Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформация растворителя

    Все это лишний раз подчеркивает, с какими огромными числами приходится сталкиваться при решении многомерных задач такого типа. И это только часть проблемы. Анализ конформаций скелета обходит стороной серьезный и весьма спорный вопрос об относительной стабилизации различных конформаций растворителем. Следует также принять во внимание конформации боковых групп и их влияние на стабилизацию конформаций скелета. [c.277]


    Набухание соответствует неравновесному переходному состоянию системы от чистых сополимера и растворителя к их полному взаимному смешению. Согласно законам термодинамики самопроизвольное течение изобарно-изотермических процессов сопровождается уменьшением термодинамических потенциалов, поэтому можно считать, что причиной сорбции является стремление системы к выравниванию химических потенциалов компонентов. Набухание — это замедленный процесс смешения двух фаз. Из-за разницы в подвижности молекул компонентов набухание осуществляется диффузией растворителя в сополимер, тогда как макроцепи весьма медленно проникают в объем, занятый чистым растворителем. Диффузии сопутствуют процессы взаимодействия молекул растворителя со звеньями макроцепей, перемещения структурных элементов сополимера, изменение конформаций макроцепей. Полимеры (сополимеры) по своим механическим (реологическим) свойствам обладают ярко выраженной анизотропией (продольные свойства близки к свойствам твердых тел, в то время как поперечные приближаются к свойствам жидкостей), вследствие чего занимают промежуточное положение между твердыми телами и жидкостями. Силовое поле, наводимое диффузией растворителя в полимер, частично запасается в последнем, что приводит к возникновению комплекса релаксационных явлений или явлений вязкоупругости. [c.296]

    Экспериментальное определенне движения оптической и фазовой границ. Движение фазовой и оптической границ в системе сополимер — растворитель связано с изменением конформаций макроцепей и проникновением растворителя вглубь сополимера. [c.322]

    Гель-хроматография (или гель-проникающая хроматография) является одним из вариантов жидкостной хроматографии, в котором растворенное вещество распределяется между свободным растворителем, окружающим гранулы геля, и растворителем, находящимся внутри гранул геля. Так как гель представляет собой набухшую структурированную систему, имеющую различные по размерам поры, то разделение в данном виде хроматографии зависит от соотношения размеров молекул разделяемых веществ и размеров пор геля. Помимо размеров молекул, которые можно принять пропорциональными молекулярным массам, существенную роль для гель-хроматографии играет форма молекул. Особенно большое значение этот фактор имеет для растворов полимеров, в которых при одной и той же молекулярной массе молекулы могут принимать различную форму (сферическую или другую произвольную) в соответствии с их конформацией и вследствие этого по-разному вести себя в колонке. Дальнейшие рассуждения справедливы для молекул, имеющих сферическую форму. [c.237]


    Исследования растворов полимеров показали, что характерное для ннх сильное отрицательное отклонение от неидеальности связано с различием в размерах молекул ВМС и растворителя и особенно с гибкостью линейных макромолекул, которые сильно увеличивают энтропию смешения при растворении. Вклад конформаций макромолекул в энтропию смешения был учтен в теории растворов полимеров, в основе которой лежит уравнение Флори и Хаггинса, полученное с помощью статистической термодинамики. [c.321]

    Получение термодинамических характеристик химических процессов. Изучение температурных зависимостей спектров ДОВ и КД химических соединений, имеющих различные конформации, может дать ряд термодинамических характеристик равновесного существования различных форм. На рис 25 приведены спектры ДОВ рас-творов ДНК в растворителе метанол вода=7 3 в довольно широком интервале температур. Если теперь построить зависимость величины угла [c.46]

    Значение а зависит от конформации макромолекул, термодинамического качества растворителя и температуры (см. гл. 2). Оно может изменяться от 0,5 для статистического молекулярного клубка в 0-растворителе до 2,0 для абсолютно жесткой молекулы. Величина А" , имеет размерность дл/г, изменяется обычно в пределах от 10 до 10 и зависит от выбора системы полимер - растворитель, полидисперсности, разветвленности, тактичности полимера, температуры и других факторов. В этом отношении выбор значений КцЧ а. дня вычисления усло- [c.34]

    Растворы полимеров, в которых взаимодействием сольвати-рованных полимерных цепей можно пренебречь, называются разбавленными. На рис. 2.4 приведена схема, иллюстрирующая возможность конформационных переходов макромолекул в растворе размеры звеньев и молекул растворителя условно приняты одинаковыми. Изменение конформации полимерной цепи становится возможным в том случае, когда имеется соответствующая дырка в структуре растворителя, находящаяся в пределах досягаемости звена полимера. [c.101]

    Изучение гидродинамических свойств и светорассеяния разбавленных растворов позволяет получить определенную информацию о размерах и форме молекулярных клубков в растворе. Лишь в 0-растворителе макромолекулы приобретают конформацию статистического клубка, в котором взаимное расположение звеньев и сегментов может быть описано вероятностной кривой Гаусса. Тэта-состояния раствора можно достигнуть, либо варьируя соотношение растворитель - осадитель, либо изменяя температуру. Ниже приводятся значения 0-температур (в °С) для растворов полиакрилонитрила в различных растворителях  [c.115]

    Следовательно, образование лиотропных жидкокристаллических структур (анизотропных растворов полимеров) происходит при сочетании следующих факторов достаточно большая молекулярная масса стержнеобразная конформация полимерной цепи (сегмент Куна достаточно велик) растворитель способен растворять полимер при концентрации, большей С р соответствующая температурная область для данной системы полимер -растворитель. [c.153]

    В плохом растворителе при одинаковой степени разбавления и одинаковой температуре макромолекулы полимера не столь гибки и подвижны. Наиболее вероятная конформация в разбавленном растворе приближается к форме нити или туго смотанного клубка. При такой форме количестпо растворителя, находящегося внутри пространства, занимаемого макромолекулой, значительно меньше. Соответственно возрастает количество свободного растворителя, заполняющего межмолекулярные пространства. [c.68]

    При сближении частиц на расстояние меньшее, чем удвоенная толщина адсорбционного слоя, происходит перекрытие (взаимопроникновение) адсорбционных слоев, и концентрация НПАВ в области перекрытия увеличивается по сравнению с ее значением в адсорбционном слое. При этом, если среда представляет собой хороший растворитель для вещества, образующего адсорбционный слой, возникает осмотическое да вление, подобное давлению набухания (рис. Х1П, 6). Это обуславливает приток жидкости из объема раствора в область перекрытия адсорбционных слоев и возникновение расклинивающего давления. Осмотическое давление, в зависимости от природы взаимодействия НПАВ и растворителя, может быть функцией изменения энтропии или изменения энтальпии системы в области перекрытия. В первом случае падение энтропии определяется тем, что в области перекрытия уменьшается число конформаций гибких цепей стабилизатора, что в конечном счете вызывает повышение агрегативной устойчивости. Во втором случае в области перекрытия некоторые контакты между молекулами воды и полярными группами НПАВ заменяются контактами между молекулами НПАВ, т. е. происходит дегидратация адсорбционного слоя. Это приводит к возрастанию энтальпии системы, вызывает отталкивание, т. е. также повышает агрегативную устойчивость системы. [c.411]

    Согласно статистической физике увеличение энтропии при растворении высокомолекулярных веществ объясняется тем, что макромолекулы в растворе могут быть расположены различным образом, причем каждая макромолекула может осуществлять большое число конформаций. В нерастворенном полимере цепные молекулы мешают друг другу принимать любые конформации. При наличии же между макромолекулами обычных малых молекул растворителя стесняющее действие молекулярных цепочек друг на друга становится все меньше, и, наконец, в предельно разбавленном растворе, когда макромолекулы очень далеки друг от друга, они могут принимать практически любые конформации. Иначе говоря, термодинамическая вероятность состояния макромолекул в маловязком растворе больше, чем в исходном полимере. [c.440]


    Особенности процесса растворения полимеров. Первой стадией растворения любого полимера является его набухание. Набухание— это процесс поглощения полимером низкомолекулярной жидкости, сопровождающийся увеличением объема полимера и изменением конформаций его макромолекул. Большие молекулы полимера характеризуются низкими значениями коэффициентов диффузии. Поэтому смешение осуществляется медленно, и его промежуточные стадии легко фиксируются. При этом благодаря способности макромолекул изменять свою форму растворитель на промежуточных стадиях растворения не только заполняет пустоты между отдельными звеньями (процесс, аналогичный капиллярной конденсации в твердых пористых телах), но и увеличивает эффективные радиусы полимерных клубков и расстояния между их центрами масс, не нарушая при этом сплошности полимерного тела. Последнее приводит к значительному увеличению объема полимерной фазы по сравнению с исходным. Набухший полимер фактически представляет собой раствор низкомолекулярной жидкости в полимере. [c.82]

    Это обусловлено тем, что в хорошем растворителе макромолекулярные клубки находятся в относительно набухшем состоянии и средняя молекулярная масса более чувствительна к присутствию высокомолекулярной фракции, тогда как в плохом растворителе макромолекулы имеют более компактные конформации и вклады [c.102]

    Обычно в разбавленных растворах полимеров (концентрация не более 0,5%) реакция протекает гомогенно (если, конечно, низкомолекулярный реагент тоже растворим в этом растворителе). Большое значение здесь имеет конформация макромолекулы, которая в таких растворах обычно имеет форму клубка. Она существенно влияет на возможность проникновения низкомолекулярного компонента вглубь этого клубка и таким образом на глубину реакции. [c.276]

    Значения 5 > О для растворов, содержащих крупные (допустим, длинные) молекулы, связаны с тем, что при их растворении в низкомолекулярном растворителе число конфигураций системы возрастает значительнее, чем это было бы в случае идеального раствора. В растворе плотность длинных молекул ниже, чем в чистой жидкости из этих молекул, и требование, чтобы молекулы не перекрывались, учитывающее отталкивательные силы, для растворов в меньшей степени ограничивает возможные положения центра масс длинной молекулы, ее ориентацию и конформации (относительные положения звеньев). [c.253]

    Другой упорядоченной конформацией является -структура, в которой полипептидные цепи располагаются параллельно в вытянутой зигзагообразной форме и также закрепляются водородными связями, образующимися теперь уже между аминокислотными остатками из разных цепей. Белки могут принимать также неупорядоченную, случайную конформацию. Этому особенно способствуют растворители, которые разрывают водородные связи. [c.344]

    Особенно сильное влияние растворитель оказывает на конформационное равновесие жезо-формы 2,3-дихлорбутана с увеличением полярности растворителя доля трансоидной конформации падает (в четыреххлористом углероде ее 63%, в ацетонитриле — 33%). [c.266]

    Проникновение молекул растворителя в поверхностный слой сопровождается отклонением отдельного звена макроцепи сополимера. Поскольку звенья связаны в макроцепи силами главных валентностей, перемещение звеньев вызывает появление локальных сил, которые передаются вдоль цепи, а через межмолекуляр-ные связи и на соседние макроцепи. Причиной, вызывающей движение материальной сплошной среды, является возникновение поверхностных сил, играющих основную роль в механике сплошной среды. Такие силы действуют на каждом элементе поверхности сплошной среды и носят название локальных напряжений (в физикохимии полимеров — давление набухания). Они имеют ту же физическую природу, что и явление осмоса для сильно разбавленных растворов [4]. Возникает поле механических сил, наводимое в системе диффузионными потоками, проникающими в материал полимера. Под воздействием наведенного поля сил начинают проявляться вторичные процессы, способствующие согласно принципам термодинамики снижению механических напряжений в слое. Такими процессами являются перемещения структурных элемАнтов сополимера и изменение конформаций макроцепей. Материальная сплошная среда приходит в движение. Направленность вторичных процессов обусловливает снижение химического иотенпиала растворителя в слое, поскольку происходит увеличение линейных размеров слоя сополимера. [c.304]

    Таким образом, можно утверждать, что на стадии предварительного набухания гранулы полимера практически сохраняют свою прочность. Этому факту можно дать следующую физическую интерпретацию. При набухании происходит изменение конформаций макроцепей сополимера (относительное перемещение, а также вращение звеньев и участков макроцепи). Конфигурация малых кинетических единиц (пространственное расположение атомов в молекуле) при этом остается неизменной. При равновесном набухании пространственная сетка сополимера вытягивается до пре дела без деформации химических связей в ней. Возникающие локальные напряжения целиком компенсируются изменением конформации макроценей сополимера. Если путем выпаривания убрать растворитель из гранулы, то цепи вернутся в прежнее положение и гранула примет первоначальные размеры. [c.329]

    Растворы полимеров раньше рассматривали как коллоидные растворы (лиофильные золи). Однако в работах Флори, Добри, В. А. Каргина и др. было показано, что эти растворы, в особенности при невысоких концентрациях полимера, должны рассматриваться как обычные растворы, отличающиеся от последних внутренним строением, термодинамическими и другими свой-. ствами, что обусловлено лишь большой величиной и особенностями строения макромолекул полимеров и сильным различием в величине частиц полимера и растворителя. Наиболее отчетливо это проявляется для очень разбавленных растворов. Для этих растворов применимы обычные соотношения, характеризующие зависимость осмотического давления растворов и других свойств от их концентрации, однако все же следует учитывать очень большую величину макромолекул полимера и гибкость цепей. Подвижность отдельных звеньев цепей приводит к тому, что макромолекула может обладать очень большим числом конформаций. Вследствие этого соответственно увеличивается термодинамическая вероятность и, следовательно, энтропия системы. [c.601]

    В те же годы Штаудингером было доказано, что макромолекулы являются продуктами полимеризации и поликонденсацни мономеров с образованием ковалентных связей. Он ввел понятия степенн полнмеризации и статистической молекулярной массы. Одновременно разными исследователями было установлено, что сольватация макромолекул почти не отличается от сольватации мономеров. Оказалось, что особенности в поведении полимеров связаны не только с большим размером молекул, но и с гибкостью полимерных цепей, нследствне чего макромолекулы способны принимать большое число конформаций. Учет этих конформаций лежит в основе созданной Марком и Куном (1928) кинетической теории изолированной макромолекулы и разработанной Хаггинсом и Флори статистической термодинамики растворов полимеров. В результате этих исследований было доказано, что лиофильность молекулярных коллоидов (растворов полимеров) объясняется не столько взаимодействием с растворителем, сколько энтроиинной составляющей, обусловленной многочисленными конформациями макромолекулы, свернутой в клубок. [c.310]

    Значения второго вириального коэффициента В обусловливаются величиной Л/ , разветвленностью и полидисперсностью полимера, гибкостью макромолекул. Иными словами, коэффициент В может служить мерой отклонения осмотических свойств реального раствора от идеального в результате разбухания молекулярных клубков. Этот процесс, обусловленный осмосом растворителя в молекулярный клубок, предполагает изменение конформаций макромолекул, переход их в новые энергетические состояния. Разница между обоими равновесными энергетическими уровнями соответствует работе упругих сил, стремящихся вернуть молекулу в первоначальное состояние. Разбухание клубков прекращается, когда осмотические силы уравновещиваются упругими. [c.106]

    При испольэойайии таких высокополярных растворителей, как ГМТАФ или ДМСО (см. гл. 2), в которых избыточная электронная плотность сосредоточена на единственном атоме кислорода, молекулы растворителей способны сольватировать катион Щелочного металла, тем самым ослабляя связь его С анионом ацетоуксусного эфира. Последний при этом принимает наиболее выгодную конформацию, по форме Напоминающую букву W, в которой несущие одноименный частичный заряд атомы кислорода карбонильных групп занимают наиболее удаленное друг от друга положение  [c.247]

    ИК и УФ спектры этого соединения в октановом растворе согласуются с аксиальным расположением связи С—С1, т. е. с изомерами 1Б и ИА. Отрицательный эффект Коттона доказывает конформацию Б. Для изомера ЛА в соответствии с правилом октантов следовало ожидать положительный эффект Коттона. Поскольку конфомеры /А и 15 обладают различной полярностью, растворители могут изменить равновесие между ними. Так, при переходе от неполярного растворителя — октана к полярному растворителю — метиловому спирту наблюдается изменение знака эффекта Коттона. Это подтверждает конформационную подвижность цикло-гексановых систем. [c.208]

    Термодинамически самопроизвольное растворение высокомолекулярных соединений сопровождается уменьшением энергии Гиббса (AG = АН — TAS < 0). Энтальпия смешения АН отражает энергетические изменения при взаимодёйствии молекул полимера и растворителя, энтропия смешения AS— изменения во взаимном расположении макромолекул и их конформациях. При растворении полимеров с гибкими цепями выделение теплоты обычно невелико (АН 0), но при растворении существенно возрастает энтропия системы (AS >0). При растворении полимеров с жесткими, обычно полярными, цепями число возможных конформаций в растворе резко уменьшается и величины энтропии смешения очень невелики. Одновременно для этих полимеров возрастает выделение теплоты. [c.439]

    Ограниченность теории Флори— Хаггинса связана с тем, что ею не учитывается эффект сольватации, а макромолекулы рассматриваются как гибкие цепи, принимающие всевозможные конформации в растворе. Усовершенствование теории привело Флори к отказу от квазикристалличе-ской (решеточной) модели. Вместо параметра X в теории Флори — Хаггинса, в новой теории вводится другой параметр взаимодействия между полимером и растворителем — %. В отличие от параметра X параметр % зависит от концентрации. Он содержит энтальпийную и энтропийную %8 составляющие [c.210]

    Наличие в молекулах полиэлектролнтов групп различной природы определяет возможность возникновения взаимодействий разных видов (электростатических, гидрофобных, водородных связей) и повышенную по сравнению с нейтральными полимерами склонность цепей полиэлектролитов к конформационным изменениям при изменении pH, температуры раствора, природы растворителя. Об изменении конформации макромолекул можно судить по значению параметра а уравнения Марка — Куна — Хаувинка [т]] = = КМ . Известно, что а зависит от конформации макромолекул в растворе и изменяется от нуля для очень компактных клубков до 2 для палочкообразных частиц. Для многих глобулярных белков а = 0. В растворе сильного полиэлектролита при достаточно высокой ионной силе раствора а = 0,5, т. е. цепь имеет конформацию статистического клубка с уменьшением ионной силы параметр а увеличивается и при ионной силе, близкой к нулю, стремится к а = 2. Для слабого полиэлектролита в заряженной форме, а также для полипептидов в конформации а-спирали а = = 1,5—2. [c.123]

    Для хроматографии молекул на основании их химического и геометрического строения и возможных изменений конформации весьма важно создание на поверхности адсорбентов рецепторных мест фиксации, способных проявлять различные виды межмолекулярных взаимодействий, (табл. 1.1). В лекции 1 показано, что для разделения множества структурных изомеров достаточно применить неспецифические атомарные адсорбенты с плоской поверхностью. В лекции 2 приведены примеры хроматографии близких по геометрии полярных молещул при дополнительном воздействии на такие молекулы электростатического поля ионных адсорбентов. Б лекциях 3 и 4 рассмотрено использование образования между молекулами и поверхностными соединениями водородных связей. В лекции 4 показано также, что адсорбенту можно придать электроноакцепторные свойства путем отложения на его поверхности адсорбционных слоев модифицирующих веществ, обладающих этими свойствами. Это улучшает разделение электронодонорных молекул. Однако адсорбционные модифицир ующие слои часто оказываются недостаточно термически стойкими для использования в газовой хроматографии при высоких температурах или нестойкими к воздействию растворителей (элюентов) в жидкостной хроматографии. Поэтому весьма важно использовать для связи модифицирующего вещества с поверхностью адсорбента также и более прочные химические связи. При этом надо стремиться достичь геометрического и химического соответствия поверхностных соединений и тех или [c.89]

    При изучении адсорбции из растворов часто пользуются моделями поверхностного раствора, в частности, моделью мономолекулярного слоя постоянной толщршы. В лекции 7 отмечалось, что такая модель вводит чуждую термодинамике Гиббса величину — толщину адсорбционного слоя. Обычно толщина адсорбционного слоя не сохраняется постоянной вследствие различий в размерах молекул компонента 1 и 2 и изменения их ориентации с изменением заполнения поверхности адсорбента. Однако есть случаи, когда толщина адсорбционного слоя при адсорбции из бинарного раствора приблизительно сохраняется. К ним относится, например, адсорбция плоских молекул, таких как симметричные полиметилбензолы и ароматические углеводороды с конденсированными ядрами на гидроксилированной поверхности силикагеля из растворов в н-алканах (см. рис. 14.5—14.7, а также лекцию 16). Эти ароматические углеводороды ориентируются преимущественно параллельно поверхности, образуя мономолекулярный поверхностный раствор, толщина которого с ростом концентрации таких ароматических углеводородов в объемном растворе изменяется мало и остается близкой к вандерваальсовым размерам толщины бензольного ядра и молекул растворителя — н-алкана в вытянутой конформации. В этой лекции будут рассмотрены свойства такой двухмерной модели поверхностного раствора постоянной толщины. [c.268]

    Адсорбция полимеров на неиористых и особенно на пористых адсорбентах происходит медленно. Время достижения адсорбционного равновесия быстро растет с увеличением молекулярной массы. Скорость адсорбции полимеров на поверхности непористого адсорбента определяется скоростью достижения макромолекулами поверхности и скоростью их распределения на поверхности. Скорость диффузии макромолекул к поверхности зависит от концентрации макромолекул в растворе, от природы растворителя и его вязкости, а следовательно, и от температуры. Распределение макромолекул на поверхности связано с доступностью для адсорбции макромолекул площади поверхности, т. е. с рельефом и химией поверхности адсорбента и степенью ее заполнения макромолекулами. Все это определяется природой и возможными конформациями макромолекул, их межмолекулярным взаимодействием с адсорбентом, с растворителем и друг с другом. [c.335]

    Способность полиионов к изменению конформаций определяется причинами двоякого рода гибкостью полимерной цепи, обусловлеп-ной свободой вращения атомных групп или отдельных участков цепи вокруг одинарных связей, и наличием ионизированных групп, расположенных вдоль цепи главных валентностей. Отсюда степень набухания отдельного полииона, находящегося в растворе в виде клубка, зависит не только от обычного осмотического проникновения растворителя внутрь этого клубка, но и от взаимного отталки вания или притяжения фиксированных зарядов, образующихся вследствие диссоциации большого числа ионогенных групп. [c.144]

    Характер кривых ДОВ зависит от конфигурации и конформации оптически активных веществ, от характера имеющихся хромофоров и их положения относительно асимметрического центра. Во многих случаях кривые ДОВ существенно зависят от растворителя, температуры. Все это делает спект-рополяриметрию одним из важных современных физико- [c.45]


Смотреть страницы где упоминается термин Конформация растворителя: [c.197]    [c.330]    [c.298]    [c.66]    [c.66]    [c.78]    [c.41]    [c.447]    [c.437]    [c.285]    [c.63]    [c.101]    [c.167]    [c.13]    [c.222]    [c.270]   
Кристаллизация полимеров (1966) -- [ c.296 ]




ПОИСК







© 2024 chem21.info Реклама на сайте