Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алканы кристаллизация

    Для смесей тех же дистиллятов с гудроном в целом приемлем тот же механизм депрессии увеличение подвижности структуры достигается либо подавлением роста кристаллов (системы с низким содержанием парафино-нафтеновых), либо ограничением скорости кристаллизации (в системах с соотношением алканов и аренов, превышающим единицу). Параболический характер зависимостей депрессорного эффекта от размеров частиц, соотношения структурообразующих компонентов (см. рис. 1.8, 1.10) подтверждают эти выводы. [c.16]


    Теплоты испарения, растворения и плавления (кристаллизации). На рис. 8 показана зависимость теплоты испарения н-алканов от температуры кипения..  [c.52]

    Данные [14, 17, 18] о теплотах плавления или кристаллизации н-алканов в зависимости от числа атомов углерода в молекуле при образовании кристаллов гексагональной и ромбической синго-ний приведены в табл. 13. [c.53]

    Кристаллы гексагональной сингонии способны существовать при повышенных температурах вплоть до температуры плавления н-алкана кристаллы же других сингоний существуют при пониженных температурах, ниже так называемой температуры перехода, вполне определенной для данного н-алкана. Кристаллы могут переходить из одной сингонии в другую при кристаллизации н-алкана из расплава или раствора в каком-либо растворителе, при плавлении кристаллов, а также в твердой фазе (рекристаллизация). Переход кристаллов н-алканов из одной сингонии в другую полностью обратим. Температура перехода для индивидуальных н-алканов является физической константой, так как при достижении такой температуры скачкообразно изменяются физические свойства, например плотность, теплоемкость, коэффициент расширения и др. Так, переход кристалла н-алкана из гексагональной сингонии в ромбическую сопровождается тепловым эффектом, рав- [c.81]

    Кристаллическая структура смесей углеводородов. При исследовании взаимного влияния н-алканов в случае их совместной кристаллизации необходимо иметь в виду, что н-алканы являются изоморфными веществами [41, 61, 80—84] с ростом молекулярного веса увеличивается лишь ось с. Это видно из следующих данных для кристаллов ромбической сингонии  [c.85]

    При кристаллизации из растворов изоалканы, нафтеновые и ароматические углеводороды образуют подобно смесям н-алканов кристаллы ромбической сингонии [81—84]. [c.86]

    Еще один вид кристаллизации — аддуктивная кристаллизация, при которой добавляемое соединение образует с отдельными комнонентами смеси аддукты — твердые комплексы. Пример такого процесса — карбамидная депарафинизация, основанная на способности карбамида давать твердые комплексы с нормальными алканами. [c.76]

Рис. 3. Зависимость разности температур кипения (I) и кристаллизации (2) для соседних членов ряда н-алканов от числа углеродных атомов п Рис. 3. <a href="/info/1073098">Зависимость разности температур</a> кипения (I) и кристаллизации (2) для соседних <a href="/info/139150">членов ряда</a> н-алканов от <a href="/info/96163">числа углеродных</a> атомов п

    Предложена динамическая модель алканов с переменным значением угла раскрытия 0 в точке плавления по сравнению со статической моделью с постоянным углом раскрытия [87]. Оказалось, что в точке фазового перехода индивидуальных нормальных алканов отношение угла раскрытия к их температуре плавления остается величиной постоянной. На основе этой закономерности удается с большой точностью вычислить температуру плавления алканов в зависимости от числа углеродных атомов в их молекуле. Алканы, выделенные из нефтяных фракций, представляют собой сложную смесь кристаллизующихся углеводородов. О влиянии различных факторов на выделение их из нефтяных фракций кристаллизацией см, [88]. [c.24]

    Фазовые превращения. С изменением температуры алканы подвергаются фазовым превращениям. Это плавление, кристаллизация, переход из одной кристаллической модификации в другую, растворение одной фазы в другой, насыщение или пересыщение одной фазы другой. Они определяются характером сил межмолекулярного взаимодействия. Для длинноцепочечных и слабо разветвленных алканов это аддитивные дисперсионные силы, направленные перпендикулярно оси цепи нормального строения, что обусловливает возможность сближения молекул. [c.190]

    При одном и том же содержании углеродных атомов в молекуле наиболее высокой температурой плавления обладают нормальные алканы, где дисперсионному взаимодействию подвергаются все углеродные атомы соседних молекул. С разветвлением структуры молекул такая возможность вследствие их иной ориентации понижается, что объясняет более низкую температуру кристаллизации. В твердом состоянии молекула алкана расположена упорядоченно, образуя кристаллы различной структуры, преимущественно большие агрегаты достаточно гибких кристаллов. Процесс кристаллизации складывается из двух стадий стадия образования центров кристаллизации (или зародышей) и стадия роста этих центров. Вторая стадия кристаллизации — многоступенчатый процесс, который по различным причинам (например, вследствие возникновения механических напряжений) может останавливаться на любой промежуточной стадии. Монокристаллы образуются только в особых условиях. Обе стадии кристаллизации сильно зависят от температуры. Понижение температуры благоприятствует образованию зародышей кристаллизации, но в то же время уменьшает молекулярную подвижность, а вместе с ней и скорость роста кристаллов. Поэтому температурная зависимость скорости кристаллизации проходит через максимум. Большинство алканов имеет несколько аллотропических модификаций, кристаллизуясь в гексагональной, триклинной, моноклинной и орторомбической формах. Некоторые [c.190]

    Для низкомолекулярных алканов температура перехода одной кристаллической структуры в другую на десятки градусов ниже температуры плавления, в то время как для высокомолекулярных алканов этот температурный интервал составляет всего 3—16°С, а для некоторых вообще не Обнаруживается. При кристаллизации из неполярных растворителей, в том числе из нефтяных фракций, образуются кристаллы орторомбической формы. Характерна ступенчатая слоистость кристаллов, т. е. каждый новый слой кристаллизуется на предыдущем, образуя пирамиду из параллельных ромбических плоскостей [14]. Из всех-углеводородов наибольшие размеры кристаллов и число ромбических плоскостей имеют нормальные алканы. При кристаллизации из растворов с полярным растворителем только алканы образуют кристаллы правильной ромбической формы. [c.191]

    Температура кристаллизации алканов сильно различается в зависимости от их химического строения даже в пределах одного гомологического ряда при одинаковой молекулярной массе  [c.192]

    Такой распространенный показатель, как температура помутнения, для алканов может служить температурой начала выделения твердой фазы или пересыщения раствора углеводородами, начинающими кристаллизоваться при данной температуре. Таким образом, температура помутнения будет одновременно и температурой ТАБЛИЦА 52. Температуры кипения и кристаллизации алканов [15] [c.192]

    Низкотемпературные свойства дизельных топлив могут быть сушественно улучшены добавлением поверхностно-активных де-прессорных, присадок, модифицирующих процесс кристаллизации нормальных алканов. [c.323]

    В работе [9] представлены многочисленные варианты формирования ССЕ, Например, при низких температурах в условиях кристаллизации из раствора или расплава, за счет дисперсионных взаимодействий молекулы н-алканов могут сформировать ассоциат с параллельной укладкой молекул, способный самостоятельно существовать в равновесных условиях. При этом склонность молекул к ассоциации возрастает по мере перехода к высокомолекулярным и-алканам. Ядро ССЕ, образованное молекулами высокомолекулярных -алкаиов, отличается большой упорядоченностью по сравнению с сольватным слоем. Низкомолекулярные н-алканы, обладающие большей подвижностью и меньшим поверхностным натяжением, концентрируются в адсорбционно-сольватном слое ССЕ. [c.31]


    Образование в топливе кристаллов высокоплавких алкановых углеводородов резко ухудшает прокачиваемость топлив. Бензины к реактивные топлива содержат небольшое количество высокоплавких углеводоро-дов(не более 5-7% н.-алканов), поэтому имеют низкие температуры кристаллизации не выше - 50 (Т-8В), - 55 (РТ), - 60 (ТС-1, Т-6), до - 70 С и ниже (бензины), [c.70]

    Поскольку масляное сырье представляет собой многокомпонентную смесь кристаллизующихся углеводородов, растворенных в кизкозастывающихся компонентах, при депарафинизации в основном будет иметь место совместная, то есть многокомпонентная, кристаллизация с образованием различных более сложных смешанных форм кристаллической структуры. При совместной кристаллизации из углеводородных сред в первую очередь выделяются кристаллы наиболее высокоплавких углеводородов, на кристалли — меской решетке которых последовательно кристаллизуются углеводороды с более низкими температурами плавления. При этом (рорма кристаллов остается ромбической, а их размер зависит от молекулярной массы и химической природы кристаллизующихся углеводородов. Так, с повышением молекулярной массы и температуры кипения н-алканов кристаллическая структура их становится все более мелкой. Обусловливается это тем, что с повышением молекулярной массы уменьшается подвижность молекул парафина. Это затрудняет их диффузию к ранее возникшим центрам кристаллизации и вызывает образование новых дополнительных кристал — Аических зародышей малых размеров. [c.254]

    Низкозастывающие вещества могут встречаться среди всех категорий углеводородов, входящих в масляные фракции нефтей, кроме алканов нормальной структуры, которые все без исключения являются кристаллизующимися веществами. Каких-либо общих и строгих закономерностей между химической структурой углеводородов, их способностью кристаллизоваться и температурой застывания до настоящего времени еще не установлено. Имеются лишь отдельные частные правила, относящиеся к тем или иным группам химических структур углеводородов, показывающие некоторую приближенную зависимость между строением их молекул и температурой застывання. Здесь может быть отмечено только одно общее, имеющее ряд исключений приближенное правило — углеводороды простой, симметричной, малоразвет-вленной структуры более склонны к кристаллизации, чем углеводороды других структур. Внесение асимметрии и разветвленности в молекулу снижает способность углеводорода кристаллизоваться. [c.36]

    Получаемый при карбамидной депарафинизации застывающий компонент обычно содержит значительное количество углеводородов с невысокими и очень низкими температурами застывания. Это обусловливается, с одной стороны, способностью карбамида давать комплексы с рядом углеводородов разветвленных и циклических структур, не обязательно обладающих высокими температурами кристаллизации, и, с другой стороны, трудностями освобождения комплекса от увлекаемых им значительных количеств депарафинированного продукта. Для получения из застывающего компонента технических парафинов должной чистоты и тем более для выделения из них относительно чистых к-алканов требуется значительная дополнительная обработка этих продуктов — обезмасливание, деароматизация, очистка, а иногда даже и повторное комплексообразование, проводимое, в частности, при несколько повышенных температурах и при пониженной кратности обработки карбамидом. [c.152]

    Вошел в практику исследования метод кристаллизации, который используется для разделения алканов нормального строения и изоалканов, для разделения цикланов и ароматических углеводородов [41, 42, 43, 44]. [c.13]

    Большой практический интерес представляет выбор в качестве модификаторов структуры твердых углеводородов веществ, не ухудшающих эксплуатационные свойства церезинов. Из теории кристаллизации расплавов известно, что при наличии в них примесей или специально введенного компонента, обладающих кристаллографическим сродством к кристаллизующейся фазе, эти вещества могут являться зародышами кристаллизации твердой фазы. В производственной практике подобные вещества имеют большое значение, так как с их помощью можно управлять процессами кристаллизации. Для интенсификации обезмасливаиия в качестве таких веществ [109] исследованы индивидуальные н-алка-ны с числом атомов углерода 20—24. При выборе условий введения этих углеводородов в суспензию петролатума, полученного при переработке западно-сибирских нефтей, показано, что в отличие от депрессорных присадок более эффективно вводить их сразу после термообработки раствора петролатума. Следовательно, н-алканы принимают участие в образовании зародышей кристаллов. Эффективность н-алканов как модификаторов структуры твердых углеводородов оценивают по тем же показателям, что и в случае применения депрессорных присадок при обезмасливании петролатума. [c.182]

    Результаты экспериментов пок 13ывают, что узкие фракции до минус 20-30°С, полученные при дробной кристаллизации, представлены главным образом алканами нормального строения, которые можно эффективно использовать, в том числе как сырье для производства синтетических жирных кислот (СЖК) [1]. [c.138]

    Дегидрирование изобутана в изобутилен. Эффективные катализаторы для превращения низших алканов в алкены — это окислы металлов VI группы, способные к активированной адсорбции водорода при повышенных температурах. На практике наибольшее распространение получили катализаторы на основе окиси хрома, нанесенной на окись алюминия. Наиболее активна аморфная форма окиси трехвалентного хромаСгаОз, содержащая некоторое количество соединений шестивалентного хрома. Роль окиси алюминия помимо основной функции носителя заключается в тормозящем действии на процесс кристаллизации окислов хрома, приводящий к потере активности катализатора. Кислотная функция окиси алюминия, наличие которой ускоряет реакции изомеризации и крекинга, подавляется добавлением небольших количеств щелочных металлов, в частности окиси калия. В некоторых случаях катализаторы дегидрирования алканов Q—Се промотируются редкоземельными элементами, например NdjOa, уменьшающих период разработки . Катализаторы на основе окиси алюминия неустойчивы к действию влаги, поэтому распространенный прием повышения степени превращения (и селективности) за счет снижения парциального давления углеводо- зодов при разбавлении сырья водяным паром в данном случае неприменим. [c.351]

    Кристаллизация индивидуальных -алканов. Кристаллическая структура индивидуальных н-алканов довольно сложна, так как они являются полиморфными кристаллическими веществами и в зависимости от температуры кристаллизации и числа атомов углерода в н-алкане образуют монокристаллы , относящиеся к четырем различным сингониям гексагональной (а-форма), ромбической (р-форма), моноклинной (уформа) и триклинной (б-форма). [c.81]

    Смеси к-алканов с изо- и циклоалканами и ароматическими углеводородами также образуют эвтектику [89], что является следствием разной структуры молекул и физико-химических свойств такой системы. Мэзи [35], изучавший кристаллизацию индивидуальных н-алканов и их смесей, а также смеси к-алкана с изоалканом, пришел в общем к тем же выводам. Он показал, [c.85]

    Жидкие парафины, выкипающие в пределах 270—370 °С, в небольших количествах выделяют кристаллизацией из растворов в избирательных растворителях. Полученные кристаллы отфильтровывают, промывают от раствора дизельного топлива, затем от полученных продуктов отгоняют растворитель. Жидкие парафины, выкипающие в пределах 200—360 °С, получают путем карбамидной депарафинизации соответствующих нефтяных фракций. Этот метод заключается в комплексообразовании (преимущественно н-алканов) с карбамидом, отделении комплекса от раствора депарафинированного сырья, разложении комплекса, отделении парафина от карбамида и отгонке растворителя от полученных продуктов. Жидкие парафины, выкипающие в пределах 180—345°С, выделяют путем адсорбций н-алканов на цеолитах с последующей их десорбцией. [c.109]

    Адсорбция на цеолитах применяется и для выделения нераз-ветвленных алкенов Сщ— is из смесей с алканами. Процесс на калий-бариевой форме цеолитов X и Y в нромышлеииостн используется для извлечения я-ксилола и смсси аренов g, и степень извлечения п-ксилола значительно вьнше, чем при кристаллизации. Цеолиты являются прекрасными осушителями газов и жидкостей, а также хорошими поглотителями сернистых соединений. [c.74]

    Экстрактивная кристаллизация грнменяетея для депарафинизации масляных фракций. Удаление нормальных алканов, имеющих сравнительно высокую температуру кристаллизации, необходимо для обеспечения хорощей текучести масел и для устранения возможности выпадения твердого парафина. Растворитель для этого процесса должен быть достаточно селективным, т. е. должен иметь низкую растворяющую способность по отнощению к алканам и высокую — к остальным компонентам масляной фракции. В качестве растворителей применяю смеси кетонов (ацетона, ме-тилэтилкетона) с аренами, например толуолом, добавление которого повыщает растворимость масляных компонентов н выход очищенного масла. На некоторых установках за рубежом используют менее селективный растворитель — жидкий пропан в этом случае для повышения селективности процесс проводят при более низких температурах. В последние годы получила применение смесь пропилена с ацетоном, обеспечивающая больщую селективность и в связи с этим более низкую температуру застывания масел. [c.76]

    Дисиерсиоиное взаимодействие между молекулами н-алка-нов ири структурно-химическом подходе определяется числом центров дисперсионного взаимодействия, достигающим в точках кристаллизации предельного значения. В рамках таких представлений получает объяснение давно известный факт альтернирования температур кристаллизации четных и нечетных н-алканов по мере роста числа углеродных атомов (рис. 3), В случае нечетных г<и -изомеров для п<20 в результате возмущающего действия подвижности и расклинивающего влияния концевых СНз-групп наблюдается уменьщение числа центров дисперсионного взаимодействия в точках кристаллизации, что приводит к понижению температур кристаллизации. Для п<4 не определялись. [c.25]

    При температурах, близких к температуре кристаллизации, в нефтяных системах сосуществуют ССЕ смолисто-асфальтеновых веществ и высокомолекулярных алканов. Как известно, алканы при нормальных условиях, начиная с н-гексадекана и выше, представляют собой твердые вещества. В результате по-пиженпя температуры из нефти выделяются кристаллы алканов, причем число их увеличивается постепенно в силу значительно разности температур плавления отдельных углеводородов. Прп этом могут изменяться как размеры ССЕ, так п их число в единице объема в зависимости от условий кристаллизации. [c.73]

    Температура помутнения и начала кристаллизации соответствует такой температуре, при которой из нефтяной фракции выделяются растворенная вода, парафины, бензол, видимые невооруженным глазом. Температура помутнения и начала кристаллизации определяется для некоторых видов топлив и реже —для дистиллятных масел. Выделение из нефтей и их фракций парафинов связано с явлениями ассоциации и структурообразования за счет сил межмолекулярного взаимодействия. Таким образом, на низкотемпературные свойства нефтей и нефтяных фракций влияют условия, управляющие структурообразованием в них. Так, механическая и термическая обработка, добавка ПАВ понижают температуру застывания нефтей [86]. Основной компонент, повышающий температуру застывания нефтей и нефтяных фракций — алканы. Недавно была установлена зависимость энергии ассоциации алканов в точках фазовых переходов от их молекулярной массы [87], что позволило, в частности, найти углеводород, в котором энергия межмолекулярного взаимодействия выше энергии химической связи между атомами в молекуле, вследствие чего алкан деструкти-рует при плавлении. Температура плавления алканов повышается с увеличением молекулярной массы. [c.24]

    Метод кристаллизации применяется для выделения из нефтяных фракций индивидуальных углеводородов или групп углеводородов (например, нормальных алканов), имеющих наиболее высокие температуры кристаллизации. Температура кристаллизаций зависит от размеров молекул и, в еще большей степени, от симметрии молекул углеводородов. Так, температура кристаллизации нормальных алканов повышается с увеличелием их молекулярной массы и, начиная с гептадекана (т. крист. 22,5 °С), это твердые вещества при комнатной температуре. Температуры кристаллизации трех изомеров октана, расположенных в порядке повышения молекулярной симметрии, приблизительно следующие 2-метил-гептан — 109 °С октан —-57°С 2,2,3,3-тетраметилбутан 101 °С, Температура кристаллизации п-ксилола (13,26 °С) на 38,5 °С выше, чем о-ксилола и на 61 °С выше, чем у наиболее близкокипя-щего ж-ксилола. " [c.68]

    Экстрактивная кристаллизация применяется для депарафинизации масляных фракций [114—115]. Растворитель выполняет несколько функций экстрагирует низкоплавкие компоненты смеси, обеспечивает существование жидкой фазы при температуре ниже температуры кристаллизации, снижает вязкость маточного раствора, что позволяет полнее удалить жидкую фазу. Растворитель должен быть достаточно селективным, т. е. должен иметь низкую растворяющую способность по отношению к алканам и высокую — к остальным компвнентам масляной фракции. В качестве растворителей наиболее широко применяют смеси кетонов (ме-тилэтилкетона, ацетона) с аренами, например толуолом, добавление которого повышает растворимость масляных компонентов и выход очищенного масла. На ряде зарубежных установок используется менее селективный растворитель — жидкий пропан, в этом случае для повышения селективности процесс депарафинизации приходится проводить при более низкой температуре. Более высокую селективность обеспечивает смесь пропилена с ацетоном [116]. [c.69]

    Из всех углеводородов алканы отличаются наиболее низкой вязкостью в сопоставимых условиях. При понижении температуры в нормальных алканах начинается структурообразование (кристаллизация). Для изоалканов эта температура намного ниже. [c.190]

    Из приведенного сравнения видно, что отличительные признаки смол заключаются в растворимости в алканах (а также в углеводородах нефтн), возможности разделения на узкие фракции однотипных групп веществ (например, моноциклические, бициклические и др.), малая степень ароматичности, поЛидисперсность и отсутствие структуры. Смолы представляют собой вещества, занимающие область между углеводородными маслами и асфаль-тенами. Именно благодаря полидисперсности, широкому интервалу молекулярных масс, отсутствию относительно сформированной молекулы,, небольшому размеру и малой степени ароматичности, межмолекулярные взаимодействия у них не приобретают решающего значения. Поэтому их можно разделить на фракции одноптипиых веществ. Вследствие этого в книге [242] предложены критерии, позволяющие более четко определить понятое асфальтены и смолы. К смолам можно отнести растворимые в углеводородах нефти высокомолекулярные гетероатомные полидисперсные бесструктурные соединения нефти, которые можно разделить на узкие фракции однотипных соединений. Начиная с определенного размера и степени ароматичности относительно сформированных полициклических молекул, решающим фактором становится меж-молекулярное взаимодействие, приводящее к формированию структуры (в известной степени сравнимой с процессом кристаллизации у полимеров), степень упорядоченности которой зависит от их химической природы. [c.269]

    Максимальную температуру комплексообразования для н-ал-к нов можно определить по специальным уравнениям. В то же В ремя процесс образования комплекса является экзотермическим, и с повышением температуры равновесие сдвигается в сторону его разрушения. С этой точки зрения температуру комплексообразования желательно понижать. Однако при сильном понижении температуры образование комплекса затрудняется из-за роста вязкости системы, понижения растворимости компонентов и возможности кристаллизации высокомолекулярных н-алканов. Поэтому оптимальные температурный условия карбамидной депарафинизации нефтепродуктов выбирают в зависимости от качества сырья. [c.224]

    Путем гидроизомеризации нормальных парафиновых углеводородов можно значительно понизить температуру кристаллизации керооино-газойлеаых фракций. Так, ири уменьшении содержания н-алканов с 15 до 1,9% температура кристаллизации керосина понижается, например, с —19 до —60 °С [8].  [c.282]

    Алканы в нефтяных системах могут находиться в молекулярном или ассоциированном состояниях [10, 14, 227, 243, 270]. Исследование молекулярной структуры н-алканов в жидком состоянии методом малоуглового рассеяния рентгеновских лучей показало, что их ассоциация происходит по поверхности молекул с помощью сил дисперсионного взаимодействия, а ассоциаты, например, н-алканы, при нормальных условиях имеют форму дисков или пластин с размерами 130-200 А [40, 151]. Число молекул в ассоциате тем больпге, чем ниже температура. Так, в гексадекане при 20°С (т. е. на 2 °С выше температуры кристаллизации) число молекул в ассоциате равно 3, а в н-октане при - 50°С (т. е. на 6°С выше температуры кристаллизации) -31. Это объясняется ослаблением тстиовото движения молекул и усилением энергии молекулярного взаимодействия алканов с ростом длины цепи. [c.11]

    Молекулярное строение кристаллизующихся углеводородов обуславливает различную способность их к плотной упаковке при кристаллизации и образованию твердых растворов различной структуры. Исследования структуры кристаллов, образующихся при кристаллизации углеводородов разных гомологических рядов, показали /27/, что при кристаллизации из растворов нефтяных фракций все они образуют кристаллы орторомбиче-ской формы со ступенчатой слоистостью кристаллов, т.е. каждый новый слой кристаллизуется на предыдущем, образуя пирамиду из параллельных ромбических плоскостей. Наибольшие размеры и число ромбических плоскостей имеют кристаллы нормальных алканов. Наличие нафтеновых и особенно ароматических структур в составе молекул кристаллизующегося вещества приводит к уменьшению размеров и слоистости образующихся кристаллов. При совместной кристаллизации углеводородов различных гомологических рядов повторяются эти же закономерности образуются смешанные кристаллы переменного состава орторомбической структуры, при этом чем больше циклических углеводородов, тем меньше размеры кристаллов и число наслоений. Способность циклических углеводородов (циклоалканов и аренов) образовать смешанные кристаллы с алканами обусловливается наличием в их молекулах длинных алкильных цепей в основном нормального строения. При отсутствии таких цепей циклические углеводороды кристаллизуются при значительно более низких температурах. [c.27]

    С целью более глубокого изучения химического состава масляных фракций нефти Николай Иванович Черножуков впервые использовал цеолиты для выделения н-алканов и ароматических углеводородов. Это позволило не только углубить представления о структуре твердых углеводородов нефти, но и корректно решать В0П1ЮСЫ, связанные с потенциальным содержанием в масляном сырье углеводородов парафинового ряда. Проведенные исследования позволили Николаю Ивановичу сформулировать ряд важных положений о взаимосвязи химического состава твердых углеводородов с их физико-химическими свойствами и кристаллической структурой, определяющей их эксплуатационные характеристики. Детальное изучение процесса кристаллизации твердых углеводородов дало возможность Н. И. Черножукову установить явление сорбции смолистых веществ кристаллами твердых углеводородов. Эти работы легли в основу нового направления в области интенсификации процессов масляного про- [c.9]

    Рассмотрим эти превращения на примере ряда алканов [17]. При одном и том же содержании углеродных атомов в молекуле наиболее высокой температурой плавления обладают нормальные алканы, где дисперсионному взаимодействию подвергаются все углеродные атомы соседних молекул. С разветвлением структуры молекул такая возможность вследствие их иной ориентации понижается, что объясняет более низкую температуру кристаллизации. В твердом состоянии молекула алкана расположена упорядоченно, образуя кристаллы различной структуры, преимущественно большие агрегаты достаточно гибкта кристаллов. [c.54]

    Спектры кристаллических углеводородов в отношении числа и положения интенсивных полос в большинстве случаев близки к спектрам жидкостей, однако довольно часты и значительные различия между ними. Например, кристаллизация к-алканов от С и выше всегда сопровождается существенными изменениями в спектрах, как это видно на рис. 25 и 31а. Такие изменения спектров связаны с поворотной изомерией в жидкой фазе существуют в равновесии два или рюсколько изомеров, а в твердой только один, например [5, 470] Иногда в спектрах кристаллов наблюдаются новые слабые полосы, например [66, 338], и расщепляются сливающиеся в жидкости полосы и группы полос [338, 438, 441]. Для симметричных молекул в связи с наличием специальных правил отбора для кристаллов ряд более или мепее слабых полос может наблюдаться в спектре жидком и, но не в кристалле [252, 277] например, запрещенные полосы 852 и 1180 см жидкого бензола отсутствуют в спект) кристаллического бензола [253, 3381, как и в спектре паров. [c.488]


Смотреть страницы где упоминается термин Алканы кристаллизация: [c.122]    [c.673]    [c.707]    [c.76]    [c.57]    [c.160]    [c.153]   
Физика и химия твердого состояния органических соединений (1967) -- [ c.377 ]




ПОИСК





Смотрите так же термины и статьи:

Алканы



© 2025 chem21.info Реклама на сайте