Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Факторы, влияющие на состав продуктов

    На синтез вторичных метаболитов влияет целый ряд факторов. Прежде всего выход продукта зависит от генотипа растения-до-нора. Показано, что культуры клеток, полученных от высокопродуктивных растений, продуцировали большее число метаболитов. Другой важный фактор — состав питательной среды и концентрация ее компонентов, которые должны обеспечивать, с одной стороны, увеличение количества клеток-продуцентов, с другой — [c.181]


    На эффективность процесса обогащения в ситовеечной машине влияют следующие факторы гранулометрический состав исходного продукта (крупность и однородность), удельная нагрузка, скорость воздуха, равномерность распределения продукта по ситу и стабильность слоя, кинематические параметры и наклон сил, правильность подбора нумерации сит. [c.489]

    В работе [16] было установлено, что количество воды, содержащейся в серной кислоте, тоже является важнейшим фактором, определяющим выход и состав продуктов алкилирования изобутана бутиленами в зависимости от количества воды изменяются степень ионизации и скорость гидридного переноса в кислотной фазе. Представляется вероятным, что растворенная вода оказывает аналогичное действие и на НР. Кроме того, присутствие воды влияет на некоторые физические свойства этого катализатора — снижает вязкость и поверхностное натяжение на границе раздела фаз, уменьшает растворимость изобутана в НР. [c.45]

    Рассмотренный механизм коксования показывает, что на процесс влияют различные факторы химический состав сырья склонность к мел молекулярным взаимодействиям, те.мпература входа вторичного сырья в реактор длительность пребывания продуктов в реакторе, давление в зоне реакции коэффициент рециркуляции и др. Влияние этих факторов подробно описано в работе [112]. [c.186]

    К внешним факторам электрохимической коррозии металлов относятся факторы, связанные с составом коррозионной среды п условиями коррозии температура, давление, скорость движения, внешняя поляризация и др. Важным показателем является величина pH среды, которая определяет механизм катодной реакции и состав продуктов коррозии (диаграммы Пурбе). Для нейтральных растворов важен ионный состав, который непосредственно влияет на стадийность процесса коррозии и на свойства продуктов коррозии, [c.24]

    Температура существенно влияет на скорость и механизм реакций и является решающим фактором воздействия на состав и количество образующихся при пиролизе летучих продуктов. Температура на поверхности образца Ts совпадает с температурой окружающей среды То только до определенной температуры пиролиза индивидуальной для каждого полимера. Повышение То выше этого значения приводит лишь к увеличению скорости распада, но почти не изменяет температуру образца. Очевидно, что целесообразнее вести пиролиз при температурах выше Та, т.к. при этом колебание внешней температуры мало влияет на качественный состав продуктов. Однако использовать слишком высокие температуры не рекомендуется, поскольку возрастает роль вторичных реакций. Наиболее предпочтительно проведение пиролиза при 600-700 С. [c.69]


    Возможные направления процессов изомеризации и восстановления при гидрировании метиллинолеата приведены иа схеме (30). Наиболее простым процессом должно было быть восстановление ДО эфиров 18 1 (9с н 12с) и далее до стеарата, однако конкурирующие реакции изомеризации приводят к нескольким диенам (сопряженным и несопряженным) и моноенам. Изомеры образуются в результате миграции двойной связи и изменения стереохимии Юлекулы. Состав продуктов частичного восстановления зависит от катализатора, температуры, давления н других факторов, влияю- Циx на степень доступности атомов водорода на поверхности ката-лизатора. Важное значение имеют также способность различных Ложных эфиров адсорбироваться иа поверхности катализатора и сорбироваться с нее н скорость их гидрирования. При гидриро- ании смеси эфиров относительная легкость адсорбции может [c.39]

    Было установлено [4], что на состав продукта могут влиять некоторые факторы, приводящие к преобладанию в реакционной среде нежелательного изомера. Такая возможность регулирования реакции имеет большое значение. Как было указано выше, из пропилена образуются изо- и н-масляные альдегиды примерно в одинаковых количествах, однако сбыт более благоприятен для н-масляного альдегида. [c.425]

    Сами промышленные равновесные катализаторы загрязнены различными металлами, и использовать их для сравнения нельзя, так как не известно, какое влияние окажут эти примеси на состав продуктов крекинга. Все испытания проводили на западнотехасском газойле (ui=0,8888 г/см , фактор А = 12,1), который пропускали при 493°С и отношении катализатор/сырье, равном 4,0. Опыты с другими типами нефтяного сырья (с удельным весом от 0,9224 до 0,8571 и фактором К от 11,5 до 12,9) показали, что качество исходных дистиллятов мало влияет на полученные результаты. Жесткость режима задавали изменением объемной скорости подачи сырья (г о)- [c.257]

    При температурах ниже 350 °С и давлении до 5 МПа состав продуктов реакции характеризуется кинетическими факторами, при более высоких температурах — термодинамическим равновесием. Поэтому выбор соответствующего катализатора будет во многом влиять на технологию процесса. [c.35]

    В табл. 1.30 и 1.31 суммированы литературные данные по гидрированию бутадиена-1,3 и пентадиена-1,3 на металлических, оксидных и металлокомплексных катализаторах. При обсуждении этих данных следует учитывать, что соотношение продуктов при гидрировании диенового углеводорода зависит не только от типа применяемого катализатора, но и от условий проведения реакции (температуры, природы растворителя, если реакция осуществляется в жидкой фазе). Условия приготовления катализатора также сказываются иногда на соотношении продуктов реакции. Так, При гидрировании бутадигна-1.3 на Со-катализаторе, восстановленном при температурах ниже 300°С, отношение бутен-1/бутен-2 составляет 2,33. В то же время на данном катализаторе, восстановленном при температурах выше 400°С, это отношение равно 0,51. В случае металлических катализаторов кислотные свойства носителя также влияют на состав образующихся Продуктов реакцни [107]. Несмотря на это для выявления характерных закономерностей, присущих тому или иному типу катализаторов, мы будем пренебрегать влиянием некоторых факторов на соотношение продуктов реакции. [c.65]

    Высокомолекулярные органические кислоты или их соли можно определять экстракционно-фотометрическим методом, используя в качестве реактива основной краситель органические основания и их соли определяются таким же способом, если в качестве реактива применять кислотные красители или окрашенные неорганические комплексные кислоты [1]. Применение красителей, растворы которых отличаются высоким молярным коэффициентом поглощения, дает возможность определять в очень разбавленных растворах органические кислоты и основания с большой молекулярной массой. Если коэффициент распределения окрашенного продукта между органической и водной фазами равен хотя бы 10, то возможно количественное определение исходных соединений [2] при концентрациях порядка 5-10-в М и выше. Способность экстрагироваться органическими растворителями наблюдается не у всех соединений, состоящих из крупных ионов. На эту способность влияют такие факторы, как состав и строение ионов, свойства экстрагента, pH водной фазы и др. Органические красители можно иногда заменить неорганическими реактивами. Например, некоторые органические основания экстрагируют в виде окрашенных солей с Н[Ре(ЗСГ )4], органические кислоты — в виде солей меди. Эти определения, отличающиеся меньшей чувствительностью, рассмотрены в гл. IX. [c.220]

    Однако это рассуждение нельзя доводить до крайности вследствие, например, того, что вибрационная мельница не может эффективно размалывать частицы с размером более чем 7ш диаметра шаров Частицы такого размера, имеющиеся в исходном материале, останутся не измельченными и, таким образом, будут влиять на форму кривой зернового состава продукта. Поэтому зерновой состав продукта является функцией характеристики размалываемости и размера частиц исходного материала, а также характеристики мельницы. Поэтому было бы неправильным придавать особое значение только какому-либо из этих факторов. [c.424]


    Рассмотрим теперь вторичные факторы, которые могут влиять на состав продуктов электроциклической реакции, [c.54]

    На процесс коксования и выход продуктов влияют состав исходной шихты, степень измельчения угля, плотность загрузки, скорость коксования и некоторые другие факторы. Наилучшими для коксования являются угли марки К (коксовые). Так как подобные угли имеются не во всех угольных бассейнах, то составляют определенную угольную смесь (шихту), которую тщательно перемешивают. Угли должны иметь определенную влажность (5—8 /о) и не превышать установленных пределов по содержанию золы и серы, которые в процессе коксования большей частью переходят в кокс и затем отрицательно влияют на ход доменного процесса. Если необходимо получить большее количество смолы и газа, составляют смеси из углей с высоким выходом летучих (например, газовые угли). [c.74]

    Поскольку N и Ь зависят от температуры, интенсивности перемешивания раствора, примесей и ряда других факторов, условия кристаллизации, в конечном итоге, оказывают на гранулометрический состав продукта существенное влияние. В частности, с помощью примесей регулируется число зародышей, а следовательно, и крупность кристаллов. То же относится и к температуре, и к перемешиванию. Температура, оказывая влияние на степень пересыщения и скорость роста, регулирует число и размеры растущих кристаллов. Перемешивание препятствует образованию агрегатов, обеспечивает более однородные условия роста, но одновременно способствует образованию вторичных зародышей. Таким образом, оно может влиять как на расширение, так и на сужение интервала размеров содержащихся в осадке частиц. [c.121]

    Первые два фактора влияют на скорость и глубину изменения состава дегтя при конденсации его компонентов третий — обусловливает глубину осмоления дегтя при его дестилляции, так как максимальное накопление продуктов конденсации зависит от концентрации исходных веществ в дегте, способных конденсироваться с образованием асфальтенов, карбоидов и кокса. Четвертый фактор указывает на влияние тех веществ, которые или входят в состав дегтя или вводятся в него, ускоряя или тормозя процессы конденсации. К первым относятся например аммиак, уксусная кислота и др., ко вторым — пары воды. [c.543]

    Обработке подвергали следующие параметры расход сырья, соотношение компонентов, температура и влажность шихты в грануляторе, температура газов на входе в сушильный барабан и на выходе из него, количество ретура, колебания концентрации питательных веществ в продукте, температура, влажность и гранулометрический состав продукта. Статистический анализ показал, что все факторы, за исключением 3 последних, не влияют на число претензий и следовательно на слеживаемость продукта. Таким образом, основными факторами, определяющими слеживаемость удобрения заданного химического состава, являются влажность, температура и размеры частиц. Для сравнительной оценки меры воздействия каждого из этих факторов в лабораторных условиях была изучена слеживаемость двух промышленных образцов нитроаммофоски марки Б (13—19—19) Череповецкого ПО Аммофос и марки А (17—17—17) Воскресенского ПО Минудобрения . Факторы варьировались в следующих пределах 7=303—333 К =0,4— 1,0% Ф=5—55% —содержание фракции 1—2 мм в продукте. [c.235]

    На образование ВМР влияют различные факторы качество применяемого сырья и материалов, их химический и минералогический состав, тип технологического оборудования, аппаратов и их техническое состояние, метод получения целевого продукта или изделия, ассортимент выпускаемой продукции, параметры технологического процесса и др. Поэтому для одного и того же производства, в котором образуются ВМР, разрабатывается несколько нормативов, каждый из которых соответствует определенному значению указанных факторов. Норма образования технологических отходов дается в натуральном виде (без пересчета содержания основных компонентов). Это позволяет определить истинный объем ВМР, что очень важно при рещении вопросов, связанных с транспортированием, организацией хранилищ, реализацией и др. [c.196]

    В процессе эксплуатации смазочные масла подвергаются воздействию различных внешних и внутренних факторов. В результате этого их состав и качество постепенно изменяются. Особенно отрицательно влияет на качество смазочных масел повышенная температура, так как в результате нагрева происходят реакции окисления и разложения масел. Среди продуктов разложения масла особенно нежелательны органические кислоты, вызывающие коррозионно-механическое изнашивание трущихся деталей трансмиссий, и смолистые вещества, которые приводят к образованию нежелательных отложений нагара, лака и шлама. Чтобы правильно оценить влияние отдельных марок смазочных масел на работу и состояние трущихся деталей и агрегатов автомобилей, необходимо учитывать показатели качества масел. [c.44]

    Применение акрилового полимера. На поведение синтетических соединений в буровых растворах влияют не только состав, структура и молекулярная масса конкретного полимера, но и состав и температура системы, в которую их добавляют. Конкретный полимер может работать как флокулянт лри малых концентрациях и как понизитель фильтрации при высоких. Эти переменные факторы делают необходимым проведение обширной программы испытаний до того, как новый продукт поступит на рынок. [c.477]

    Элементный состав кокса на катализаторе зависит от свойств крекируемого сырья, режима крекинга, полноты десорбции с катализатора продуктов реакции (качество отпарки) и других факторов. Полнота сгора шя углерода колеблется в широких пределах. На нее влияют свойства катализатора, наличие в массе циркулирующего катализатора специальных промоторов дожигания СО до СО2, линейная скорость движения продуктов сгорания через зону горения, температура в слое катализатора и в отдельных зонах регенератора и т.п. [c.4]

    Например, в случае бедных смесей газы, соприкасающиеся с продуктами сгорания в следе, будут холоднее при удалении пограничного слоя и вследствие диффузии смесь, сгорающая в вихревых слоях, будет более бедной, чем подаваемое топливо, если в качестве топлива использовать пропан или высшие углеводороды. В этом случае можно ожидать, что при удалении пограничного слоя будет уменьшаться бедный предел устойчивой работы стабилизатора пламени. Далее, можно ожидать, что удаление пограничного слоя оказывает влияние, которое до некоторой степени будет воспроизводить изменение состава. Так, при малых числах Не (небольшой стабилизатор и низкая скорость) изменение состава не очень велико, а изменение предела срыва обусловлено главным образом понижением температуры несгоревших газов. С увеличением скорости и размеров стабилизатора или одного из этих факторов (с увеличением числа Не) изменение состава становится уже значительным, н этот эффект складывается с эффектом охлаждения несгоревших газов. Наконец, при высоких скоростях и больших размерах стабилизатора состав снова изменяется незначительно, и на предел устойчивости в этом случае влияет главным образом холодный свежий газ. Эти общие рассуждения достаточно хорошо подтверждаются экспериментальными данными. Результаты, полученные на стабилизаторе 6 мм, указывают на большее изменение пределов устойчивости с увеличением скорости, а резуль- [c.215]

    Весьма важное практическое значение имеет также и то, что реакция восстановления карбонильной группы на никель-хромовом катализаторе проходит строго селективно, и даже при полной конверсии альдегидов выход спиртов составляет 100%. Экспериментально установлено, что в определенных температурных Условиях фактор давления (в исследованном интервале) не влияет на селективность процесса. Весьма интересными оказались опыты по изучению влияния давления на процесс гидрирования катализатов карбонилирования пропилена. Известно, что в процессе гидроформилирования в результате вторичных реакций наряду с целевыми продуктами (альдегидами) образуется некоторое количество высококипящих продуктов. Состав этих высококипящих продуктов, называемых обычно кубовым остатком, весьма сложен и полностью не исследован. Определенное представление о его составе можно получить, рассмотрев некоторые из возможных вторичных реакций, к Их числу относятся  [c.51]

    Если реакция замещения контролируется кинетически, то состав продуктов реакции определяется относительной нуклео-фильностью каждого из электронодонорных атомов амбидентно-го аниона по отнощению к данному электрофильному агенту. На ход реакции влияют многие факторы (в том числе природа противоиона и других присутствующих в реакционной смеси веществ, концентрации, температура, давление, структура уходящей группы и алкилирующего агента), а растворитель штрает определяющую роль в ориентации электрофильного агента эта проблема обсуждается в обзорах [364—367, 367а, 3676]. Еще в 1923 г. Кляйзен отмечал, что в реакции фенола с 3-бромпропе-ном в присутствии карбоната калия относительные количества образующихся продуктов О- и С-алкилирования зависят от растворителя, используемого в качестве реакционной среды [369]. В ацетоне образуется главным образом аллилфениловый эфир, а в растворителе типа бензола или толуола основным продуктом реакции является о-аллилфенол [369]. [c.342]

    В настоящей работе мы попытались определить, в какой степени вторичные реакции — гидрирование и изомеризация образующихся моноолефинов — влияют на состав продуктов гидрирования диена, и раздельно оценить селективность, обусловленную механизмом гидрирования диена, и избирательность, зависящую от адсорбционных факторов. С этой целью проводилось жидкофазное гидрирование диенов и олефинов различной структуры и их бинарных смесей в ирисутствии РЬ, Р(1, ЙЬ и N1. Условия сохранялись постоянными спиртовая среда, температура - -5° С, интенсивное перемешивание (800 кaч./лtгги). Р1-, Рс1- и К11-черни готовили восстановлением солей металлов формальдегидом в щелочной среде, а скелетный никель — выщелачиванием сплава N1 / А1 (1 1) 20%-ным раствором NaOH при 100° С. Для каждого опыта брали 0,01 моля гидрируемого углеводорода, 25 мл спирта и 0,025—0,05 г черни или 0,2 г скелетного никеля. Состав катализатора определяли методом газожидкостной хроматографии. Это позволило детальным образом контролировать состав образующихся продуктов на протяжении всего процесса [14—19]. [c.163]

    В последние годы снова появились работы канадских, английских и французских исследователей [19], в которых на основании широкого применения методов газовой хроматографии, масс-спектрометрического анализа и других совершенных методов ис следований изучался состав продуктов и кинетика первичного крекинга при низких давлениях (10—150 мм рт. ст.) в интервале 400—600° С. Эти работы снова подтверждают радикально-ценной механизм первичного термического крекинга кроме того, в них рассчитываются скорости некоторых элементарных реакций, протекающих с участием радикалов и, в частности, подчеркивается важная роль этильных радикалов при определении кинетических характеристик крекинга алканов, на что указывалось еще в работах Фроста в 40-е годы [20]. Французские исследователи дискутируют с Воеводским по поводу выдвинутой им концепции гетерогенного зарождения, возрая ая против заметного влияния стенок на зарождение цепей в термическом крекинге. Ниже мы обсудим результаты проведенных нами исследований, показавших, что рост гетерогенного фактора (б /у) увеличивает обрыв цепей, но мало влияет па их зарождение. [c.344]

    Холм и Кроссланд [51] изучили кинетику реакции хлорида трет-бутилмагния с бензофеноном и его замещенными в диэтиловом эфире. Состав продуктов реакции в эфире существенно зависит от стерических эффектов заместителей в бензофеноне. Однако стерические факторы не влияют на эффективную константу скорости. Корреляция констант скорости с константами заместителей Гаммета носит линейный характер (р = 3,0 г = 0,974). Был сделан вывод, что лимитирующей стадией реакции является перенос электрона с хлорида /герет-бутилмагния на бензофенон с Образованием радикальной пары анион-радикал бензофенона/ягрете-бутил. [c.75]

    Снижение теплотворной способности коксовбго газа по сравнению с газом полукоксования объясняется повышением содержания в коксовом газе водорода (обычно 55—60% против 15—20% в газе полукоксования) и уменьшением содержания углеводородов. На процесс коксования и выход продуктов влияют состав исходной шихты, степень измельчения угля, плотность загрузки, скорость коксования и некоторые другие факторы. [c.104]

    Изменение органолептических свойств крепких спиртных напитков связано с изменением абсолютного и относительного содержания летучих соединений в ходе дистилляции. Кроме того, долевое содержание летучих соединений существенно зависит от концентрации этилового спирта, что, в свою очередь, влияет на состав летучих соединений в горлыщке бутылки, отличающийся от их состава в виноматериалах или сусле. Считается, что нелетучие соединения, включая полифенолы и органические кислоты, в ходе дистилляции удаляются. Химический состав продукта дистилляции определяется многими факторами — типом перегонного куба, степенью ректификации и выбором фракций, включаемых в состав дистиллируемого напитка. [c.506]

    Пиролиз углеводородного сырья - процесс высокотемпературной карбонизации, а ТСП - относительно высококипящая часть КМ, образующейся в этом процессе. Её состав, структура и свойства зависят от многих факторов (природа, индивидуальный химический состав сырья, режим, технология и аппаратурное оформление стадий его пиролиза, закалки и фракционирования продуктов, условия хранения и транспортировки). Даже при переработке данного типа сырья на одной и той же установке в сравнительно узком факторном пространстве (путь карбонизации) состав и свойства ТСП колеблются в довольно широких пределах [43,44,64,79...84]. Соответственно при карбонизации ТСП существенно различаются по кинетике накопления в КМ высокоароматичных групповых компонентов, их выходу, элементному составу, структуре, ММР и свойствам. На результаты этого процесса влияют аппаратурное оформление (тип, размеры и внутреннее устройство реактора), температурно-барический профиль и другие факторы процесса. [c.144]

    Магний—довольно электроотрицательный металл (5 g2+/Mg= = —2,1 В) —корродирует в свободном от кислорода нейтральном растворе хлористого натрия с выделением водорода. Железо в таких же условиях остается нетронутым. В то же время при многих коррозионных процессах в растворах, содержащих кислород, реакции с выделением водорода и восстановлением кислорода протекают одновременно. Относительную роль кислорода, гидратированного протона и молекулы воды в процессе коррозии установить сложно, поскольку она зависит от таких факторов, как природа металла, раствора, значения pH, концентрации растворенного кислорода, температуры, возможности образования комплексов и др. Скорость реакции с восстановлением водорода обычно контролируется активацией и в существенной степени зависит от природы электрода, хотя pH раствора, температура и пр. также оказывают определенное влияние. Поэтому в данном случае зависимость между перенапряжением и плотностью тока отвечает уравнению Тафеля (1.19), причем на значениях а и Ь сказываются природа металла и состав раствора. При высоких плотностях тока перенос зарядов становится существенным и линейное соотнощение между Т1 и logi нарушается. При восстановлении кислорода контроль активацией существен при низких плотностях тока, но при повышении плотности тока большее значение приобретает диффузия, и скорость коррозии тогда соответствует предельной плотности тока. Отметим, что в отличие от перенапряжения активации перенапряжение концентрации не зависит от природы электрода, хотя пленки и продукты коррозии, которые задерживают передачу электронов на катодных участках, будут заметно влиять на ее скорость. [c.29]

    Значение рЯ. Значение pH почвенной влаги влияет на растворимость продуктов коррозии. При pH < 5, что бывает, например, в торфяных или илистых почвах, на стали не может образовываться защитное покрытие из ржавчины (см. диаграмму потенциал - pH для Ре-НдО в 8.1), и в результате этого скорость коррозии может быть уравнительно высокой. Однако при обычных значениях pH (5-8) скорость коррозии определяется другими факторами. Состав почвенной влаги может изменяться в результате кислотного дождя, причем в первую очередь уменьшается концентрация буферирующих компонентов, например НСО3. Это уже само по себе мешает образованию заидатного осадка карбоната кальция. При более сильных воздействиях происходит и уменьшение pH. [c.53]

    Воспроизводимость термогравиметрич. кривых плохая, т.к. на их вид влияют много факторов-скорость нагрева, форма печи, природа материала контейнера для образца, размер частиц исследуемого образца (а иногда и их форма), его масса, плотность, теплопроводность, р-римость в нем выделяющихся газов, атмосфера в печи, место расположения термопары и т.д. Тем не менее разл. участки кривой позволяют определить термнч. устойчивость исходного образца, промежуточных соед. и конечного продукта. Зная состав исходного образца, можно рассчитать состав соед. на разных стадиях термич. разложения. Обычно для характеристики в-ва методом Т. фиксируют начальную (7 ) и конечную (Т ) т-ры разложения (см. рис.). Разность Т — Т называют интервалом р-ции. В ряде случаев, напр, прн нагр. [c.535]


Смотреть страницы где упоминается термин Факторы, влияющие на состав продуктов: [c.442]    [c.23]    [c.821]    [c.11]    [c.113]    [c.591]    [c.79]    [c.317]    [c.151]    [c.293]   
Смотреть главы в:

Парафиновые углеводороды -> Факторы, влияющие на состав продуктов




ПОИСК





Смотрите так же термины и статьи:

Состаи продуктов

влияющие фактор



© 2025 chem21.info Реклама на сайте