым. Вследствие этого, например, двойные связи арилолефинов всегда гидрируются в первую очередь по сравнению с ароматическим ядром, а альдегидные группы — быстрее кетонных. Имеются, однако, примеры, когда реакционная способность и хемосорбция изменяются в противоположных направлениях. Тогда вещество, лучше сорбируемое, вытесняет с поверхности катализатора другой реагент или промежуточный продукт и гидрируется в первую очередь. Этим объясняется, что ацетилен и его гомологи можно селективно гидрировать в соответствующие олефины, несмотря на более высокую реакционную способность образующихся олефинов. Меньшая сорбируемость целевых продуктов последовательных превращений (например, спиртов при гидрировании кислот и карбонильных соединений, аминов при гидрировании нитрилов и т. д.) позволяет провести реакцию с лучшей селективностью и более высоким выходом. [c.452]


    Существенным недостатком аппаратов указанных типов является их высокая стоимость. Основное применение эти аппараты находят в производстве аммиака, метанола, в процессах гидрирования угля, масел и т. д. Эти процессы неизменно связаны с факторами, которые влияют на механические и физические свойства сталей и поэтому должны быть учтены при выборе материалов. Сюда можно отнести такие явления, как 1) физическая и хими- [c.224]

    Если концентрация глюкозы не превышает 30%, а давление водорода не выше 8 МПа, гидрирование глюкозы должно проходить по схеме III. На механизм протекающей реакции кроме концентрации реагирующих веществ влияют и другие факторы — температура, интенсивность перемешивания, природа катализатора, растворителя и т. п. [c.74]

    Еще сложнее влияние электронных факторов в бинарных сплавах переходных металлов. Для сплавов никеля с металлами переходных групп в реакциях гидрирования наблюдается, как правило, один максимум активности при определенной концентрации добавляемого к никелю металла. Положение максимума несколько меняется в зависимости от природы проводимой реакции. В бинарных сплавах Рё—Ки и Р1—Ки наблюдаются два максимума активности первый в области больших концентраций Рс1 или Р1, второй при больших концентрациях Ки. Качественную зависимость активности от числа неспаренных электронов для ряда этих систем удалось подтвердить. Для сплавов никеля положение заметно осложняется тем, что добавки переходных металлов влияют на дисперсность. [c.154]

    Жидкофазная и газофазная гидрогенизации относятся к гетерогенным реакциям, поскольку протекающие в этом случае процессы осуществляются в присутствии катализаторов — на их поверхности. Скорость гидрирования в жидкой фазе определяется концентрацией водорода в затирочном масле и временем, необходимым для диффузии водорода в катализатор. Технологическое оформление также влияет на эффективность процесса. Например, введение гидрируемого сырья и водорода в реакционную колонну снизу обеспечивает их надежное перемешивание и облегчает диффузию водорода. Положительным фактором также является то, что растворимость водорода в тяжелом масле возрастает с температурой, благодаря чему увеличивается скорость гидрогенизации. [c.175]

    Весьма важное практическое значение имеет также и то, что реакция восстановления карбонильной группы на никель-хромовом катализаторе проходит строго селективно, и даже при полной конверсии альдегидов выход спиртов составляет 100%. Экспериментально установлено, что в определенных температурных Условиях фактор давления (в исследованном интервале) не влияет на селективность процесса. Весьма интересными оказались опыты по изучению влияния давления на процесс гидрирования катализатов карбонилирования пропилена. Известно, что в процессе гидроформилирования в результате вторичных реакций наряду с целевыми продуктами (альдегидами) образуется некоторое количество высококипящих продуктов. Состав этих высококипящих продуктов, называемых обычно кубовым остатком, весьма сложен и полностью не исследован. Определенное представление о его составе можно получить, рассмотрев некоторые из возможных вторичных реакций, к Их числу относятся  [c.51]

    Очевидно, что при высоком давлении водорода, применяемом в процессах гидроочистки, и обычных температурах гидрирования равновесие не лимитирует протекания реакции. Повышение температуры отрицательно влияет на протекание этой равновесной экзотермической реакции, но все же при температуре процесса не выше примерно 540°С равновесие не является лимитирующим фактором. [c.207]

    В различных методах получения капролактама сырьем может быть бензол, циклогексан или толуол, причем последний наименее дефицитен. Источником циклогексана могут быть как процессы его выделения из нефтяных фракций (в случае нефтей, богатых циклогексаном), так и гидрирование бензола. Описанные выше методы различаются также вспомогательными реагентами, числом стадий и в меньшей степени выходом целевого вещества. Все эти факторы, естественно, влияют на себестоимость капролактама. Если себестоимость капролактама, полученного классическим способом его производства из фенола, принять за 100, то себестоимость капролактама из анилина оказывается равной 135, а из циклогексана через циклогексанон — только 85. В связи с этим производство капролактама все более базируется на циклогексане. Из способов превращения циклогексана в лактам заслуживает внимания (кроме окисления) процесс нитрозирования, как состоящий из минимального числа стадий, а метод получения через нитроциклогексан оказался мало перспективным. [c.785]

    Имеется, однако, один важный фактор, способный влиять на направление расщепления трехчленного цикла при гидрировании, а именно — носитель гидрирующего металла, поскольку применяемые катализаторы являются обыкновенно катализаторами на носителях. Как было показано нами ранее, силикагель [10] и активированный древесный уголь [11] катализируют реакцию изомеризации циклопропановых углеводородов в олефины, правда в различных условиях силикагель — даже при температуре, близкой к 0°С, активированный уголь — лишь при температуре [c.87]


    На теплоту гидрирования дифенила в две молекулы бензола могут влиять энергии сопряжения и энергии деформации в молекуле дифенила, хотя величина этой энергии вряд ли превысит 0,8 ккал/моль (см. ниже). Равным образом эти два фактора могут влиять и на теплоту гидрирования дифенилена в дифенил. Значительно ббльшая величина теплового эффекта (—74,7 ккал/моль) указывает на то, что как бы ни увеличилась энергия резонанса в результате образования циклобутадиенового кольца, она будет скомпенсирована происходящей при замыкании кольца деформацией, энергия которой составит примерно 74 ккал)моль. [c.99]

    На скорость гидрирования и чистоту получаемого продукта влияют следующие факторы а) природа и активность катализатора и присутствие посторонних веществ, которые могут играть роль промоторов и замедлителей б) свойства растворителя в) температура реакции и г) свойства восстанавливаемого вещества. [c.196]

    Кинетика и механизмы реакций гидрирования как карбонильных соединений вообще, так и альдегидов оксосинтеза в частности, изучены крайне слабо. Объясняется это, по-видимому, сложностью и недостаточной надежностью попыток обобщения кинетических закономерностей и механизмов гетерогенно-каталитических реакций, многообразием типов и сложностью состава используемых катализаторов, что еще больше затрудняет обобщение известных данных. Немаловажную роль играет, вероятно, и то обстоятельство, что в условиях промышленного гетерогенно-каталитического процесса крайне редко реализуются случаи проведения химической реакции в чисто кинетической области, т. е. варианты, когда на скорость собственно химической реакции не влияют физические факторы (массоперенос в потоке, массоперенос в зерне катализатора, теплопередача и т. д.). [c.144]

    Последовательное замещение атомов водорода в этилене на метильные группы приводит к уменьшению энергии активации реакции гидрирования, что может быть обусловлено двумя конкурирующими факторами 1) теплота адсорбции олефина уменьшается но мере увеличения числа замещающих метильных групп вследствие стабилизации я-связи благодаря эффекту гиперконъюгации 2) число центров, на которых может адсорбироваться водород, постепенно возрастает с увеличением числа замещающих метильных групп, так как усиливающиеся пространственные затруднения могут привести к тому, что более значительная часть новерхности будет подвергаться действию водорода. Таким образом, вполне возможно, что оба эти фактора влияют на истинную энергию активации. Однако трудно определить степень влияния каждого из этих факторов но отдельности и оценить их сравнительное значение. При изучении процессов гидрирования олефинов прежде всего стремятся выяснить характер зависимости энергии активации от температуры. При температурах, превышающих приблизительно 100°, энергия активации непрерывно понижается, при 150° она становится равной нулю, а далее ее величина делается отрицательной. Скорость реакции поэтому возрастает до максимума, отвечающего некоторой определенной температуре Гщах, а затем ностеиенно уменьшается [63—65]. Величина Гщах также уменьшается при снижении парциального давления олефина, поэтому Цур-Штрассен [66] предположил, что теплота адсорбции олефина входит в экспериментально определяемую величину энергии активации. [c.334]

    До сих пор мы рассматривали энергии деформации и стабилизации, обусловленные изменениями в делокализации электронов и полярными эффектами. Одним из способов, с помощью которых эти воздействия могут быть обнаружены в циклических и ненасыщенных соединениях, является сравнение теплот гидрирования. В значительной мере эти же факторы влияют и на теплоты самополимеризации этиленовых и циклических соединений. Для некоторых из этих соединений известны и теплоты гидрирования и теплоты полимеризации интересно, что в тепловых эффектах обоих типов реакций наблюдаются одинаковые закономерности. Для ряда гетероциклических соединений, для которых другие термохимические данные весьма скудны, теплоты полимеризации могут быть использованы для выявления относительных энергий деформации. [c.112]

    При рассмотрении механизма процессов гидрирования в жидкой фазе необходимо учитывать, что наличие растворителя осложняет кинетику процесса. В мультиплетной теории влияние растворителя учитывается в связи с его адсорбционной способностью. Наряду с этим необходимо отметить ряд других факторов, которые могут влиять на характер процесса. Первая группа этих факторов, определяемая возможным взаимодействием между растворителем и реагирующими веществами или промежуточным комплексом, учитывается теорией абсолютных скоростей реакций. [c.101]

    В табл. 1.30 и 1.31 суммированы литературные данные по гидрированию бутадиена-1,3 и пентадиена-1,3 на металлических, оксидных и металлокомплексных катализаторах. При обсуждении этих данных следует учитывать, что соотношение продуктов при гидрировании диенового углеводорода зависит не только от типа применяемого катализатора, но и от условий проведения реакции (температуры, природы растворителя, если реакция осуществляется в жидкой фазе). Условия приготовления катализатора также сказываются иногда на соотношении продуктов реакции. Так, При гидрировании бутадигна-1.3 на Со-катализаторе, восстановленном при температурах ниже 300°С, отношение бутен-1/бутен-2 составляет 2,33. В то же время на данном катализаторе, восстановленном при температурах выше 400°С, это отношение равно 0,51. В случае металлических катализаторов кислотные свойства носителя также влияют на состав образующихся Продуктов реакцни [107]. Несмотря на это для выявления характерных закономерностей, присущих тому или иному типу катализаторов, мы будем пренебрегать влиянием некоторых факторов на соотношение продуктов реакции. [c.65]

    Однако эта последовательность совершенно иная для обмена дейтерия с высшими углеводородами [51]. Кроме того, сходный порядок активностей предполагает, что какое-то свойство катализатора одинаково влияет на скорости гидрирования или обмена. Ранее описанная в этом разделе работа показывает, что межатомные расстояния в кристаллах металлов важны и, по-видимому, они влияют на взаимодействие частиц, адсорбированных на центрах поверхности. Недавно появилась тенденция рассматривать межатомные расстояния в кристаллах как фактор менее важный, чем свойства, определяющие прочность связи. Общая связь между скоростью реакции и теплотами хемосорбции реагирующих веществ хорошо установлена чем больше теплоты хемосорбцни реагирующих веществ или продуктов, тем меньше скорость, как показано на рис. 61. Но тогда остается проблемой выявление связи между теплотами хемосорбцни и атомными или кооперативными свойствами металлов. Этот вопрос обсуждался в разд. 4 гл. VI. Образование связей непо- [c.289]

    В настоящей работе мы попытались определить, в какой степени вторичные реакции — гидрирование и изомеризация образующихся моноолефинов — влияют на состав продуктов гидрирования диена, и раздельно оценить селективность, обусловленную механизмом гидрирования диена, и избирательность, зависящую от адсорбционных факторов. С этой целью проводилось жидкофазное гидрирование диенов и олефинов различной структуры и их бинарных смесей в ирисутствии РЬ, Р(1, ЙЬ и N1. Условия сохранялись постоянными спиртовая среда, температура - -5° С, интенсивное перемешивание (800 кaч./лtгги). Р1-, Рс1- и К11-черни готовили восстановлением солей металлов формальдегидом в щелочной среде, а скелетный никель — выщелачиванием сплава N1 / А1 (1 1) 20%-ным раствором NaOH при 100° С. Для каждого опыта брали 0,01 моля гидрируемого углеводорода, 25 мл спирта и 0,025—0,05 г черни или 0,2 г скелетного никеля. Состав катализатора определяли методом газожидкостной хроматографии. Это позволило детальным образом контролировать состав образующихся продуктов на протяжении всего процесса [14—19]. [c.163]

    Таким образом, двойная связь образуется между С (10) и С (9). Она обусловливает напряжение в циклопентанонном кольце, в связи с чем это кольцо подвергается разрыву при омылении. Предполагается, что в бурой фазе лрисутствует щелочная соль энольной формы. Если щелочь сейчас же экстрагировать, взболтав бурый эфирно-спиртовый раствор с водой, хлорофилл может регенерироваться из эфирной фракции и остается неизмененным. Таким образом, первая стадия фазовой пробы обратима, по после возвращения зеленого цвета реакция не может идти обратно. Но, может быть, возможны некоторые специальные методы, с помощью которых хлорины могут быть превращены в форбины. Хотя с химической точки зрения фазовую пробу можно объяснить как результат энолизации хлорофилла, все же возникают известные трудности в интерпретации изменения окраски. Спектр бурой фазы неизвестен, но не может быть сомнения, что главная красная полоса поглощения хлорофилла или отсутствует, или значительно менее интенсивна. На основании того, что мы знаем о наличии этой полосы у хлоринов и форбинов, не приходится ожидать, что она должна исчезнуть до тех пор, пока три хромофорных фактора — конъюгированная система двойных связей, гидрированное ядро IV и атом магния — остаются нетронутыми. Энолизация боковой цени вряд ли может влиять на спектр в такой степени. Можно предположить, что во время бурой фазы происходят какие-то изменения с двумя водородными атомами в ядре IV. Может быть, эти атомы переходят из положении 7. и 8 в положения 9 и 10, создавая таким образом таутомерное равновесие между структурами  [c.465]

    С — 28 мас.%. Количество вторичного спирта, практически, остается постоянным. По-видимому, на данном катализаторе имеет место более прочная сорбция окиси по сравнению с никелевым, что способствует элиминированию кислорода. Решающим фактором в образовании первичного спирта при этом является специфическая ориентация а-окисного кольца на каталитических центрах. Влияние давления водорода связано с изменением заполнения поверхности катализатора в результате сорбции. Из предыдущих работ [3] известно, что давление водорода выше 3,0 МПа практически не влияет на скорость реакции гидрирования -окисей в присутствии никелевых катализаторов. В изученном интервале давлений 4,0—6,0 МПа на никелевом катализаторе (рис. 1, а) давление способствует небольшому увеличению выхода первичного спирта и снижению выхода вторичного. В присутствии кобальтового катализатора это влияние становится более существенным, особенно по выходу парафина в области повышенных температур. Отличительной особенностью кобальтового катализатора является высокая селективность гидрирования а-окисей в направлении образования первичного спирта. Однако выход парафинов в лучших условиях остигает 8—10 мас.%, что приводит к значительной потере а-окисей. [c.13]

    Первое соотношение получается, поскольку общее количество адсорбированных образований определяется площадью активной поверхности катализатора, а не взаимодействием модифицирующего реагента с субстратом, однако удовлетворительного объяснения последнего соотношения не найдено. Величины кажущейся энергии активации гидрирования одинаковы во всех случаях, независимо от различия в энантио-дифференцирующей способности катализаторов, и на механизм приссединения водорода не оказывает влияния изменение природы модифицирующего реагента или сложноэфирной группы в молекуле субстрата или изменение в ориентации адсорбированной молекулы субстрата. Если предположить, что на константу скорости гидрирования не влияют факторы окружения, то справедливо ks kR. Torita уравнение (7.57) может быть превращено в уравнение (7.58) (см. рис. 7.14, где приведена схема реакции с учетом изложенных представлений и номенклатуры )  [c.250]

    Основные факторы, которые, по-видимому, могут влиять на величину теплоты полимеризации, это, во-первых, стерические затруднения в полимере и, во-вто-рых, эффекты сопряжения и сверхсопряжения в мономере и полимере. Аналогичные стерические затруднения могут оказывать влияние в любой реакции, в которой раскрывается двойная связь. Поэтому можно сравнивать величины АН для сополимеризации с тепловыми эффектами процессов гидрирования и самополимеризации. За исключением вычисленных величин теплот самополимеризации, все тепловые эффекты, приведенные в табл. 23, получены экспериментальным путем. [c.123]

    Можно считать, что последовательностк активности и селективности катализаторов не всегда совпадают. Для ненанесенных катализаторов преобладающим фактором оказывается активность. Различия в последовательностях селективности, основанных, в первую очередь, на анализе продуктов (ряды (I) и (III)] и на активности металлов [ряды (V) и (VI)], обусловлены более сильной адсорбцией метилацетилена по сравнению с адсорбцией пропилена, образующегося на поверхности Си, Ге, Со и N1. В связи с тем что поверхность катализатора в значительной степени уже покрыта метилацетиленом, вероятность повторной адсорбции пропилена с последующим образованием пропана очень мала. Различия в способности металлов к повторной адсорбции пропилена будут влиять на последовательность их селективности. Результаты Вика [10], а также Скейта и Ван Рэйена [И] по гидрированию этилена на металлах хорошо согласуются с полученными нами данными. Так же как и в работе Вика [10], в нашем исследовании найдено, что логарифм активности катализатора в реакции гидрирования метилацетилена линейно возрастает с увеличением параметра р1ешетки. [c.314]

    Таким образом, полученные кинетические и потенциометрические данные подтверждают предположение о существенной роли зарамочных заместителей при гидрировании индексной группы, расположенной в глубине молекулы. Интересно отметить, что проведение реакций на образцах N1 с различной активностью не влияет на общие выводы. Данные свидетельствуют также о большой роли стереохимических факторов в адсорбции молекулы на поверхности катализатора и совершенно исключают предположение Хойтинка [71 о гидрогенизации вдали от поверхности катализатора. [c.202]

    Предыдущий раздел был посвящен описанию основных различий между физическими свойствами продуктов, образующихся в условиях гидрирования, вызывающих и не вызывающих сильную деструкцию полимерных цепей. Было показано, что температура реакции и катализатор являются важными факторами, обусловливающими то или иное направление реакции. Однако на свойства гидрированных продуктов влияет и ряд других факторов. В этом отношении процессы, в результате которых образуются жидкие продукты, изучены менее полно, чем реакции гидрирования, не приводящие к расщеплению полимерных цепей. Установлено, что реакцию гидрирования натурального каучука, сопровождающуюся крекингом, можно регулировать и получать в основном моторное топливо или смесь моторного топлива и тяжелых масел. Как показали Коулей и Кинг [255], свойства получаемого продукта зависят главным образом от температуры реакции. [c.171]

    Появление непредельности в углеводородах, замещение водорода кислородом или серой и некоторые другие изменения состава молекул повышают температуру кипения. Аналогичным образом влияет переход парафинов в циклопарафины и вообще замыкание циклов. Поскольку температура кипения есть функция сил сцепления молекул, их ассоциация также приводит к повышению температуры кипения. Гидрирование ароматики обусловливает снижение температуры кипения. Более подробно о факторах, опре- [c.184]


Смотреть страницы где упоминается термин Факторы, влияющие на гидрирование: [c.286]    [c.155]    [c.13]    [c.161]    [c.3]   
Смотреть главы в:

Химические реакции полимеров Том 1 -> Факторы, влияющие на гидрирование




ПОИСК





Смотрите так же термины и статьи:

влияющие фактор



© 2025 chem21.info Реклама на сайте