Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хром соединения его как катализаторы при

    Интенсивность действия каталитического яда тем выше, чем больше энергия его химического взаимодействия с активным компонентом катализатора, чем труднее его химическая регенерация или десорбция яда. Обычно дезактивирующая способность каталитического яда растет с увеличением его атомной или молекулярной массы. Так, отравляемость гидрирующих катализаторов никель — оксид хрома соединениями серы, селена и теллура растет от S к Те. С другой стороны, отравление металлических (Pt, Ni) катализаторов органическими соединениями серы (меркаптаны, сульфиды) растет с увеличением длины цеии органического радикала фиксированная на активном участке поверхности атомом серы молекула яда вращающимся вокруг него по поверхности алифатическим радикалом экранирует и ближайшие участки поверхности, препятствуя адсорбции на них компонентов реакции. Частичное отравление энергетически неоднородной поверхности может в случае сложных реакций влиять на течение лишь отдельных стадий, чем можно регулировать селективность каталитического действия и повышать выход целевого промежуточного продукта торможением последних (или параллельных) стадий процесса. Практически важным случаем является дезактивация катализаторов побочными продуктами реакции, отлагающимися на поверхности, например закоксовывание катализаторов нефтехимических про- [c.305]


    Для гидрирования органических сернистых соединений чаще всего используются алюмо-кобальт-молибденовый и алюмо-никель-молибдено-вые катализаторы, но иногда также боксит и железо-хром-медные катализаторы. Алюмо-кобальт-молибденовый катализатор работает при температурах 350—380° С и объемных скоростях до 3000 [c.11]

    Окислы хрома большей частью употребляются в составе медно-хромовых или никель-хромовых контактов, используемых для селективного гидрирования двойной связи в ненасыщенных спиртах [150], альдегидах [151], диенах [152], селективного гидрирования ароматических колец [159, 161, 163]. Эти же катализаторы применяются для деструктивного гидрирования сложных эфиров, восстановления нитробензолов в соответствующие амины [173, 174 Для деструкции серусодержащих соединений используются железо-хромовые контакты [179. Хромо-марганцевые катализаторы находят применение при восстановительной конденсации спиртов с кислотами в кетоны [ПО, 111, 127]. [c.581]

    Для ускорения реакции конверсии СО могут служить катализаторы, приготовленные на базе окислов многих металлов — железа, кобальта, никеля, хрома, меди, цинка, марганца, магния, калия, тория, ванадия, урана и др. Катализаторы на основе окисей кобальта, никеля, меди и некоторых других металлов являются более активными, чем на основе окиси железа. Однако они более чувствительны к отравлению серой, так как в отличие от железа образуют с сероводородом трудно регенерируемые сульфиды. В связи с этим данные катализаторы целесообразно применять только для газа, полностью очищенного от сернистых соединений. Следует отметить также, что стоимость этих катализаторов выше, чем катализаторов на основе окиси железа. Поэтому наиболее употребительными ) являются катализаторы, приготовленные на базе окиси железа. В качестве основного промотора, добавляемого к катализатору из окиси железа, применяется окись хрома. Активность катализатора повышают также добавки окисей А1, Мп, Mg, К и других металлов. [c.119]

    Поверхность алюмо-хромового катализатора гидратирована за счет групп ОН, соединенных с атомами алюминия или хрома [96]. Химическая природа кислотных центров еще недостаточно ясна. По данным [99], один центр кислотности соответствует двум ионам Сг + и кислотность окисленного образца выше, чем восстановленного, что следует из сравнения следующих величин (алюмо-хромо-калиевый катализатор)  [c.37]

    В качестве катализаторов конверсии используют обычно окись железа или смесь окисей железа и магния, которая активируется окисями хрома и калия. Окись магния увеличивает прочность и-уменьшает чувствительность катализатора к отравлению его сернистыми соединениями. Катализатор формуется в таблетки, которые слоями засыпаются в аппараты для конверсии — конверторы. [c.191]


    Некоторые, обычно очень инертные вещества, такие как уголь, кокс, азотсодержащие гетероциклические соединения, алкалоиды и ионообменные смолы, можно окислить хлорной кислотой в присутствии катализатора. Даже графит окисляется в присутствии смешанного хром-марганцевого катализатора [5.1367]. Катализаторы для окисления некоторых материалов хлорной кислотой приведены в табл. 5.33. [c.226]

    Механизм полимеризации и природа активного центра. В качестве катализаторов полимеризации олефинов наибольшее распространение получили окислы ванадия, молибдена, вольфрама, нанесенные на окись алюминия , и окись хрома — на окись кремния или окись алюминия . Существенное отличие окисн хрома как катализатора полимеризации олефинов от других окислов металлов заключается в том, что валентность хрома должна быть максимальной. В процессе полимеризации хром полностью восстанавливается до трехвалентного. Катализаторы в виде окиси хрома, также как и катализаторы на основе окиси молибдена и вольфрама, промотируются добавками металлорганических соединений. [c.34]

    Среди различных окислов металлов, применяющихся для полимеризации олефинов, большой практический интерес представляет окись хрома. Окись хрома как катализатор различных органических реакций (ароматизации, дегидрогенизации, изомеризации и др.) известна уже с давних пор и ее каталитические свойства в этих реакциях достаточно хорошо изучены. Каталитическая активность кислородных соединений хрома объясняется легкостью перехода хрома из одного валентного состояния в другое, способностью быть как донором, так и акцептором электронов. Особенно хорошо изучена окись хрома в реакции ароматизации и изомеризации парафинов. [c.24]

    Алюмохромовые и алюмо-хром-медные катализаторы. Алюмохромовый катализатор применяется для удаления сероокиси углерода и сероуглерода из синтез-газов, отличающихся высоким содержанием окиси углерода. Этот катализатор промотирует избирательный гидролиз сернистых соединений практически без сопутствующего превращения окиси углерода присутствие сероводорода в поступающем газе не влияет на активность катализатора. Практически полное превращение органических сернистых соединений достигается при температуре 316—427 , повышенных давлениях и объемных скоростях 250—1000 час [26]. Типичные условия, нри которых обеспечивается удаление сероокиси углерода из газового потока, представляющего-смесь углеводородов и окиси углерода [27] следующие. [c.335]

    Получение полиэтилена при среднем давлении. Способ получения полиэтилена при средних давлениях разработан в США фирмой Филлипс Петролеум Компани [61]. Процесс ведется при температуре 180—250° и давлении 35—105 ат. Этилен, предварительно полностью освобожденный от сернистых соединений, кислорода, водяных паров и углекислоты, растворяется под давлением при 20—30° в ксилольной фракции в количестве 7—9% вес. и подвергается полимеризации в трубчатом автоклаве над катализатором из окисей хрома и молибдена, нанесенных на окись алюминия или алюмосиликат. Целесообразнее применять большой избыток растворителя, чтобы полиэтилен оставался в растворе, а не отлагался на катализаторе, пассивируя его. Кроме того, при этом [c.223]

    Из производных хрома и его аналогов применяются главным образом соединения самого хрома. Так, СггОз используется для приготовления красок и как катализатор, СЮз — Для электролитического получения хрома и хромированных изделий. [c.568]

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    Разложение перекисных соединений происходит в присутствии некоторых металлов (железа, меди, марганца, кобальта, хрома) и их солей, являющихся катализаторами. Поэтому концентрированная перекись водорода, надуксусная кислота, а также ряд других перекисей способны взрываться в отсутствие органических веществ. [c.107]

    Марголис и Тодес [35] установили, что катализаторы типа смеси окиси хрома и шпинеля, нанесенные на асбест, вызывают окисление таких углеводородов, как пентан и гептан, до двуокиси углерода и воды. Под влиянием таких катализаторов метилэтилкетон и бутиральдегид, содержащиеся в продуктах неполного парофазного окисления этих углеводородов, должны окисляться в органические кислоты. Поэтому можно считать, что эти соединения не образуются в качестве промежуточных продуктов в процессе поверхностного горения. [c.321]

    Риформинг позволяет получать высокооктановый бензин из низкооктановой бензино-лигроиновой фракции за счет превращения большей части нафтенов и некоторого количества парафинов в ароматические соединения, а также удаления определенной части парафинов путем их газификации. В установках с кипящим слоем и непрерывной регенерацией катализатором служит окись молибдена, осажденная на глиноземе. В установках с движущимся слоем катализаторы—окись хрома и окись алюминия. В установках с неподвижным слоем катализатором является платина на носителе—окиси алюминия или алюмосиликате. [c.338]

    Ранее описывался способ гидрогенизации дифенилолпропана над катализатором, состоящим из сульфида никеля, окисей хрома и алюминия, а также сульфидов меди, вольфрама и молибдена. Этот способ применим и для гидрогенизации смеси побочных продуктов. При 330 С исходную смесь (13 объемн. %), водород (47 объемн. %) и водяной пар (40 объемн. %) пропускают над катализатором. Гидрогенизат подвергают ректификации и получают 43% п-изопропилфенола, 40% фенола, 7,5% высококипящих фенольных соединений и 8,5% смолообразного остатка. [c.181]

    ХРОМА СОЕДИНЕНИЯ. ОксмЭ хрома (111) rjOj — темно-зеленые тугоплавкке кристаллы, т. пл. 2275° С, применяется под названием зеленый крон для изготовления очень устойчивых клеевой н масляной красок. Из СГ2О3 изготовляют катализаторы, получают хром, им окрашивают стекло и керамику. Соединения со степенью окисления X. +3 имеют зеленую или фиолетовую окраску. Они устойчивы на воздухе. Производные ак- [c.279]

    В синтез-газах, полученных частичным окислением содержащего серу углеводородного топлива, в качестве важнейшего органического сернистого соединения присутствует сероокись углерода, которая в присутствии некоторых катализаторов легко прелращается в сероводород в результате реакций гидрирования илп гидролиза. Окиспожелезные катализаторы обладают активностью одновременно в реакциях водяного газа и превращения сероокиси углерода в сероводород, тогда как окисные алюмохромовые и алюмо-хром-медные катализаторы можно использовать для избирательного гидролиза сероокиси углерода в присутствии больших количеств окиси углерода. Кроме того, разработаны катализаторы, содержащие окислы меди, хрома и ванадия, для удаления сероводорода п органических сернистых соединении пз синтез-газа. [c.327]

    Окисные медь-хром-ванадиевые катализаторы. Эти катализаторы, разработанные Хаффом и Логаном [28, 29], способствуют превращению органичеигих сернистых соединений в сероводород, который вместе с сероводородом, первоначально присутствовавшим в газе, связывается катализатором в виде сульфидов металлов. Таким образом, превращение и фактическое удаление сернистых соединений из газа достигаются за одну ступень. Катализатор необходимо периодически регенерировать воздухом для превращения сульфидов снова в окислы. [c.329]

    Иногда целесообразно проводить каталитическую очистку от серы одним водяным паром, что позволяет исключить расход водорода на осуществление этого процесса. Паровая сероочистка углеводородов изучена мало. При испытании сульфидов металлов как катализаторов для очистки смеси, содержащей водяной пар в количестве, соответствующем точке росы 22° С, наиболее активным при гидролизе сероуглерода в сероводород оказался алюмо-молибденовый катализатор (степень превращения 98,4%) [6]. Конверсия сераорганических соединений проводилась на катализаторе, содержащем высшие и низшие окислы урана на окиси алюминия [7] при температуре 300—500° С, а также на железо-хром-медном катализаторе [8—10], на природном боксите гидраргили-товой структуры или алюмогеле [И]. [c.151]

    А1(СзН5)з—ацетилацетонат хрома [126] Катализатор, включающий соединения хрома формулы ХтСгУп (X —органическое основание, Y— NR или R O H OR") в бензоле, 20° С, 6 ч. Получен линейный кристаллический изотактический полибутадиен с выходом 47% [125] [c.794]

    Фрей и Хаппке [306] установили, что гель окиси хрома является активным катализатором реакции дегидрирования газообразных парафиновых углеводородов, таких, как этан, пропан, н-бутан и изобутан. Однако в интервале температур 450—600°, в котором этот катализатор особенно пригоден, он быстро теряет свою активность. В более поздних работах Гроссе и Ипатьев [307], а также Берджин, Гролл и Робертс [308] установили, что активированная окись алюминия является хорошим носителем для окиси хрома. Концентрацию окиси хрома в катализаторе варьируют в среднем она составляет обычно 8—12 вес. %. Удобный метод приготовления катализаторов с окисью хрома состоит в пропитке носителя водными растворами трехокиси хрома, нитрата хрома или же хромата или бихромата аммония. Количество раствора должно отвечать требованию полного насыщения носителя при пропитке. Пропитанный носитель сушат при перемешивании на водяной бане и прокаливают для разложения соответствующих соединений хрома предпочтительно в атмосфере водорода. [c.145]

    При дегидрировании коротких боковых цепей алкилароматических соединений в присутствии различных окисных катализаторов образование стиролов происходит с хорошим выходом.В этом случае эффективны и алюмо-хромовые катализаторы. Например, согласно [66], при 610—630° С и объемной скорости 1—3 Г выход стирола (на исходный этилбензол) в присутствии алюмо-хром-калиевого катализатора составляет 33—36% (содержание стирола в катализате 37%), селективность 70—75%. Однако процесс получения стирола требует в этом случае частой регенерации катализатора и должен осуществляться при пониженных давлениях. Поэтому для дегидрирования этилбензола в стирол в паровой фазе применяются промышленные катализаторы, основанные либо на окиси цинка (смесь окислов Mg, Zn, r и Al—так называемый стирол-контакт) [67—70] (см. также [54—56]), либо на окислах железа и магния, содержащих окислы К и Си, в частности контакт 1707 и его модификации [54—56, 68—70], а также кальций-никель-фосфатный катализатор с добавками окиси трехвалентного железа и окиси хрома [54—56, 69]. При дегидрировании этилбензола в присутствии промышленных контактов (600—650° С, сырье HgO =1 3) выходы стирола составлякп 38% в расчете на пропущенный этилбензол при селективности процесса 87—91% [67, 68]. [c.158]

    Дегидрирование других алкилароматических углеводородов также проходит в присутствии указанных катализаторов в аналогичных условиях. Так, например, в присутствии железо-хром-калиевого катализатора состава Fe Og (88%) — К.2СГО4 (11%) — КОН (1%) (530—580° С, 0,5 углеводород НаО (пар) = 1 3) процесс дегидрирования изопропилбензола протекает с большой избирательностью выход а-метилстирола на разложенный изопропилбензол составляет 93—95% (содержание а-метилстирола в катализате 37—40%) [68]. Над катализатором состава ZnO (79,5%) — А1А (5,5%) — MgO (5%) — aO (5%) — Ks rO (2,5%) — K2SO4 (2,5%) при несколько более высокой температуре (580—630° С) и прочих аналогичных условиях выход а-метилстирола на разложенный изопропилбензол при той же конверсии последнего составляет 92% [68]. Следует отметить, что дегидрирование такого соединения, как 2-метил-5-этилпиридин, в 2-метил-5-винилпиридин также легко протекает в присутствии тех же катализаторов [53]. [c.158]

    Изучение процессов на палладиевых на окиси алюминия и никель-хромо-вых катализаторах разного состава показало, что восстановление соединений первой группы не происходит или протекает с очень малыми скоростями на рентгеноаморфных образцах, содержащих менее 2 вес. % палладия и 20 вес. % никеля и адсорбирующих (по термоде-сорбционным данным) только одну форму водорода [2, 3]. Скорость восстановления п-бензохинона и нитросоединений резко возрастает и достигает максимума при 3—5% Р<1 на окиси алюминия и 70% № в никель-хромовом катализаторе (рис. 1, 2). [c.48]

    В пигментной промышленности соединения хрома применяют при производстве свинцовых, свинцово-молибденовых и цинковых кронов, окиси хрома. В сточные воды хром поступает с промывными водами в виде аниона rOV- В производстве синтетических жирных кислот соединения хрома служат катализаторами, причем сточные воды, как правило, содержат хром(Ш). В сточные воды титано-магниевых комбинатов хром переходит из титановых руд, в которых.в качестве примеси обычно присутствует хромрутил. [c.297]

    Удовлетворительные результаты могут быть получены в интервале, 1Г>0— 250 С, по для достижения еще больших скоростей металлизации могут использоваться и температуры выше 300° С. Разложение бус-арепового соединения хрома в контакте с катализатором может быть осуществлено различными способами, такими, как механическое смешение соединения хрома и катализатора и совместное их испарение, испарение соединения и катализатора в отдельности и смешивание их паров в зоне разложения, предварительное нанесение катализатора на подложку и подвод к ней паров или раствора соединении хрома, предварительное нанесение па подложку хром-органического соединения и подвод к пей паров катализатора или осаждение хрома из раствора, содержащего и соединение хрома и катализатор. В качестве растворителей используются нефть, тетралин и т. п. Время металлизации так же, как и в отсутствие катализатора, можно варьировать в широком интервале (от нескольких секунд до нескольких часов). [c.254]

    Ю. И. Ермаков. Результаты, полученные нами при изучении влияния аммиака йа активность окиснохромового катализатора полимеризации, нанесенного на алюмосили- кат, свидетельствуют о механизме влияния NHg,отличном от предложенного в докладе 13, При проведении полимеризации этилена в условиях, близких к реальным (75° С и 15 атм), активность катализатора, восстановленного аммиаком, в лучшем случае, достигает активности исходного. Стационарная скорость полимеризации на катализаторах, обработанных аммиаком, обычно ниже, чем на исходных, однако такие катализаторы вызывают повышение скорости в начальном периоде реакции (подобное явление вызывают и другие восстановители, например СО, SOj, jHJ. Мы обнаружили, что константа скорости роста (Лр) при обработке катализатора аммиаком возрастает, а концентрация центров роста снижается, поэтому повышения общей активности катализатора не происходит. В то же время, по данным химического анализа, ион хрома в центре роста имеет степень окисления не выше трех, а ионы Сг вообще отсутствуют.. Таким образом, при обработке аммиаком может измениться структура центра роста цепи, что, вероятно, связано с образованием комплексного соединения между NHg и хромом, входящим в центр роста. Увеличение активности катализаторов при обработке аммиаком, наблюдавшееся авторами работы, обусловлено тем, что измерение каталитической активности проводили при низкой температуре (0° С), при которой нельзя судить о стационарной активности окисных катализаторов полимеризации (а, следовательно, о стационарной концентрации активных центров). Это связано с тем, что восстановление хрома в катализаторе является необходимой стадией инициирования. При низких температурах процесс инициирования в невос- становленном катализаторе происходит медленнее, чем в катализаторе, обработанном восстановителем, поэтому сгадл) и э щ i j (эаграция активных центров не достигается. [c.208]

    Одновременно с работами Циглера по полимеризации этилена при низком давлении проводились исследования по получению полиэтилена на окисных катализаторах, в частности на окиснохромовом [30, 31]. Такой катализатор имеет сложный состав он обязательно должен содержать шестивалентный хром. На его активность влияют температура приготовления и продолжительность термообработки, наличие про оти-рующих добавок окислов других металлов, например СаО, ZnO, SnO, WO3, С02О3, MgO, BaO. Молекулярный вес образующегося полиэтилена может быть увеличен путем предварительной обработки окиснохромо-вого катализатора безводным фтористым водородом либо другими неорганическими или органическими соединениями, содержащими фтор. Получающийся катализатор содержит приблизительно 0,001—0,2 вес. ч. фтора на Г вес. ч. окиси хрома. Некоторые исследователи [31] рекомендуют доводить общее содержание хрома в катализаторе до 3—5 Уо от веса алюмосиликатного носителя, содержащего SiOa и АЬОз. [c.24]

    Исследование ванадий-хромовых катализаторов показало, что при разном содержании окиси хрома и пятиокиси ванадия образуется соединение с условной формулой УСг04, а при меньшей концентрации окиси хрома существуют две фазы У20б+УСг04. Даже при содержании 5 мол.% окиси хрома в образце заметно образование этого соединения. На спектрах ЭПР заметны два сигнала — широкий (6=400 э) и узкий (6 = 500 э). При увеличении содержания хрома в катализаторе интенсивность узкого сигнала растет. Авторы считают, что по аналогии с ванадий-молибденовым катализатором широкий сигнал характеризует химическое соединение, а узкий — твердый раствор. [c.30]

    Наиболее пригодным катализатором синтеза метанола является окись цинка или ее соединения с медью, окисью хрома, а тйкже с обоими этими компонентами (многокомпонентный катализатор, содержащий в качестве активатора окись хрома). Окись цинка может служить катализатором синтеза метенола, а окись хрома не обладает какой-либо активностью. [c.73]

    Конверсия идет при температуре около 500° при пропускании смеси водяного газа и водяного пара через катализатор, который состоит из окиси железа, активнроаанной окисью хрома (90% Ре90з+5— 7% СггОз, остаток — влага). Процесс слабо экзотермичен и при хорошей изоляции аппаратуры не требуется никакого дополнительного обогреве. Органические и неорганические сернистые соединения предварительно удаляются из газа на установках грубой и тонкой сероочистки. Конверсии подвергается примерно 7з водяного газа. Смешение газа конверсии с остатком водяного газа дает смесь, содержащую СО + Нг в соотношении 1 2. [c.79]

    Гидрогсчюлиз кислородсодержащих соединений иногда выгодно проводить, применяя в качестве катализатора хромит меди при повышенных температуре и давлении. Для проведения таких реакций желателен растворитель, способный растворять как исходные, так и конечные вещества, т. е. углеводород и воду. В качестве такого растворителя особенно удобен диоксац. [c.508]

    Конверсию СО проводят при избытке пара и в присутствии катализаторов. Катализаторы, применяемые в промышленности для конверсии окиси углерода, в зависимости от рабочей температуры условно разделяют на среднетемпературные (в пределах 350—550 С) и низкотемпературные (175—300°С). Основным компонентом среднете.мпературного железохромового катализатора 482 является окись железа, а низкотемпературных катализаторов— медь и ее соединения, окислы цинка, хрома, алюминия, магния и др. Активность катализатора воостапавливают газовой смесью, содержащей водород и окись углерода. Низкотемпературный катализатор на основе меди более чувствителен к отравлению сернистыми соединениями. Поэтому при работе с низкотемпературным катализатором газ, пар и конденсат должны быть более чистыми. [c.35]

    Катализатор получают смешиванием осажденных в виде карбонатов соединений никеля, хрома и алюминия в следующем, соотношении N 0 (А12О3 + СгаОз) = 0,33 — 2 1 и А1аОз СГ2О3 = 3—6 1. Осадок промывают, нагревают до превращения карбонатов в окиси (температура 350—500° С), размалывают, смешивают с цементом, формуют и после затвердения цемента восстанавливают [c.61]


Смотреть страницы где упоминается термин Хром соединения его как катализаторы при: [c.76]    [c.64]    [c.339]    [c.528]    [c.125]    [c.96]    [c.18]    [c.55]    [c.22]    [c.18]    [c.464]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы хрома



© 2024 chem21.info Реклама на сайте